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Algebraic methods, Bender-Wu formulas, and continued fractions
at large order for charmonium
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A special coordinate realization of the Lie algebra so(4,2) is used to reformulate the perturbation
problem of a hydrogen atom in a linear radial potential over a complete and discrete Sturmian basis.
In this way, the Rayleigh-Schrodinger coefficients E~zM may be calculated to arbitrarily high order
for any state. The large-order behavior of these coefficients is determined by Bender-Wu WKB
theory. A general formula for the large-order behavior of the coefficients c„of the Stieltjes
continued-fraction representations of these perturbation expansions is given and related to that of
the

I. INTRODUCTION

The model problem of a hydrogenic atom in a linear ra-
dial potential —the charmonium model —is given by the
Hamiltonian (in atomic units)

H(A, ) = ——V- ——+Ar .Z
2 r

It has attracted great interest in both the areas of quan-
tum chromodynamics (QCD) and atomic and molecular
physics (AMP). Regarding the former, the spectra of
families of elementary particles may be well described by
bound states of charmed-quark —charmed-antiquark pairs
interacting through various nonrelativistic confinement
potentials. ' Equation (1.1) is a specific example of a
wide class of Hamiltonians which have been studied in
this context.

Of relevance to AMP, Eq. (1.1) is, for Z = 1, the spheri-
cally symmetric analog of the Stark effect in hydrogen.
For A, &0, corresponding to an unstable potential, E(A, ) is
complex and —ImE is inversely proportional to the mean
lifetime of the exponentially decaying tunneling states or
resonances. For this reason, Titchmarsh studied the
asymptotics of ImE as A, ~O as a natural precursor to the
study of resonances in the Stark effect and the famous
Oppenheirner formula (and its variations). In their de-
tailed analysis of resonances, Harrell and Simon contin-
ued this theme and determined the asymptotics of ImE in
(1.1) using the techniques of ordinary differential equa-
tions in the complex plane. Regarding (1.1) as a screened
Coulomb potential problem, Mehta and Patil employed
Bender-Wu WKB methods to determine these asymptot-
ics for spherically symmetric (zero angular momentum)
states. The large-order behavior of the Rayleigh-
Schrodinger perturbation coefficients for these states was
determined with the use of dispersion relations.

Traditional perturbation and variation treatments of
hydrogenic perturbation problems such as Eq. (1.1) are
hampered by the presence of the continuum states of the
unperturbed hydrogen atom. Various methods which cir-
cumvent this difficulty have been devised to calculate

00

EXLM(~) 2 + g EXLM~ ~

a=i
(1.2)

Here, N, I., and M denote, respectively, the principal,
orbital-angular-momentum, and magnetic quantum num-
bers of the unperturbed state which gives rise to the level.
(Quantum numbers for a reference state will generally be
capitalized to avoid any confusion with lower-case dum-
my indices. ) The coefficients E~~~ (which are M in-
dependent) are calculated to large order, typically n —100.

Rayleigh-Schrodinger perturbation expansions. Some of
these have been applied to Eq. (1.1), for example, the
Hellmann-Feynman and hypervirial theorems, ' and a
method of quadratures. ' The Pade-approximant summa-
bility of the ground-state perturbation series has also been
numerically demonstrated. '

This report is concerned with Rayleigh-Schrodinger
perturbation theory (RSPT) at large order for the Hamil-
tonian in (1.1). In the spirit of early investigations of
divergent perturbation series encountered in nonrelativis-
tic quantum mechanics, " and subsequent research, ' '
the paper involves an interaction of three basic themes
which account for its title: (a) the practical calculation of
the Rayleigh-Schrodinger (RS) perturbation series for a
given energy level; (b) the large-order behavior of the
series coefficients, which is important in establishing the
summability of the series; and (c) a continued-fraction
(CF) representation of this series which, in some respects,
may be considered a more natural representation of E(A, )

than the perturbation series itself.
As the previous paragraphs suggest, various aspects of

the RSPT of (1.1) have been studied in the literature. The
three themes given above provide a unified treatment of
the summability problem for this model, from practice to
theory. A little elaboration on these aspects, and how
they are to be presented in this paper, now follows.

(a) Algebraic methods. In Sec. II we outline the use of a
special coordinate realization of the I.ie algebra so(4,2) to
calculate the RS perturbation expansion for the energy of
a given level,
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In Appendix A, we outline a difference-equation approach
which may also be used to calculate the Ez&M.

(b) Bender Wu formulas. In Sec. III the large-order
behavior of the RS coefficients E~~M for general levels is
determined by (nonrigorous) WKB methods. Elliptic in-
tegrals are used to determine the asymptotics of the tun-
neling factor integral. The forinulas are checked numeri-
cally for a number of cases. The high-field limit of char-
monium, relevant to this section, is discussed in Appendix
B.

(c) Continued fractions at large order. Section IV deals
with a continued-fraction representation of the series in
(1.2) which assumes the form

E~zM ( I,)= — +A, C ( A, )
2X

NI.M g
(1.3XI.Mg

1 + - XIMg
1+ + 0 ~ ~

The coefficients c„are calculated accurately to large
order (n —100) for a number of levels using multiple-
precision arithmetic. The large-order behavior of these
coefficients is related to that of the ExL'~, which is con-
firmed numerically. Some important aspects of RITZ
(rotation-inversion-translation-z) fractions are given in
Appendix C.

II. THE LIE ALGEBRAS so(4,2) AND so(2, 1)
AND HYDROGENIC PERTURBATION THEORY

The bound-state (discrete) hydrogenic eigenfunctions
are given by

transformed and reformulated in terms of the elements of
a particular coordinate realization of the Lie algebra
so(4,2).' ' This realization contains several quantum-
mechanical operators relevant to the hydrogen atom, in-
cluding the angular momentum and (modified) Laplace-
Runge-Lenz vectors. One advantage of this procedure is
that the matrix elements of the algebraic operators are
known from representation theory and no integrals need
be calculated. In addition, the basis functions X„i which
span a unitary irreducible representation of this algebra
exist in a one-to-one correspondence with the discrete hy-
drogenic functions $„1~ but form a complete basis, an
ideal situation for perturbation theory. The algebraic
method is versatile and has been applied effectively to
treat a variety of hydrogenic perturbation problems. '

We now outline the major features involved in the Lie
algebraic reformulation of Eq. (1.1), and then develop the
relevant perturbation theory. The spherical symmetry
(unidimensionality) of this problem simplifies not only
RSPT but also the algebraic treatment, since only the
three elements of the Lie subalgebra so(2, 1) [the genera-
tors of the Lie group SO(2, 1) associated with the hydrogen
radial equation] are actually required. For more detailed
expositions of this method, the reader is referred to Refs.
11 and 18.

The algebraic reformulation of hydrogenic reference
problems rests on the selection of an unperturbed refer-
ence state. Therefore, for the remainder of this section, it
will be understood that we are considering the perturba-
tion of a particular hydrogenic state gjvt.~~/~1.M(A. ), as
described by the eigenvalue equation

T

—
~ V — —kr —EEL,M(k) gyr, M(k) =0 . (2.3)2

1/2 'I
2 Z (n —l —1)! z„~„2Zr

pg
2 (n + l)! n

&&L„'+i',(2Zr/n)I'i (8,$), (2.1)

First, define

Z
E(A, ) = — +hE(A, )

2X

(subscripts understood), and rewrite Eq. (2.3) as

(2.4)

where n, l, and m are the usual hydrogen quantum num-
bers,

(2.5)
L(L+1) Z Z

2P r+ + ——+Ar AE $=0, —
2r2 2' 2 r

Lk(x) = iEi( —k;a+ 1;x)
I (k+a+1)

I" k+1 I a+1 (2.2)
where

denotes the associated Laguerre function, and I'i (8,$)
represents the spherical harmonics. It is well known that
the g„q form an orthonormal system in the Hilbert space
L (lR ) which is not complete, due to the simultaneous
presence of continuum eigenstates. ' This represents a
great nuisance to any proper perturbation or variational
treatment formulated in this basis, since such calculations
would necessarily involve summations over discrete states
along with integration over the continuum. The latter
procedure is tedious and computationally difficult. Many
calculations in the literature have ignored this contribu-
tion at the expense of accruing a non-negligible loss of ac-
curacy.

The problems associated with the continuum are effec-
tively bypassed when the Schrodinger equation is

p, = —— r
r 3r

is the radial momentum operator. Now apply the
transformation

r =(Z/N)r', p =(N/Z)p ', (2.6)

L (L +1)
2r

3

+ 2 r N+g —~ ——&E—r /=0. (2.7)
1 X 2 2V

z z

to Eq. (2.5), drop the primes, and multiply the resulting
equation by r to give
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~e now define the operators

L(L+1)

T2 =P'P (2.8)

The matrix elements of the Tk operators in the X„~m

basis [as well as all other elements of so(4,2) in this reali-

zation] are obtainable from representation theory. 's For
the treatment of radial problems such as Eq. (2.7), it is

sufficient to know that

rX I (T3 Tf )X

1 z L(L+1)
~3 ~P r+ +r

2 p'
J

which satisfy the commutation relations of an so(2, 1) Lie
algebra, i.e.,

[Ti Tz]= —lT»

[Tz»1=&Ti,

[T»Ti 1 =lTz,

(2.9)

where [A,B]=MB—BA. Since r=T3 —T~, the eigen-

value equation (2.7) may be expressed solely in terms of
the T; operators as

1 3g
(T3 —N)+A. — (T3 —T))z

g—AE — (T3 —T)) /=0 .
Z

(2.10)

Equation (2.10) represents the algebraically reformulat-
ed version of Eq. (2.7). For X=O, it reduces to the eigen-

value equation

T3XNLM(r) =N&NLM( r )

where
I /2

N L —1)!—
(N +L)!

e "(2r)

(2.11)

&&LN —+L' i(2r)~s.M(~ 4'» (2.12)

and the X, I., and M satisfy the usual relations of the hy-

drogen quantum numbers. The Tk operators are self-

adjoint with respect to the inner product of the Hilbert
space L (R, 1lr) The g„i~ f.unctions form a complete
and discrete orthonormal basis satisfying

(X„z (r)
~
X„E (r) &

= X„l (r)—X„I (r)drgC

=5„„6I,6 (2.13)

The bra-ket notation of Eq. (2.13) is understood to
represent this so(4,2) inner product for the remainder of
this section. The X„I~ are Coulomb Sturmian functions
and are identical to those functions employed by Hyl-

leraas 6 in his classic treatment of ground-state helium by
configuration interaction. Their relation to the hydrogen-
ic eigenfunctions of (2.1) is given explicitly by the formula

= ——,[(n +l)(n —l —1)]'

——,[(n +l+1)(n —l)]'~ X„+~ z (2.15)

from which all other required matrix elements are obtain-

able. For more complicated perturbations involving the
Cartesian coordinates x, y, or z operators of the larger
so(4,2) Lie algebra must be employed.

Here we remark that Eq. (2.10) may be written in the

generic form

(kN+kW hE $)$—=0 . (2.16)

In the g„~ basis, E~ is diagonal with eigenvalues k —X,
k = 1,2, 3, . . . . For this problem the (infinite) matrix rep-

resentation of W is pentadiagonal and that of $ tridiago-
nal, by Eq. (2.15). This close packing is important, as it
ensures that all summations in perturbation theory are
finite. Equation (2.16) is formally equivalent to an eigen-

value problem defined over a nonorthogonal basis with

overlap matrix S. Both variational and perturbation
treatments of such problems have been quite successful in

the study of the Zeeman effect for ground-state hydro-

gen. "
As mentioned earlier, the radial nature of the perturba-

tion in (2.8) simplifies perturbation theory. The angular
~ ~ ~

momentum operator L and its projection I., commute

with W. Perturbation theory (as well as the variational

method) of Eq. (2.3) may be formulated over the subspace
of basis functions X„LM with fixed L and I [cf. Eq.
(2.15)]. Moreover, ENLM(X) is (2L +1)-fold degenerate

with respect to M, and so this index may, in principle, be

suppressed in the perturbation expansions. Nondegenerate

RSPT is sufficient here and the unperturbed operator K
of (2.16), defined by its action

ICNX t, =(n N)X r n =—1 2 3 . . . (2.17)

N
n n —X

(2.18)

where the prime indicates n &N
In the tradition of RSPT, the perturbed wave function

is expanded as

is Hermitian with respect to the inner product in (2.13).
A A A

Its reduced resolvent QN is defined as QN PNK N——
=K N PN, where PN I—

~
XNLM ) (XNLM

~

an——d I is the

identity operator. Resolution of the identity with respect
to the complete and discrete orthonormal basis X„~ gives,
in the fixed-(L, M) subspace,

(2.14) PNLM +NLM+ g 4NLM~
(k) k

k=1
(2.19)
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where it is assumed that

&xivL~ I OivLM & =1 (2.20)
(2.25)

and fNLM~X~L~ as A.~O. Substitution of (1.2) and
(2.19) into Eq. (2.16) and collection of terms in A,

" yields
the following set of perturbation formulas:

E"'&x ls lx&={xl@ I

@"-"&
p —1—y z™&xIs I

y"--'&

y()l

gpss))

—))+ g ~) )@gent

p= 1,2, 3~. . . (2.21)

(2.22)
where the subscripts N, L, and M have been omitted for
notational converiience. In the case S=I, Eqs. (2.21) and
(2.22) reduce to the usual RSPT formulas. For this par-
ticular problem, the first-order energy is given by

N &x~LM I

r'
I x~LM &

&NLM =—
&xivLM I" IxivLM &

[3N' —L(L+1)] . (2.23)

As expected, the result in (2.23) is precisely the expecta-
tion value r with respect to the hydrogenic basis.

The usual procedure is to now expand the higher-order
wave functions /JISM in terms of the complete basis X„I

(N +L)!
(N L —1)!— (2.26)+NLM

The resolvent operator Qz in Eq. (2.18) now becomes

, (n —L —1)! IN.LM&&N.LM I

(n +L)! n —N
(2.27)

The matrix elements of S=(N/Z)2r and 4'=(N/Z) r2
in this basis are easily determined. We now write

and where the inner product of Eq. (2.13) is understood.
The latter relation follows from (2.20). Substitution of
(2.24) into Eqs. (2.21) and (2.22) yields a recursive pro-
cedure forinulated entirely in terms of the expansion coef-
ficients C„'~', the E'~', and the matrix elements of W and

S. At this point, however, it is convenient to formulate
these recursion relations over an unnormalized so(4,2)
basis to remove all square roots occurring in matrix ele-
ments such as Eq. (2.15). This procedure facilitates the
calculation of all E'"' in multiple precision, which will be
discussed in Sec. III. As well, it permits all calculations
to be performed by symbolic manipulation routines such
as MACSYMA which could then compute the E " in exact
rational form.

We consider the unperturbed basis functions defined by
1/2

(2.24) PALM g Dn 0ELM
n (&N)

(2.28)

Since we are working within a fixed-(L, M) subspace,
these indices will be suppressed in the Fourier coefficients,
which are given by

and modify (2.20) accordingly. Substitution of (2.28) into
Eqs. (2.21) and (2.22) yields the following recursion for-
mulas:

Eg~M —— I(N L —1)(N L——2)Dg~ 2
—2(N—L —1)(2N —1)Dg~ —i +2[3N L(L+1)]Dg~—

4Z

—2(N+L+1)(2N+ 1)D~~+i +(N+L +1)(N+L +2)D/~~2

p —1

+
2 Q ENLM[(N L —1)Div i +—(N+L+1)Div+, '],

rn =1
(2.29)

3

D(p)
4(N n)—(n L —1)(n L —2)Dg~ —z ' —2(n —L——1)(2n —1)Div

+2[3n L(L + 1)]D~~ —2(n +—L + 1)(2n + 1)D&~+, '

+ (n +L +1)(n +L +2)D/~+2

+2 — EN™LM n —L —1 DN 1
—2nDN + n+L+1 DN+1, n

Z
(2.30)
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The initial value of this recursion procedure is, simply,
Dg' = 1, representing the unperturbed wave function,
XI'.M F. rom this, one calculates E'", then P ', E' ', P' ',
etc., in the usual manner. The finite summations involved
in each order of perturbation theory are a consequence of
the close-packed representations of 8' and S in the X„~
basis. In fact, the D„' ' may be nonzero only if n)I +1
and n &%+2p. The expansion coefficients may be stored
in a row vector to economize on the computer-memory re-
quirements. The RS procedure described above is easily
computer coded to determine perturbation expansions for
general states. In this way, the coefficients E~zo have

been calculated for the levels 1&%&4, 0&1.&N —1 to
order n —100. The first 91 coefficients of the ground-
state series are presented in Table I.

In standard RSPT, a knowledge of perturbation ener-
gies E"and wave functions g" to order n actually deter-
mines the E" to order 2n+1. Explicit calculation of
these coefficients may be accomplished by a sequence of
transformations of the RSPT perturbation equations.
Such a procedure has been formulated for the case of in-
termediate normalization in Eq. (2.20). Its generaliza-
tion to the nonorthogonal perturbation problem (2.16) is
given by

TABLE I. The first 90 (scaled) coefficients E&~~ of the Rayleigh-Schrodinger perturbation expansion of E(A, ) for the ground state
of the hydrogen atom in a linear radial potential, (X,J,M) =. (1,0,0).

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21-
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4S

100—nE(n)

—0.500 000 000 000 000 000 000 000 000 000 00
0.150000 000 000 000 000 000 000 000 000 00 Q 10

—0.150000 000 000 000 000 000 000 000 000 00)& 10
0.675 000 000 000 000 000 000 000 000 000 00)& 10

—0.496 875 000 000 000 000 000 000 QOQ 000 00)& 10
0.480 375 000 000 000000 000 000 000 000 00K 10

—0.558 299 999 999999999999999 99999999X 10-'
0.745 573 359 374999 999999999 999 999 99X10-'

—0.111431 933 496093 75000000000000000)& 10
0.183 291 714404296 875 00000000000000& 10

—0.328 051 587 371 337 890 624 999 999999 99~ 10
0.633 670 455 014318 847 656 249 999999 98 && 10

—0.131294 601 381 998 199462 890 625 00000)& 10
0.290407 932 815 958 874 511718 749 999 99)& 10

—0.683 045 342 904476 692 199707031 249 97&& 10
0.1702III8 828 630 796075 922012 329 101 56X 10

—0.448 555 463 827030484 123 218 059 539 78)& 10
0.124 560012 753 220 375 180089 354 51507 && 10

—0.363 757070084 564442 546 386441 588 38)& 10
0.111476 957 302 336220 743 983 378 186 82 X 10

—0.357 798 342 931 711 740 037 247 069 731 71 X 10
0.120051 857 638 413 444 638 039 124 687 75 & 10

—0.420 365 800 567 908 633 696 136702 983 86 X 10
0.153 360 143 295 769 147231 101 361 067 15X 10

—0.582059406 890 645 188 347 842489 82493 X 10
0.229496413 047 783 031 266 743 250407 61 X 10

—0.938 772773 265 986216651 723 463 53S 45)& 10
0.397 904294077082 596 593 212 562 900 57& 10

—0.174 550 321 548 882 772 531 493 982 01643 ~ 10
0.791 602 639 259 323 210 982 147 667 13690& 10

—0.370 755 066 788 492 883 167441 755 864 90)& 10
0.179 157464 815 671 33492406S 702 168 97&(10

—0.892 378 966 577 822 308 315422 374289 95 & 10
0.457 774048 732 210 306 549 534491 236 83 & 10

—0.241 647 201 453 735 762 946086 1393-38 28 Q 10
0.131 160011205 232 745 S99460 912 132 35 ~ 10

—0.731 455 825 158 693 970 560 026 253 607 89 & 10
0.418 828 252 977 178 533 701 552 958 848 37 &( 10

—0.246067 597 977 802 569 592 747045 140 54& 10
0.148 240 529 384 157055419799 490 39607~ 10

—0.915 187 648 114411 505 275 783 023 345 87)& 10
0.578 672493 942 687 663 895 642 511414 87)& 10

—0.374 537 474 461 043 538 311658 984 867 41 & 10
0.248009 542735 975 891923421 355 351 86& 10

—0.167 931 860627019 886 826 310665247 16)& IO
0.116219682 254 759482 148 138 704 353 57 & 10

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

89
90

100-"E'"'

—0.821 688 501 395 158 459 391 949 301 036 44)& 10
0.593 229 850 182 382 248 435 615 743 725 98 &( 10

—0.437 161 715 820093 184 118077 987 50067 &( 10
0.328 690 365 668 158 544 356256 668 662 61 ~ 10

—0.252 050073 320 727 488 936 720 711745 99g 10
0.197050 461 238 217 396037 478 745 061 40 & 10

—0.157000403 752 759 739 367 340422 495 40&( 10
0.127 439 624 870074 186 178 559 489 608 85)& 10

—0.105 351 763 5S4 695 969 031 135001 591 17)& 10
0.886 688 668 236 233 859 895 309 834 303 20)& 10

—0.759 549 138 820 891 270 980 423 857 040 33 )& 10
0.662009 148068409 199743 461405 188 34~ 10

—0.586 905 230 570 875 497 511415 393 742 93~ 10
0.529 108 267 227 319246969 318727053 03 ~ 10

—0.484 924 826 996 715 787 012 196759 027 41 )& 10
0.451 691 744 556058 543 774 309 354475 15~ 10

—0.427 499 837 911959 990278 175 143 521 36& 10
0.411 005 382 623 195 535 002087 173 355 13~ 10

—0.401 302463 530579 679 888 543 864 39493~ 10
0.397 838 750 078 773 939 300 464 786 959 38 & 10

—0.400 363 508 519466 279 332 814088 894 21 Q 10
0.408 900 975 575 062 142 297 520 742 461 24)& 10

—0.423 745 346 676 736 849 702 780785 568 SO & 10
0.445 476 097 796 335 311037 748 438 766 24)& 10

—0.474 994 S40 774 779 878 841 430 677 43S 61 & 10
0.513 584 717056957 188 535 242 986099 96& 10

—0.563 004260 158 345 860211 196378 44093 X 10
0.625 614035 926 645 501 887 887 835 794 53)& 10

—0.704 559 624709 560921 017 302771 31104& 10
0.804023 621 541 125 555 849 224055 356 31 && 10

—0.929 576 132056 377 148 379 046 721 318 33)& 10
0.108 866295 652 818 586451 59741609686~ 10

—0.129 128 860 654 589 809 294 144242 81029 X 10
0.155 097 723 619677 465 429 090 346 997 23 & 10

—O. 188 613296 368 924 774 994 135 519862 99X 10
0.232 197 828 747785 697640 161 84769407~ 10

—0.289 333 517 676 075 736 986 089 338 689 89 X 10
0.364 864 313 826 220 252 439 876 968 030 34)& 10

—0.465 580 581 744 929 365 930677 981 479 26 X 10
0.601 075 963 679 301 727 165 278 337 564 82 ~ 10

—0.785 012 325 307 182 893 184000388 602 32&& 10
0.103700083 948 416 323 576 906 644008 62)& 10

—0.138 541 998 709 455 738 348 593 170465 79 & 10
0.187 166 849 000 653 892 863 822 970985 14&( 10

—0.255 663 175 708 616 540 819861 49726243 &( 10
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a bE'+"+"&X ~S ~X&=&y"
~

W~ q'"& —g y E'+'+'-'-J'&y"'~S ~q'J'&
i =1 j=l

a b

g &y~g~q(0&E«+b+ —' g &y~g~yj &E + + —J (2.31)

where a and b are arbitrary non-negative integers. For
a =b =n, we have the desired result. If the expansions in
(2.19) and (2.20) are now invoked, Eq. (2.31) may be for-
mulated in terms of the expansion coefficients C„'~' or
D„' ', the E' ', and the matrix elements of 8 and S.

III. LARGE-ORDER PERTURBATION THEORY (LOPT)

As mentioned earlier, Mehta and Patil performed the
first Bender-Wu analysis of (1.1) to ascertain the large-
order behavior of the perturbation coefficients E~z~, but
only for the case L =0. In this case, the WKB integral
encountered in the tunneling factor is related to that of
the quartic-anharmonic-oscillator problem. For nonzero
L states, this integral becomes complicated due to the
presence of the centrifugal-barrier term. Harrell and
Simon determined the asymptotics of the tunneling fac-
tor, hence ImE, by a clever selection of turning points and
partitioning of the interval under the barrier. They did
not, however, proceed to develop the actual asymptotics
of the perturbation coefficients E'"'.

In this section we employ the usual %'KB methods and
dispersion techniques of Bender-Wu theory to develop
the LOPT formulas for the expansions in (1.2) for Z =1.
The asymptotics of the tunneling factor mill be deter-
mined using elliptic integrals, a method different from
that employed in Ref. 6. The present procedure was
motivated by a study ' of the WKB (semiclassical) eigen-
value expressions for (1.1) which employed elliptic func-
tions. An interesting result of this section is that some
complicated angular-quantum-number-dependent terms
occurring in the tunneling factor integral vanish in the fi-
nal LOPT formulas, in accord with numerical analysis.
We finally mention that a Bender-Wu WKB analysis of
(1.1) is relatively simple due to its spherical symmetry.
For more complicated atomic problems such as the quad-
ratic Zeeman effect in hydrogen, a difficult multidimen-
siona1 analysis must be devised.

For the dispersion methods of Bender-Wu theory to be
rigorously applicable, E(A, ) must satisfy the properties
of a Stieltjes function. This was shown by Simon in his
detailed analysis of the quartic anharmonic oscillator.
The four properties are the following:

(i) E (k) is analytic in the cut plane
~

argA,
~

& vr;
(ii) E(A, ) is real for A, real and positive;
(iii) E(A, ) has the Herglotz property, i.e., ImE & 0 when

Imk, ~0 and ImE &0 when Emk, &0; and
(iv) the perturbation series (1.2) is an asymptotic expan-

sion valid uniformly.

l

in virtually the same way as for the quartic anharmonic
oscillator, 3 i.e., by multiplying (1.1) by g'(r), integrating
over» by parts, and showing that ImE/Iml, &0. We do
not intend to prove (i) and (iv) here. Concerning (i), it has
been shown that A, =O is a singular point of E(A, ), ac-
counting for the divergence of the perturbation series. As
will be shown below, E (A, ) is complex for A, real and nega-
tive. From (iii) it follows that E(k) has a branch cut
along the negative real axis. Presumably, a differential
equation analysis analogous to that of Ref. 35 could be
used to prove (i). As for (iv), the perturbation of discrete
hydrogenic states could be handled by the techniques out-
lined in Appendix II of Simon. "

A final and important property of the charmonium
problem is

(v) E(A, )-EA, » as A.~ao . (3.1)

For n very large, the major contribution to this integral
comes from the region A, -O. Bender-Wu theory employs
WKB techniques to approximate Im[E(A, )] for A, ~O
Its application to the hydrogenic problem (1.1) for Z =1
is developed below (the extension to arbitrary Z is ob-
tained by scaling).

We first substitute r= —,r' in (1.1) and drop the primes
to produce the modified eigenvalue problem

—~' ——+P» P( ,'r)=EP( ,'r),——(3.3)

where P=A, /4, E= , E, and the unpertur—bed eigenvalues
are given by E &LM —— (4N ) —The subs. titution
P=» g(») FrM(8, $) yields the radial equation

d 6 1 + f3» Eg(») =0, —— —
dr r

(3.4)

where G =L(L+1). In order to study the asymptotics
of ImE for A, —+0, we assume that /3= —e, with
0 ~ e ~&1. The unstable potential is sketched in Fig. 1 for
nonzero I. The classical turning points are given by the
roots of the cubic equation

8'2 1r — r +—r— (3.5)

This may be shown by a Symanzik-type transformation
of (1.1) (cf. Appendix 8) which effectively reverses the
roles of the Coulomb and linear potentials. Properties
(i)—(v) qualify that the perturbation series in (2.1) is nega-
tive Stieltjes for n ) 1, i.e., that

0 ImE~LM(A, +i0)f „ &

dA, , n & 1 . (3.2)

Property (ii) follows from the Hermiticity of H '0'

= —
2 V »' and V=» Property (—iii.) may be derived

where 8'= —E. The roots are approximated by the
asymptotic formulas
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the matching condition yields

~N —3/2

2[(N +L)!(N L——1)I]'"
(26W'i —1)(1+y)

4G W —1 —y

—G

(3.10)

"' ENLM~P~

where the integral in (3.8) has been evaluated to zeroth or-
der in e.

We now proceed to obtain the leading asymptotics of
ImE using the WKB function (3.8). First, multiply Eq.
(3.4) by g (r) and subtract its complex conjugate. Then
integrate the result from r =0 to a point beyond the
outermost turning point at r =a (to avoid reflections of
current back toward r =0) to obtain

0

ImE =
(2i) —P(r) g(r)+g(r) g*(r)G Cg

dr dr

X X JX

FIG. 1. An unstable charmonium potential corresponding to
a negative coupling constant P in Eq. (3.4), for an arbitrary
nonzero value of the angular momentum J. The radial wave
function g~L (r) is superimposed on the energy scale and
represents a tunneling state. The classical turning points a, b,
and c are also shown. In region I, the wave function is well
represented by its unperturbed hydrogenic counterpart. In re-
gion II, a first-order WKB approximation is employed.

a —8'e —8'—1 —1

b -(1+y)(2W)
c-(1—y)(2 W)

where

y=(1 —46 W)'~

(3.6)

(3.7)

and the approximations for b and c are obtained by set-
ting e=O. Note that a+b+c = W/e, as required. Also,
c~Oas G~O.

Near r =0 (region I in Fig. 1), the radial wave function
g(r, i, ) is well approximated by rR&L (r), where R&L (r) is
the (unperturbed) hydrogen radial function. Under the
potential barrier (region II in Fig. 1), b & r &a, the wave
function is approximated by the first-order WKB func-
tion,

J(r)
N(r) (3.11)

The numerator J(r) is the current density of g(r) at a
point r. By conservation of probability, the right-hand
side (rhs) of (3.11) is independent of r. The WKB wave
function (3.8) is now substituted into Eq. (3.11). In order
to avoid the difficulties associated with the outer turning
point, the path of integration along the real axis is de-
formed to travel around the point clockwise. This semi-
circular path is then shrunk to zero. The WKB integral
splits into two parts and, after some algebraic manipula-
tions, the current density becomes

J(r) =—C!exp( 2Ib, ), —
where II,„the tunneling factor, is given by

i 1/2G' 1
~b, = W+ ———eX dX .

b X

(3.12)

(3.13)

=e'~ I x '[(a —x)(x b)(x c)]'~ dx— —

In order to evaluate (3.13) to leading order in e as e~O,
we write it as

1/2

Ibg =6 X —X + X — X+ CjX
1/2

' —1 3 ~ 2b, E

—1/4

g (r)=C! W+ ——er-G2

r 2 r ti2 ' (x —Wx/e —1/e —6 /ex)
8X

[(a —x)(x —b)(x —c)]'~ (3.14)

r G2
&exp — 8'+

2

1/2

GX (3.8) After some further manipulations, the final integral in
(3.14) may be written as

The constant C1 is obtained by the matching condition
g'(r)-g'(r), r »b. Since

Ib ge ——+ + Wc K(k)G 1

c 3

g(I)( ) e rI2NrW—1

+ [2(N+L)I(N L 1)!]
as r~ Oc , (3.9)

+ —, W(a —c)E(k)

(3.15)



31 ALGEBRAIC METHODS, BENDER-%U FORMULAS, AND. . . -

where K(k), E(k), and II(a,k) are the complete elliptic
integrals of, respectively, the first, second, and third
kind, and

k =, (k') =1—k =
a —c a —c '

then to zeroth order in e, N(r) =1 so that ImE =J(r}. It
is now tempting to simply substitute W=E ' ' into (3.21).
As in the Stark effect, ' however, the exponential in (3.21)
contributes two significant terms to the asymptotics of
J(r), since

2 Ck 2
u g=

b (g c)1/2

From (3.6} it follows that

(3.16) W3/2 [ E (0) E (1)~+O( ~2) ]3/2

( E (0))3/2+ 3
( E (0))1/2E (1)~

2

+O(e') as e~O . (3.22)

(k') -yW e, e~O. (3.17)

K(k)-in 4
as m~0, (3.18a)

E (k) —1+ —,ln
4 (k') as e~O, (3.18b)

The asymptotics of the elliptic integrals are given by~

From E NL'M ——3N L(L—+ 1), we have the final result

~—6N —3

4(N +L)!(N L —1—)!
'

1 L(L+1)
Xexp — —3N+

6N e

as e—+0, (3 23)

and

II(a,k)— 1 4
2

ln k'

+ ( —a )'/ arctan '[(—a )'/ ]

1 4
ln

1 —a'

for the scaled problem (3 4).
Returning to the unscaled hydrogen perturbation prob-

lem (1.1), one finds that for A, & 0, the complex part of the
resonance energy is given by

~—6%42%

2N (N +L)!(N L —1)—!

Q exp
2 L(L+1)—3N+— (3.24)

xv'a

CX 1 —a
ln as 6'~0 .

2(l —a ) 1+a
(3.18c)

The argument of the second logarithm in (3.18c) may be
written as

(2GW'/ —1)(l—y)
4628' —1+y

(2GW'" —1)(1+y)
46 8' —1 —y

(3.19)

After some more algebraic manipulations, we find that

3g ~1/2 ~1/2 2 ~1/2

(26W' —1)(1+y)
46 —1 —y

(3.20}

2W —»'
J(r)-

4(N +L)!(N L —1)!—
4e"/'

Xexp
36

as @~0. (3.21)

If we now choose r large enough in Eq. (3.11), i e , r ~~a, . .

This equation is essentially the result obtained by Har-
rell and Simon, apart from a factor which has automati-
cally been absorbed by our normalization constant C&.
Equation (3.20) is now substituted into Eq. (3.12) to give

&&( —,'N3)"I (n +2N) as n +oo . —(3.25)

For L =0, Eq. (3.25) agrees with the result of Mehta and
Patil. It has also been checked by numerical asymptotic
analysis of RS perturbation coefficients for the cases
1&%&3,0(I.&X —1, M =0.

We observe that much of the complicated L-dependent
behavior encountered in the normalization constant, Eq.
(3.10), and in the tunneling factor integral, Eq. (3.20), has
been canceled out in Eq. (3.21), and hence in the final
LOPT formula (3.25). It is interesting to note that Eq.
(3.25) could have also been obtained by merely performing
a Bender-Wu WKS analysis of the simpler I. =0 case and
then simply employing the general first-order perturbation
energy correction E "'=3N —L (L + 1) as in Eq. (3.22).

A remark may now be made concerning the summabili-

ty of the Stieltjes charmonium perturbation series. The
n!-type asymptotic behavior of the RS coefficients

'demonstrated in (3.25) is sufficient to ensure the deter-
minacy of the moment problem associated with Eq. (3.2),
by Carleman's theorem (cf. Appendix C). The diagonal

Substitution of this result into the dispersion relation (3.2)
gives [with change of variable t=( —A, ) '] the final ex-
pression for the large-order behavior of the Rayleigh-
Schrodinger perturbation coefficients:

1 )
n + 132N22N —1

~N3(N +L)!(N L —1}!—
&& exp —3N+ L(L+1)
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—5.4444
—14.4444
—28.1111
—46.4444
—69.4444

—14.111 11
—27.962 96
—45.695
—69.3911

—26.7777
—45.6944 —43.4444

sequences of Pade approximants [N+k, N], k )—1, con-
verge uniformly to E(A, ) in the limit N~oo over com-
pact subsets of the cut plane

~

argA,
~

&vr. This accounts
for the Pade convergence of the ground-state series ob-
served in Refs. 8 and 9.

Regarding the LOPT formula (3.25) of charmonium, if
higher-order corrections to Im[E&L~(A, )] in Eq. (3.24) are
known, the corresponding corrections to the asymptotic
behavior of the E~~M could be determined by the disper-
sion relation (3.2). Such corrections are typically of the
form

TABLE II. Numerical estimates of the asymptotic constants
in the correction factor (3.26) to the Bender-Wu LOPT

formulas (3.25). These estimates were obtained by Thiele-Fade
extrapolation of high-order perturbation coefficients E~&~.

c„ofa CF exist in a one-to-one correspondence with their
series counterparts E'"'. This is unlike the situation en-
countered with Pade approximant representations, where
each [N,M] Pade approximant possesses its own set of
N+M+1 coefficients. Moreover, the single sequence
tc„] generates the sequence of convergents ttc„(z)J of
C(z) which constitute the two principal diagonal se-
quences of Pade approximants to the series. In the case of
Stieltjes functions, for which all c„)0 so that C(z) is an
S fraction, the stepwise descent of the Pade-approximant
table may furnish increasingly more accurate upper and
lower bounds on the function concerned.

In addition to these computational aspects, however,
much more information appears to be encoded in the
coefficients of S-fraction representations. By CFLO, we
refer to the behavior of c„as n —+ oo. Preliminary investi-
gations" revealed a fundamental relation between CFLO
and I.OPT in nonrelativistic quantum-mechanical-pertur-
bation problems: if E'"'-( —1)"+'(pn)! as n ~ oo,

p =0, 1,2, . . . , then c„-n~ as n~oo. This conjecture
has since been proved for p =0, 1, and 2 by asymptotic
analysis of the quotient-difference (QD) algorithm, intro-
duced in Appendix C. The case p =1 is relevant to this
study and we state it precisely: If the series in (1.2) is
Stieltjes for n ) 1 and

Ap+ + + 0 ~ ~

n n~
(3.26) E'"'-( —1)"+'Al (n +a)k" 1+0

n
as n~oo,

and

~pp 21.X~+ 18%+10
1 9

(3.27)

] p 18K +24%+7
1 9

(3.28)

respectively. A general expression which would account
for all values in Table II has not yet been conjectured.

IV. CONTINUED FRACTIONS
AT LARGE ORDER (CFLO)

After a few expository remarks, we focus on the CF
representations of the divergent charmonium perturbation
series. Some important properties of continued fractions
are outlined in Appendix C.

The RITZ continued fractions provide an ideal repre-
sentation of many quantum-mechanical perturbation
series, especially in the context of LOPT. The coefficients

and relatively consistent numerical results for a number of
coefficients can be obtained. An analytic formula for A&

was determined by Bender and Wu for all levels of the
quartic anharmonic oscillator. When corrections of this
form are assumed to accompany the LOPT formulas in
(3.25), a numerical asymptotic extraction of the A

~
coeffi-

cients yields the values given in Table II. The Thiele-Pade
method, to be described in Sec. IV, was employed in these
calculations (in the variable z=n ', which is similar to
Richardson extrapolation). In almost every case, the nu-
merical values strongly suggest that the coefficients are
rational. The coefficients corresponding to the cases
(N, L)=(N, O) and (N, L) =(N, N —1) behave as

(4.1a)

where 2, a, and k are constants independent of n, then
for its S-fraction representation (1.3),

1
c~ ~ kn as n —+(g) (4.1b)

An S fraction whose coefficients grow as c„-n~, as
n~oo, will be referred to as an S~~~ fraction. From Eq.
(C10) in A.ppendix C, S~~~ fractions automatically con-
verge in the cut plane

~

argz
~

& m. for p & 2.
The coefficients c„have been calculated from the RS

coefficients E&~o to n =100 for the ground state and to
n =90 for the excited states %=2,3 and 0(L &X—1.
Practical calculations of RITZ continued-fraction coeffi-
cients from formal power series are impeded by the nu-
merical instability of algorithms such as the QD scheme.
It is found that roughly one digit of accuracy in the c„ is
lost for every two orders of calculation, implying that
even in IBM quadruple precision (32 significant digits),
the coefficients are meaningless after about c6O. As a re-
sult, all calculations of the E'"' and c„have been per-
formed in multiple precision. Each decimal number is
represented by typically 200 digits in these calculations (as
a vector in single precision), which would ensure a 32-
digit accuracy of the c„ to at least n =100. The coeffi-
cients c„' of the ground-state representation are present-
ed in Table III, accurate to all digits shown. An immedi-
ate observation of these coefficients is that they are all
positive, a consequence of the Stieltjes nature of the per-
turbation series discussed in Sec. III.

From Eqs. (4.1) and (3.25), it is expected that
—+ 419 n as n~~, which is observed numerically.
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TABLE III. The first 100 coefficients c„of the S-fraction repreentation„Eq, {1.3), of the ground-state Rayleigh-Schrodinger per-

turbation series for E(A, ).

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Cn

0.150000 000 000 000 000 000 000 000 000 00X 10'
0.100000 000 000 000 000 000 000 000 000 00X 10'
0.350000 000 000000 000 000 000 000 000 00X 10'
0.367 857 142 857 142 857 142 857 142 857 14X 10
0.511 754 507 628 294036061 026 352 288 49 X 10'
0.529 084 738 158 780 194674 699 064 648 39X 10'
0.656 992 945 635 443 504 974 267 757 894 30X 10
0.682 380046 666 796 369 997 492 169618 18 X 10'
0.805 033 864421 748 125 122 706 818 683 30X 10'
0.834 849 779 863 963 854 923 547 691 830 07 X 10'
0.953 887 246 857 987 972 577 023 231 795 96X 10'
0.986479 549 719717 620914713741 957 99X 10'
0.110316 101 853 427 460262096418 987 92 X 10
0.113771 506 190036 685 988 392 803 859 67 X 10
0.125 264716048 108 722408461 301 736 51 X 10
0.128 867 402 271 404925 792 071 911S84 66X 10
0.140227 502 856243 865 038 48S 649 033 48 X 10
0.143 944 698 679 579468 163066395 499 11X10'
0.155 198969 500280468 552 988 65607201 X 10
0.159008772 108 170457082 583 134091 17X 10
0.170 176531 S13355 303 470 668 67642643 X 10
0.174062 844711 855 290912089 365 163 91 & 10
0.185 158 474 857 S22 886 628 365 932 534 98 X 10
0.189 109270 583 474 780 611077 125 258 OOX 10z

0.200 143 617281 603 931 851 915 593 168 51 X 10
0.204 149 682 466 630 944 991 704 941 041 23 X 10
0.215 131 196369 972 169 110267287 794 11X 10
0.219 185 248 622 691 909 765 542017 806 67 X 10
0.230 120 671 036 695 499 225 319895 76249 X 10
0.234216 854 376 181 184 389 246469 91406X 10
0.245 111641 250 767 613961 258 724 27047 X 10
0.249 245 176960233479 119856 81499464X 10
0.260 103 813298 516 542 667 646000 282 68 X 10z

0.264 270 740 230 404 105 837 444 259 426 93X 10
0.275 096 966452 121 397 466035 445 866 62 X 10
0.279 293 958 828064 316518417 326 91848 X 10
0.290090929 819401 179591 041 170541 10X 10'
0.294 315 166376 825 053 017 923 757 035 30X 10
0.305 085 S69 395 378 067 541 384292 69427 X 10
0.309 334 633 997 583 373 032 528 901 367 33 X 10
0.320080779 166 108 297 526 546 399 647 80X 10
0.324 352 584 371 172408 967 278 847 S27 99X 10
0.335 076474114 153 616743 272 51003440X 10'
0.339 369 202473 311947430029045 87600X 10
0.350072 585 140770 153 346 742 890079 91X 10
0.354 384643 431 628 850 574456413 18S 64 X 10
0.365 069 05S 535 766 081 919360 183 832 33 X 10
0.369 399038 379 231 121 257 491 205 28641 X 10
0.380065 838 381 361 896 595 589 998 583 94X 10'
0.384412 498 970 834 659 472 073 992 953 38 X 10z

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

&n

0.395 062 894 540 667 149 229 328 348 029 66X 10
0.399425 120952 148 797 531 222 152 342 32 X 10
0.410060 191 101 602090043 052 397 782 74X 10
0.414436986 960 688 898 891 492 119354 30X 10
0.425 057 700 187 133663 955 530 828 S96 63 X 10
0.429448 168 737 101014 650 144618 36048 X 10
0.440055 398 036081 358 283 148 613748 85 X 10
0.444 458 728 894 372 086 199S96 183 379 70X 10
0.4SS 053 264277 198 102 281 459 916718 60X 10
0.459468 722 351 907 595 949 S80097 29693 X 10
0.470051 281 348 031 118574483 220 537 32 X 10
0.474478 197 506 520 336 591 765 158075 OOX 10
0.485 049 434 027 982 991 465 341 454 063 56 X 10
0.489 487 197 193095 539 865 145 684 955 51 X 10
0.500047 709061 974229 750244009 758 80X 10
0.504495 759 477 313932 574232 304 55475 X 10
0.515 046094 854 873 138 141 976 693 696 31X 10
0.519 503 918314520958 203 730 309 382 87 X 10'
0.530044 581 221 052 513423 761 199539 60X 10
0.534 511 704 101 124200 150311468 628 28 X 10
0.545 043 159 177 559 707 323 539 734 178 18& 10
0.549 519 144 138 646251 913826993 86477 X 10
0.560041 820772415204732052940899 15X 10
0.564 526 263 026 122 201 961 906 128 951 37 X 10z

0.575 040 558 941 446 817 747 836422 306 19X 10
0 S79 533 082 993 430 389 15005971120247 X 10z

0.590039 367 388 331 944 199830 543 378 74X 10
0.594 539 624 185 777 357909453 972 381 88 X 10
0.605 038 240483 544 501 492 427 007 954 60X 10
0.609 545 904907 611645 077 964042 98443 X 10
0.620037 173 178 787 358038 267 263 87409 X 10
0.624 551 941 832 644082 714661 121 304 38 X 10
0.63S 03$ 160934209 519785 730 545 728 16X 10
0.639 557 750 185 388 135 287 435 369 663 37 X 10
0.6S0035 199656 251 043 049 700 854 31959X 10
0.654 563 343 898 653 012 769 105 873 379 81 X 10
0.665 034 285 644 363 384 508 474 389 12447 X 10'
0.669 568 735 750 652 624 372 948 269 938 43 X 10
0.680 033 415 545 166393 139988 642 893 74 X 10
0.684 573 937 484 773 042 562 964021 06044 X 10
0.695 032 586 312 857 882 900 302 340 36208 X 10
0.699 578 959 914531 937 144755 60S 770 88 X 10
0.710031795174902033 555 547 71499207X 10'
0.714 583 813015 844 583 865 502 929 562 28 X 10
0.725 031 039 602 194416441 177963 645 29 X 10
0.729 588 506008 368 309 484071 483 648 07 X 10
0.740030 317283 039 195 380406 799 280 83 X 10z

0.744 593 047 427 417 354 862 368 402 346 75 X 10z

0.7S5 029 626 100384 391479 937 004 5600S X 10
0.759 597 445 187 710471 516055 588 457 85 X 10

The first differences of the c„ for a given state,
6'„"=c„+~

—c„(we temporarily omit the quantum-
number superscripts), are observed to alternate between
two sequences which converge to distinct values. This
suggests that the sequence I c„I is composed of two subse-
quences tc„,„,„J and Ic„,ddj. In Table IV are listed the
first and second differences of these subsequences,

=C~+2 —C~

(2)=c~ +4—2c~ +2+c~
(4 2)

n even and odd, for the ground-state coefficients of Table
III. The observation that 6'„'~—, and 6'„'~0 for both
sequences agrees with the prediction of Eq. (4.1b). Nu-
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TABLE IV. The first and second differences, as defined in Eq. (4.2), of the even- and odd-indexed
charmonium ground-state S-fraction coefficients c„.

3
5

9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69

g(1)
n

2.000 000 0
1.617 545 I
1.452 384 4
1.480 409 2
1.488 533 8
1.492 737 7
1.494 861 4
1.496 278 7
1.497 146 7
1.497 756 2
1.498 194 3
1.498 5142
1.498 757 9
1.498 947 5
1.499 097 0
1.499 217 2
1.499 315 3
1.499 396 3
1.499 464 0
1.499 521 0
1.499 569 5
1.499 611 I
1.499 647 0
1.499 678 3
1.499 705 6
1.499 729 7
1.499 750 9
1.499 769 8
1.499 786 6
1.499 801 7
1.499 815 3
1.499 827 5
1.499 838 6
1.499 848 6
1.499 857 8

g(2)
n

—0.382 454 9
—0.165 1607

0.028 024 8
0.008 124 6
0.004 203 9
0.002 123 7
0.001 417 3
0.000 868 0
0.000 609 5
0.000438 I
0.000 3199
0.000 243 7
0.000 1896
0.000 149 6
0.000 120 2
0.000 098 I
0.000 081 0
0.000 067 6
0.000 057 0
0.000 048 5
0.000 041 6
0.000 035 9
0.000 031 2
0.000 027 3
0.000 024 0
0.000 021 3
0.000 0189
0.000 0168
0.000015 I
0.000 0136
0.000 012 2
0.000 011 1

0.000 010 I
0.000 009 2
0.000 008 4

2
4
6
8

IO

12
14
16
18
20
22
24
26
28
30
32
3,4
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70

2.678 571 4
1.612 276 0
1.532 953 I
1.524 697 3
1.516297 7
1.512 355 I
1.509 589 6
1.507 729 6
1.506 407 3
1.505 407 3
1.504 642 6
1.504041 2
1.503 556 6
1.503 1606
1.502 832 3
1.502 556 3
1.502 321 9
1.502 120 8
1.501 946 8
1.501 795 0
1.501 661 8
1.501 544 I
1.501 439 5
1.501 346 I
1.501 262 2
1.501 1866
1.501 1182
1.501 056 0
1.500 999 3
1.500 947 5
1.500 9000
1.500 856 2
1.500 815 9
1.500 778 6
1.500 744 0

g(2)
n

—1.066 295 5
—0 079 3229
—0.008 255 8
—0.008 399 6
—0.003 942 6
—0.002 765 5
—0.001 860 0
—0.001 322 3
—0.001 000 I
—0.000 764 7
—0.000 601 4
—0.000 484 6
—0.000 3960
—0.000 328 3
—0.000 275 9
—0.000 234 5
—0.000 201 I
—0.000 1740
—0.000 151 7
—0.000 1332
—0.000 1177
—0.000 104 6
—0.000 093 4
—0.000 083 9
—0.000 075 6
—0.000 068 4
—0.000 062 2
—0.000 056 7
—0.000 051 8
—0.000 047 5
—0.000 043 7
—0.000 040 3
—0.000 037 3
—0,000034 6
—0.000 032 I

merical agreement is also found for N =2,3.
At present, there exists no a pnori expression for any

terms subdominant to the linear term in Eq. (4.1b). De-
tailed numerical investigations indicate that for a number
of perturbation Problems, the next term is a constant. For
the charmonium S-fraction coefficients, expansions of the
form

g (i),NI M
RIM 3 ~3 ~g (i),1VLM+ g

(n l'
r

1, n even

2, n odd, (4.3)

were assumed in an attempt to extract accurate estimates
of the constants A"' and A' ' . Equation (4.3)
represents a generalization of the expansion associated
with the traditional Neville-Richardson extrapolation
schemes, for which a=1. A similar method was em-
ployed for the 5-fraction representations of the quartic
anharrnonic oscillator. '

The Thiele-Pade method has been the primary means
of determining the constants in (4.3). Here, tP,P] Pade
approximants of the form

() + . . . + ()

n even

2, n odd, (4.4)

where z=n, a~O, are constructed from a set of
2P+1 points (usually, for convenience in programming,
the consecutive points c„,c„+2, . . . , c„+4&) by a
continued-fraction algorithm. Evaluation of the Pade ap-
proximant at z =0, corresponding to n = op, gives

(4.5)

By varying r and P, an idea of the accuracy as well as the
stability of the fitting procedure should be obtained.

For a=1 in (4.3), both Neville-Richardson and Thiele-
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Pade schemes yield estimates of disappointing accuracy.
Using ground-state coefficients c„even to n =105, we
find A ' =0.26+0.02, A = —0.24+0.02. Moreover,
when the parameter n is varied, the A" also vary. In-
terestingly enough, the difference b,A =A"' —A'2' is
preserved as a varies, to roughly two digits. However, for
the case a= —,', both extrapolation schemes stabilize and
consistently yield (for various values of P and r) A"'= I
and A' '= —,

' to less than one part in 10 for the ground-
state representation. (A stabilization at a= —,

' was also
observed in Ref. 13.) Analysis of excited-state representa-
tions reveals a regular behavior in the constants, indepen-
dent of the angular quantum number I.:
A (1),NLM N3( 1 + & N) A (2) NLM N3( 1 + 3 N)2 2 4 2

The I. independence is seen in the numerical behavior of
the c„.The even and odd sequences of [c„ I and
Ic„' I have approached each other quite closely at n -90,
as is also observed for those of Ic„ I, te„' I, and Ic„ I.

On the basis of this numerical evidence, the following
asymptotic behavior is conjectured for the charmonium
S-fraction coefficients:

cnndd- „'N (n+—2N) —~N +En' ' as n~eo,
(4.6)

E(A, )= 1+ C1

c2
(4 &)

C31+ 1+

where R„"=o(1). The charmonium CF representations
are S(1) fractions. By Eq. (C10) of Appendix C, these
fractions converge uniformly in ENLM(A, ) on compact
subsets of the cut plane

i
argA,

i
(1r This .is (necessarily)

consistent with the remarks on Pade summability made at
the end of Sec. III.

From a computational viewpoint, a knowledge of S(kI-
fraction asymptotics for k=1,2 has been shown useful '

in the estimation of energy eigenvalues E(A, ) for rather
large values of the coupling constant I,. In the case of
S(1)-fraction representations, Thiele-Fade extrapolation of
a small number of accurately known c„produces an ap-
proximate "tail" of C(A, ) which affords good estimates of
E(A, ). Of course, due to the relative simplicity of Eq.
(1.1), vastly superior methods of obtaining its eigenvalues
exist, e.g. , numerical integration. As such, no further
computational aspects of this problem will be discussed.

Several aspects of S(1)-fraction asymptotics are most
interesting from an analytic viewpoint, revealing addition-
al intimate relationships between a CF and its correspond-
ing perturbation series as well as between the CF and the
function E(A, ). We postpone a detailed discussion of
these aspects for a future paper, but outline below some
interesting features which are relevant to the charmonium
problem.

First, let us consider the generalized Euler series,

E(~)=&+A y ( —1)" 1+(n +a)k "z", (4.7)
n=l

where A, a, and k are constants, and its CF representa-
tion,

Cn even +k ~2

k k
C„,Wd= —n+ —.

2 2
'

(4.9)

Now consider the generalized Euler series ENLM(A, ) whose
coefficients are composed of the leading terms of the
charmonium RS perturbation coefficients in (3.25). In
this case, (2=2N, k= —,'N . The coefficients of its S(1)-
fraction representation are given by

c1 ———', N Al (2N+ 1),
cn even= 4 N (+ +4N) i

c„~d——,'N (n——1), n )2

(4.10)

where A represents the constant in (3.25). A look at (4.6)
and (4.10) reveals the interesting set of relations

~ (1),XLM
n, even n, even N + n

(4.11)
(2),NLM

Cn odd =Cn odd+ kCN +Rn

where eN ——X+—,. In other words, the true charmonium
1

coefficients c„are, to order O(1), obtained from the
hypergeometric coefficients c „by an alternating per-
turbation ( —1)"+'keN, n )2. One may consider the per-
turbation to be induced by the asymptotic corrections
(3.26) to the LOPT formula (3.25). This mechanism is
partially understood and will be discussed elsewhere.

A second important feature of the charmonium S(1)
fractions is the asymptotic phase shift of their coefficients
c„ in (3.6), which we define as

A (&),NLM A (2),NLM & ~3 (4.12)

It will be shown in another paper that this quantity is re-
lated to the high-field limit of Eq. (2.3), specifically,

ENLM(~)-FNLM~ (4.13)

where, as before, k= ,'N . This resu—lt is in accordance
with the results of Appendix B. Moreover, the S(1)-
fraction representations yield accurate estimates of the
leading coefficients FNLM.

V. CONCLUDING REMARKS

The so(4,2) Lie-algebraic reformulation described in
Sec. II may easily be extended to treat generalized char-
monium potentials of the form

—
2 T ——+ir&, p =2,3,4, . . . .Z

r (5.1)

The perturbation A,r~ may also be replaced by a polynomi-
al in A, and r. Specific polynomial perturbations have re-
ceived interest. " The algebraically reformulated ver-
sion of (5.1) is simply

The S(1)-fraction coefficients c„are easily determined
from a look at the QD table associated with (4.7):

c1 ——kAI (I+a),
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p+2
(T3 N—)+A, z

J

(T3 —T, )r+'
share a common exponential factor e ' unlike their hy-
drogenic counterparts P«(r), cf. Eq. (2.14). This makes
it possible to assume a solution of the form

2

+ b,E — (T3 —T) ) /=0 . (5.2)z
p=e "8(r) &L,M(0, $),

where

(A 1)

The matrix elements of the operator ( T3 —T~ ) + ' may be
determined analytically by iteration of Eq. (2.15) or nu-
merically by brute-force matrix multiplication. From Eq.
(2.15) it is easily seen that its matrix representation is
(2p +3)-diagonal in a fixed-(L, M) subspace.

The Bender-Wu LOPT formulas of Eq. (5.1) for p =2,
corresponding to a spherically symmetric version of the
quadratic Zeeman effect in hydrogen, have also been
determined. The RS perturbation expansions are
I (2n)-type Stieltjes series. An analysis of the general case

p ) 1, to be published elsewhere, shows that
E'"'-( —1)"+'I (pn). From Carleman's theorem, the
moment problem is guaranteed determinate for p =1,2.
The CF representations of these generalized charmonium
expansions are expected to be S~z~ fractions. This has
been observed numerically for the case p =2. The
ground-state S-fraction coefficients behave as c„2n-,
n~ oo.

An asymptotic analysis of S-fraction coefficients corre-
sponding to I (pn)-type Stieltjes series is severely limited
due to the nonlinear nature of the QD algorithm. The
S~&~ asymptotic formulas conjectured in Eqs. (4.6) are,
beyond the dominant terms, based on numerical evidence.
The superior extrapolation afforded by an expansion of
the form (4.3) for a= —,

'
still remains an enigma. Howev-

er, the S&~~ asymptotic phase shifts, Eq. (4.12), deduced
from this numerical evidence correctly accounts for the
high-field limit, Eq. (4.13), for a number of perturbation
problems as will be shown elsewhere.
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APPENDIX 8: THE HICiH-FIELD LIMIT
FOR CHARMONIUM

In this appendix, we outline a Symanzik-type scaling
transformation of the eigenvalue problem,

( —,' V Zlr+A, r)Q=E—(k)f— (B1)

(Z constant), to elucidate the high-field asymptotics of
E (A, ) as X~ oo. First, set r=ar' where a is a real param-
eter, and drop the primes to give

APPENDIX A: HYDROCxENIC RSPT
BY DIFFERENCE EQUATIONS

We briefly outline a difference-equation technique
which is analogous to a method employed for the study of
anharmonic oscillators. Such an approach to the qua-
dratic Zeeman effect in hydrogen, which is more compli-
cated, was. outlined in an earlier paper. "

One basically assumes a Frobenius-type solution to the
modified eigenvalue problem, Eq. (2.5). The complete and
discrete set of so(4,2) Sturmian basis functions X«~(r)

Now let a =A,
'~ and rewrite (82) as

——,
' V'+r ——/=I'(p)g, (B3)

where P=ZA, 'i and E(P)=A, i E(A, ). Clearly, P~O
as A, —+ oo.

The "unperturbed" problem corresponding to Eq. (83),
representing the infinite field limit for (Bl), is a three-
dimensional Airy eigenvalue equation
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( Pz+r)y F(o)y

Its solutions have the usual form

P„(r)= T,—t(r)I't (&,4),1

r

(84)

(85)

below may be found in the above mentioned references as
well as in the book of Henrici and the standard refer-
ences on Pade approximants.

A RITZ continued fraction is defined as the following
function of a complex variable z EC:

where the radial functions T~t(r) satisfy
T

+1 d 1 l(l+1) (()) T,t(r)=0
dr 2 r

C(z) = C)

c3z1+ + ~ ~ ~

(Cl)

and behave as Tzt(r)-contr +' as r~0 for czt constant. A
correspondence between low-field states gnt~ and high-
field states Prt~ may be made by an "Aufbau-like" pro-
cedure where l and rn remain fixed and the number of
nodes in the radial functions Ant and Tzt are compared.

It is convenient to "unscale" Eq. (86) by setting
r =2' v', and again dropping primes to yield

which may be expressed in a more typographically con-
venient form as

C ( C2Z C3Z
C(z) =

1+ I+ 1+ (C2)

If we set c„+)——0 then (C2) reduces to a finite or truncat-
ed fraction,

d l(I+1)+ +r Fy—(r) =0,
dr r

(87) C) C2z
u) (z)= 1+ 1+ (C3)

where F' '=2'/F' '. The "physical" solutions of (87)
obey the boundary conditions y (0)=0, y (r)~0 as r +oo. —
For l =0, the eigenfunctions of (87) are given by the stan-
dard Airy functions

y =Ai(r F"') .— (88)
The energy eigenvalues of (87) for l =0 are given by the
zeros of the Airy function,

Al( —F(")=0.
For i&0, the eigenvalues and eigenfunctions of (87) must
be calculated numerically. Eichten et al. have calculated
the eigenvalues of the seven lowest-lying states.

The perturbation problem in (83) suggests an eigen-
value expansion of the form

/In (z)
n

An )(z)+zen An 2(z)

B„)(z) +zen Bn —z(z)

with initial values Ao ——0, Bo——1, A& ——cI, B~ ——1. More-
ovel,

deg[A„(z)] =
2

the nth approximant of C(z), which may be expressed as
a rational function. The numerators and denominators of
these approximants obey the recurrence relations

F'(P) =F( '+ g F(")P" as P 0.
k=1

(810)
deg[B„(z)]= Pg

2, '

From Eq. (82), this would imply the following asymptotic
expansion for E(A, ):

E(g) F(0)gz/3+ y G(k)g(2 —n)/3 as g + ~ (811)
k=1

where G'"'=Zkl' '

where [x] denotes "the greatest integer contained in x."
C(z) is said to converge at a point zo if lim„w„(zo) ex-
ists and is finite. The region of convergence of C(z) is the
set of all z EC for which C(z) converges.

The continued fraction C(z) in (C2) is said to be
equivalent to the formal power series (whether or not the
series is convergent),

APPENDIX C: SOME IMPORTANT PROPERTIES
OF CONTINUED FRACTIONS f(z)= g a„z",

n=0
(C5)

Co~tinued fractions play an important role in a wide
variety of mathematical disciplines ranging from number
theory to combinatorics. Along with this diverse applica-
bility, a number of special types of continued-fraction
functions of a complex variable may be formulated. This
appendix outlines the important properties of a special
type of continued fraction which is well suited for the rep-
resentation of perturbation series. For a comprehensive
and very readable presentation of analytic theory of con-
tinued fractions, the book by Jones and Thron is strong-
ly recommended. %'e also mention the classic treatises of
Wa11 ' and Perron. Details of the material presented

if the Taylor-series expansion of its nth convergent w„(z)
agrees with f (z) to the term a„z"for all n, i.e., if

w„(z) f(z)=0 (z"+'), n =0—, 1,2, . . . . (C6)

Thus wz)v(z) alld wz))(+ ) (z) are, respectively, the
[N —1,N] and [N,N] Pade approximants to f(z). The se-
quence w„(z) generates a stepwise descent of the Pade
table off(z).

The existence and uniqueness of a RITZ CF representa-
tion to a formal power series is ensured if f (z) is normal,
i.e., if the Hankel determinants of the series, defined by
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an an+1 ' an+k —1

(n)
n+1 an+2 an+

(C7)
(o)

g2
an +k —1 an +k an +2k —2

satisfy FIk"'&0, n =0, 1 and k =1,2, 3, . . . .
Of particular importance to this study are CF represen-

tations of Stieltjes series —series whose coefficients a„
may be expressed in terms of the moments, of a non-
negative distribution P(t) having infinitely many points of
increase on the positive real axis, i.e., a„=(—1) )M„where

p„= J t "dg(t), n =0, 1,2, 3, . . . (C&)

and the integral is, in general, a Stieltjes integral. In this
case, c„&0, n = 1,2, 3, . . . and C (z) is called an S frac-
tion. The poles of aH approximants w„(z) of an S frac-
tion lie on the negative real axis. Conversely, if C(z) is an
S fraction, the formal power series which corresponds to
it is Stieltjes. On the positive real axis, the even and odd
convergents of an S fraction satisfy the bounding relations

.(2)
0

e(3)
0

,{~)
1

'1

,(o)'2

FIG. 2. The QD table, illustrating two particular unit rhombi
which satisfy Eqs. (C13). For a particular power series, the
first two columns of the array are initialized according to Eqs.
{C12). In the forward QD algorithm, the rightmost element of

,each rhombus is calculated from the other three elements. A
knowledge of N elements in the column q~"' determines N en-
tries of the upper edge of the array which, by Eq. (C14), define
the continued-fraction representation of the power series.

w2~(x)=[X —1)ix] (f(x) ([N,N]=w2~+i(x) i
eQ"' ——0, n =1,2, 3, . . . ,

(C12)
%=0,1,2, . . . . (C9) (n) n+1

9'1 n=0, 1,2, . . . ,
The uniqueness of the distribution f(t) which generates

the moments p„ is not guaranteed. The 5 fraction may
diverge, with different subsequences of the w„(z) converg-
ing to different functions. Two of these distinct functions
will admit the same series as an asymptotic expansion for
z —+0 through positive values. The determinancy of this
moment problem boils down to the convergence of the S
fraction C(z). A number of theorems on convergence ex-
ist. An important theorem guarantees that if

«+1) (~)+ (&+1)—e'~ +e~ —1

(C13)
(n)

9'm+1 =
(n+1)

em (n+1)
(a) 9'-m

e

an

and the following recursion relations, the so-called
"rhombus rules":

—1/2c„=oo, (C10) rn =1,2, 3, . . . , n =0, 1,2, . . . .

—1/2n$ Pn
n=1

(Cl 1)

There exist a number of algorithms to determine the
CF representation of a formal power series, including the
quotient-difference, ' corresponding series (CS), and
product-difference algorithms. The QD scheme,
perhaps the best-known algorithm, was employed in the
calculations of this report. For the power series in (C5),
the QD algorithm defines the two-dimensional sequences
e~"' and q'" by the initial values

then the S fraction converges uniformly on all compact
subsets of the cut plane

~
argz

~
& n to a unique function

f(z). This guarantees that the even and odd convergents
in (C9) provide lower and upper bounds which converge
to f(z) as N~ ao.

Perhaps the most famous and useful theorem in the
context of large-order perturbation theory is Carleman's
theorem, stating that a sufficient condition for the conver-
gence of C(z), hence the determinacy of the moment
problem, is

These sequences are traditionally presented as a set of in-
terwoven arrays known as the QD table, shown schemati-
cally in Fig. 2. Any four elements of the table which
form a unit rhombus are connected by the recursion rela-
tions of (C13).

If the power series f(z) is normal, then its QD table ex-
ists and its CF representation is given by

(&) (0) (0) (0)

(C14)1+ 1+ 1+ 1+ 1+
In the forward QD algorithm, the first and second
columns of the QD table are initialized according to Eqs.
(C12). Equations (C13) are then used to calculate a QD
triangle as in Fig. 2. The elements of the upper edge of
this triangle, the "diagonal" entries of the array, are the
elements of C(z) in (C14). Each additional series coeffi-
cient a„allows the determination of an additional RITZ
fraction coefficient c„. In this way, a one-to-one
correspondence is seen to exist between the a„and the c„.
If f(z) is a series of Stieltjes, then it may be shown that
aH c„are positive.
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