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Particles in spherical electromagnetic radiation fields
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If the time dependence of a Hamiltonian can be eliminated by an appropriate symmetry transfor-
mation, the corresponding quantum-mechanical problem can be reduced to an effectively stationary
one. With this result we investigate the behavior of nonrelativistic particles in a spherical radiation
field produced by a rotating source —then the symmetry transformation corresponds to a rotation.
%'e calculate the transition probabilities in the Born approximation. The extension to problems in-

volving an additional Coulomb potential is briefly discussed.

I. INTRODUCTION

The behavior of nonrelativistic charged particles in
classical electromagnetic fields is of importance for many
applications. The Schrodinger equation with time-
independent external fields has been studied extensively
since the invention of quantum mechanics. In recent
years time-dependent Hamiltonians have also attracted
considerable interest. Abstract investigations concerning
the existence of unitary evolution operators and a scatter-
ing theory have beeri carried out by various authors. '

Concrete results are available for temporally periodic
Hamiltonians and some situations involving plane-wave
fields. 4'

In this paper we consider spherical electromagnetic
waves coupled minimally to the Schrodinger equation.
One possible application concerns the motion of particles
in intense laser fields. Special fusion-laser systems consist
of many laser beams pointing toward a center. In a cer-
tain region around the origin (but slightly away from it)
the electromagnetic field approximates an incoming
spherical wave. One can hope to obtain results in cases
where the external field has a simple multipole expansion
consisting of only a few terms, but also then the problem
is obscured by the time dependence of the Hamiltonian
and the absence of spherical symmetry (remember that the
lowest order of multipole expansion of electromagnetic
fields is the dipole radiation). Nevertheless, under some
additional assumptions on the symmetry properties of the
external field one may obtain detailed information about
the behavior of a particle subjected to this field. If, for
example, the source of the electromagnetic field is a uni-
formly rotating charge and current distribution, the time
dependence of the problem can be eliminated completely.
The reason for this is explained in Secs. II and III: The
Hamiltonian H(t) is connected to H(0) by a simple sym-
metry transformation, namely a rotation through an angle
tot (where to is the angular velocity of the rotating source).
Therefore it is possible to derive the Floquet form ' of
the time-evolution operator by a transition to a rotating
frame. It must be stressed that, for all physical systems
for which the time dependence of the Hamiltonian can be
expressed with the aid of some symmetry transformation,
the problem can be reduced to a time-independent one

II. TIME-DEPENDENT HAMILTONIANS

Consider a quantum-mechanical system which is
described by a time-dependent Hamiltonian H(t) in some
Hilbert space A . The time evolution of the physical
states is described by the Schrodinger equation

g(t) =H(t)f(t) .. d
dt

(2.1)

Cxiven an initial state $0 at time t =to, one can write a
solution of (2.1) under some general mathematical condi-

(Sec. II). H(t) does not even have to be periodic in time.
If, for example, H(t) is the Dirac operator with an exter
nal (nonperiodic) plane electromagnetic wave, the corre-
sponding symmetry transformation is a translation by ct.
This again implies a Floquet-like form of the time evolu-
tion which, together with the solution of the reduced
time-independent problem, finally 1eads to the well-known
Volkov states.

In Sec. IV we consider as a special example the field of
a rotating magnetic dipole. Since this field has a simple
expansion in terms of vector spherical harmonics, it seems
to be useful to expand also the Schrodinger wave function
in terms of spherical harmonics. It is then possible to ob-
tain a stationary system of coupled radial Schrodinger
equations. This is shown to be a general feature for the
external fields with this type of symmetry. The coupling
of radial equations with different values of angular-
momentum quantum numbers I and m is, of course, a
consequence of the fact that the external field is not
spherically symmetric. As the number of terms contained
in the multipole expansion of the radiation field increases,
the number of different values of l and m that will be
coupled by the interaction also increases.

The expansion of the wave function in terms of
angular-momentum eigenstates is of interest for a more
detailed description of the possible transitions that might
occur. In Sec. V we develop the basic principles of a
scattering theory for the quasistationary states (i.e., the
solutions of the corresponding time-independent problem).
We calculate in the Born approximation the possible tran-
sitions of an electron that is subjected to the radiation
field of a rotating source.
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tions' in the form

P(t)= U(t, to)fo (2.2)

Here, U(t, to) is a two-parameter family of unitary opera-
tors, which is sometimes called the propagator, and which
has the properties

In many cases it is almost trivial to evaluate the action of
S(cot) on fF (for instance, if it amounts to a simple rota-
tion or translation). Thus, problem (2.4) involving the
external plane wave will be solved completely if one can
solve the following eigenvalue problem (obtained after a
separation of variables):

(i) U(t, t) =1,
(ii) U(t, t$)U(t), to)=U(t, to) .

d
2 +lCO +w(Z) 1/IE=EQE

dz2 dz
(2.8)

For simplicity we set to ——0 and write U(t, 0)—:U(t) from
now on.

Without further assumptions it is hard to make any
precise statements about the concrete form of the time
evolution. Therefore we suppose that the system shows
additional symmetry in the following sense: Let
S(a)=exp( —iAa) be a one-parameter Lie group of sym-
metry transformations. The Hamiltonian H(t) should de-
pend on time in such a way that waiting for a time t
amounts to an application of the symmetry transforma-
tion S(a) with a =cot to the system. More precisely,

H(t) =S(tot)H(0)S '(cot) . (2.3)

This form of time dependence is indeed typical for
many situations in quantum mechanics. A simple exam-
ple is an external scalar plane-wave field w (z ct) mov—ing
in the z direction with propagation speed c. In nonrela-
tivistic quantum mechanics the Hamiltonian is given by

H(t) = —b, +w (z ct)— (2.4)

(2m =Pi= 1). We see that after a time t the system looks
like it has undergone a translation by ct in the z direction.
Therefore we may choose A to be the momentum opera-
tor P, = —id/dz, and co =c in this case.

Now let P(t) be a solution of (2.1) with H(t) fulfilling
(2.3). Then we have

i P(t) =[H(0) toA]P(t) . —
dt

(2.5)

Thus we have obtained a Schrodinger equation with a
time-independent Hamiltonian. With the initial condition
P(0) =g(0) = t/io, its solution can be written as

i [e' "'f(t)]=—coA e' "'f(t)+e'""'H(t)g(t) .
di

With the definition P(t)=exp(iioAt)g(t) and using Eq.
(2.3), we can rewrite this in the following form:

The ansatz

lPE(z) =expl i (co—/2)z]XE(z)

turns Eq. (2.8) into
r

+w(z) Xz E'XE——,
dz

(2.9)

where E' =E +3'�/4. This shows that the time-
dependent Schrodinger equation with Hamiltonian (2.4)
can be reduced to a stationary eigenvalue problem if one
exploits the symmetries of the system.

A warning should be added. It might happen (as in the
example) that H(0) coA display—s a continuous quasiener-

gy spectrum (cf. also Ref. 8). Then fE is not contained in
the Hilbert space [i.e., g~(t, x) is not square integrable]
and, as usual, we must form wave packets as superposi-
tions of eigensolutions with different quasienergies:

P(t, x)= f dEg(E)gz(t, x), (2.10)

where g(E) is some appropriate function describing the
quasienergy distribution in the wave packet. Whenever
H(0) ioA is self-—adjoint, the solutions QE can be chosen
to form a complete orthonormal set of eigenfunctions (in
a generalized sense). Then

f d'x
i @(t,x)

i

'= f dE ig(E) i

', (2.11)

where the integral on the right-hand side extends over the
quasienergy spectrum of H(0) ioA. Very of—ten there is
also an additional difficulty, namely that H(0) coA is-
not semibounded like ordinary Schrodinger operators but
rather has a continuous spectrum extending over
( —co, + oo) (cf. Sec. V).

It is interesting to compare Eq. (2.6) with the Floquet
form of U(t), which can be derived for periodically time-
dependent Hamiltonians, i.e., if H (t +r) =H (t), r & 0. In
this case one can write '

P(t) =exp{ i [H(0)—i@A]t jgo, — U(t) =P(t)e (2.12)

from which we conclude that

icgAt i [H—(o) raA]t— —U i)=8 8 (2.6)

[In order to define H(0) —coA, one should require some
additional domain properties in a more mathematical
proof of Eq. (2.6).] Following Zel'dovich, we call the
eigenvalues E of H(0) —ioA quasienergies and the corre-
sponding eigenstates gz quasistationary states, because
their time evolution is similar to the one of the usual sta-
tionary states in quantum mechanics:

QE(t)=e ' 'S(cot)@E . (2.7)

where P(t) is unitary, periodic with period r, P(0)=1,
and where G is a self-adjoint operator not depending on
time. Observe that our solution (2.6) has this form even
in cases where H(t) is not periodic in time [e.g., (2.4),
with nonperiodic w).

III. THE FIELD OF A ROTATING SOURCE

As an important application of the general theory
presented in Sec. II, we now consider the classical elec-
tromagnetic radiation field of a uniformly rotating source.
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Without loss of generality, we assume the x3 axis is the
axis of rotation. Throughout this section D(a) denotes
the orthogonal (3 X 3) matrix corresponding to a rotation
around the x3 axis through an angle a, and S(a) denotes
the unitary operator representing the same rotation in the
Hilbert space of a nonrelativistic spinless particle, i.e.,
S(a)=exp( iL3a—), where L3 is the third component of
orbital angular momentum,

If the charge and current densities rotate with angular
velocity co, we can write

P(x, t) =P(D '(cot)x, O),

j (x, t) =D(cot)j (D '(cot)x, O) .
(3.1)

=D(cot) A(D '(cot)x, O) . (3.2)

After a similar calculation, we obtain, for the potential,

, p(x, t —
I
x—x'

I
/c)

C&x, t = dx'
/x —x')

=C&(D '(cot)x, O) . (3.3)

The interaction of a charged particle with the external
electromagnetic field (@,A) is described by the
Schrodinger equation (2.1) and the principle of minimal
coupling which leads to the following time-dependent
Hamilton operator:

It is easy to see that these properties carry over to the po-
tentials N and A. In the Lorentz gauge we have, for the
retarded magnetic vector potential,

A( ) f d3 g g(x', t —
~

x —x
~
Ic)

f
x—x'

f
lc

D(cot)j (D '(cot)x', —
~

x —x'
~

Ic)
X—X C

=D(cot) d y
~

x D(cot)y—
~

Ic

—icoL3t —i [H(0)—coL3]tU(t)=e 'e (3.6)

we have again succeeded in reducing the time-dependent
problem to a stationary eigenvalue problem, i.e., to that of
the differential equation

[H(o) ~L31WE =EH (3.7)

Unfortunately, nonstatic electromagnetic fields cannot
be spherically symmetric. Therefore the detailed treat-
ment of Eq. (3.7) is very difficult because this problem
cannot be further simplified. Nevertheless, one might ob-
tain additional information in some cases by expanding
the wave function in terms of spherical harmonics:

1=0 m= —l
(3.8)

Since the Yl span the angular-momentum eigenspaces
where L3 corresponds to multiplication by the magnetic
quantum number m, we obtain, with (3.6) for the time
evolution of gz, the following expression:

ft (Er)
QE(t, x) = g rl, m

i {F + tom—)ty ( g y ) (3.9)

In order to illustrate this point and to obtain a better
understanding of the problems arising in practical calcula-
tions, we consider a concrete physical system in the next
section.

n(t) = (cos(cot), sin(cot), 0) . (4.1)

The retarded magnetic vector potential in the Lorentz
gauge is then given by

IV. THE RADIAL EQUATIONS

Let us assume that the charge and current distribution
of the source may be approximately described by a mag-
netic dipole of strength p rotating in the x-y plane with
frequency co. We characterize the direction of the mag-
netic moment by a unit vector n(t),

b. +i(V A)(x, t)+i —A(x, t) V

+ A'(x, t)+cI (x, t) . (3.4)

A(x, t) =pg (r) n(r)+-r dn(r) x
c d7 r

(4.2)

cI{'(x,O) =@(D '(a)x, O) .

For potentials satisfying the properties (3.2) and (3.3), it is
therefore clear that the Hamiltonian fulfills

e 'H(0)e ' =H(t) . (3.5)

Since time evolution is, according to Eq. (2.6), given by
the expression

Consider first the system described by the Hamiltonian
H(0). It is well known that a rotation through an angle a
turns the system into a new one described by a Hamiltoni-
an of the same form, but with rotated external fields

A'(x, O) =D(a)A(D '(a)x, O)

with r =
~

x
~

and r =t r Ic. Here, g (r) is a —phenomeno-
logical factor describing a spatially extended source. For
a point dipole we have g(r)=1/r . Later we shall im-
plicitly introduce a smooth cutoff for the singularity of g
at r =0 in order to have no problems in formulating the
Born approximation. This cutoff is, however, not neces-
sary to guarantee the self-adjointness of the Hamiltonian
(3.4). It is well known that an attractive singularity may
destroy the possibility of defining a unique self-adjoint
Hamiltonian on some suitable domain (if the perturbation
of —b, is more singular than —1/4r; an example is
given by the electric point dipole ). However, in the case
of a magnetic vector potential the singularities of the
repulsiue term A will always dominate, and thus there
are no problems with respect to self-adjointness. '

Expanding (4.2) in terms of vector spherical harmon-
ics,
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fielddipole

=(3/16m)' (cosO, i cosO, —sinOe'~) . (4.S)

Ytm(8 4'»&l (1+1)
(4.3)

we obtain, for the magnetic
A(x, t) =A(r, O, P, t),
A(r, O, p, t) =(4~ /3)' h (co,r)YI+~)(8,$)e '"'+c.c. , (4.4)

where c.c. is the complex conjugate and (setting )M = 1)

h (co,r)=g(r)[(co/c)r +i]e'"/'" .

More explicitly, the angular dependence is given by

Since (i) the field consists only of a vector potential A,
and (ii) A fulfills V A=O (i.e., in our case the Lorentz
gauge coincides with the radiation gauge), expression (3.4)
for the Hamiltonian H(t) can be simplified. Further-
more, it is easy to see that the vector potential (4.4) indeed
has the symmetry property (3.2). Thus, we can use the
spherical harmonics expansion (3.9) for the solutions 'of
the time-dependent Schrodinger equation (2.1). After a
lengthy but elementary calcu1ation using well-known
properties of spherical harmonics, we obtain, for the radi-
al functions f1~(E,r), the following system of coupled ra-
dial Schrodinger equations:

d l(l + 1) l l-
,+, —~m ft~ hC(l, m—)—f(,~ )+ hC(l, —m)f(, ~—+)r r m ~,m—

+ h'[~ (l m)ft 2m —2 &(l,m)fI ~ p+ ~(l +2 m +2)ft+p &pe zj

+2
I

h
I

[D(l,m)ft 2 ~+E(l,m)ft +D(l+2, m)ft+2 ]

+ h '[~ (l, —m)fl z, ~+2 —&(l, —m)fi, ~+a+/I(l +2,m +»fr+2, ~+~]=Efi~

The coefficients A (l, m) to E(l,m ) are defined in the Appendix. Here we only mention the symmetry properties

8(l,m)=8(l, —m+2), C(l, m)=C(l, —m+1) .

(4.6)

(4.7)

Qf course, it is the missing spherical symmetry which is responsible for the coupling of the different partial waves. One
observes that the Hamiltonian H (0) couples l to l+2 and m to m+ l, m+2.

Now we want to show that any external radiation field satisfying (3.2) and (3.3) leads to a system of ordinary differen-
tial equations which, like Eq. (4.6), has the general form

d l(l + 1)
z + 2

—~m fthm(E r)+ g Vtm, l'm'(r)fl'm (E r) =Eftm(E r) .
dr r II

7

(4.&)

For the following we find it more convenient to work in the radiation gauge. Then C&(x, t) is the instantaneous Coulomb
potential of the rotating source and V A =0. Furthermore, we can write

A(x, t) =A (x)e '"'+ A*„(x)e+'"',

and derive for A the multipole expansion [g= (co/c)r]

(4.9)

A„(r,8,$)= g ) a "(l,m)
l, m

h (+)( )
+ht' '( g) Yt '(8,$) &1(l + 1)ht' —'(g)Y) '(8—,$)

+a 's(l, m)ht' '(g)Y't~+'(8, $)— (4.10)

where we have introduced the vector spherical harmonics

Yt '(8,$)= i Y( (—8,$—), YI '(8,$)= VY( (8,$)r 2 ™2 v'l(I +1)
[for Y~ ', see Eq. (4.3)], and where

4 hl (4 ) h I (4) n 1(f) —~Jl(g ) l(k) (~V ) Yl+1/2(g) Jl(k) = (~k/ ) ~l+ )/2(k)

are the Riccati-Bessel functions (Y and J are defined in Ref. 12). The upper sign describes outgoing waves; the lower
sign describes incoming waves, which are also solutions of the Maxwell equations and which correspond to the case real-
ized in fusion-laser systems (cf. the remarks in the Introduction).

Because of the symmetry properties of A, it suffices to consider H (0):

H(0)= —6+ V(x i V), V(x, iV)=iA(x, O) V+ A (x,O. )+$(x,O) . (4.11)

If A is of magnetic type, only the coefficients of Y~+' are nonzero. Because x YI~'=0, the term Y't~'V, and thus
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A V, contains only angular derivatives, i.e., we can write
r

V(x,i V) = V «, 8,$,
8

in polar coordinates. If we now transform H (0) to the angular-momentum representation, the potentials Vt t ~ are just
given by the matrix elements of V between angular-momentum eigenstates, and since V contains no radial derivative we
can write

Vt~ t~ (r)= sin8d8dPYt~(8, $) V «, 8,$, , Y~~ (8,P)' ' 'a8'ay

=Vt* t (r). (4.12)

Otherwise, the term YI~'(8, $) in (4.10) has the conse-
quence that V contains also a radial derivative. The addi-
tional term -d/dr, which then appears in (4.8), can, how-
ever, be eliminated by an ansatz similar to the one used
for Eq. (2.8). Therefore it is possible to obtain a coupled
system of radial equations for any rotating source. Of
course, the coupling induced by the coefficients (4.12) is
rather complicated.

It seems to be rather difficult to find exact solutions of
Eq. (4.6) or (4.8). Therefore we shall look for approxi-
mate solutions in the next section.

jt(p r)h I+'(p r'), r (r'
Gt (E;r,r')=— X '

( )it(p~r')i I+'(p
(5.2)

l (l + 1) (o) (o)+ —corn ft (E,r)=Ef) (E,r) . (5.3)

with p~:&E+c—om. The Riccati Bessel functions [de-
fined after Eq. (4.10)] are solutions of the "free" radial
equation

V. SOME REMARKS ON SCATTERING THEORY

—tHot —i coL3t —t (.Ho coL3 ')t

e =e e (5.1)

which is similar to expression (3.6) for U(t). Since the
eigenfunctions of Ho coL3 are known —exactly, we obtain
in this way expressions for the eigenfunctions of
H(0) coL3 and thus for —the entire problem. Observe
that Ho —~I.3 shows a continuous quasienergy spectrum
on the entire real axis because in every partial-wave sub-
space with quantum numbers (l,m) the quasienergy may
range in [—mao, ao). For simplicity, we assume that
H(0) toL3 also has a —continuous spectrum ( —ao, + oo)
without eigenvalues embedded in it. In the following we
also require that the external fields P and A (and thus the
potentials Vt~ t ) are sufficiently regular at the origin, so
that the integrals appearing in Eqs. (5.9) and (5.11) below
can be defined without difficulties.

%'e begin by defining the Green's function

An electromagnetic radiation field with spherical wave-
fronts vanishes at infinity. In the system (4.6), appropri-
ate for magnetic dipole radiation, all potential terms van-
ish at infinity as 1/r . Since higher multipole terms in A
vanish even faster, we can assume that the particles be-
come asymptotically free. Then the complete time evolu-
tion U(t) should be asymptotically given by the free evo-
lution exp( —iHot) with Ho b. —— —

In scattering theory one tries to obtain expressions for
the solutions of a given problem by comparing it with a
simpler problem which is exactly solvable. Instead of
comparing U(t) and exp( —iHot) directly, we find it more
convenient to first formulate a scattering theory for the
Hamiltonians Ho coL3 and H(0) —coL—3. This is useful
since the free evolution can be written in the form

Because of (5.1), any solution of the differential equation

y(o)(t) H q(o)(t)
dt

(5.4)

can be written as a superposition of the eigenfunctions
fI' '(E, r) of Ho toL3. —

q(o)(x t) g dE t~ '
e i(E+com)ty (8 y)——corn

l, m

(5.5)

For instance, a spherical wave of definite angular momen-
tum lo, mo and energy k is given by (5.5), and

I @k ~m E)J (v E+~m«) (5.6)

whereas for a plane wave exp(ik x ik t) with w—ave vec-
tor k=(k, 8', P'), we must use (5.5) with

ft'~ (E,r) =4~i YI~(8', p') 6(k mm Ej)—~(v'E+—mm r—).
k

(5.7)

Square-integrable solutions may be formed, e.g., by re-
placing the 5 functions in (5.6) and (5.7) by smooth energy
distributions.

The Green's function (5.2) satisfies

(5.8)

which allows us to rewrite Eq. (4.8) as a system of integral
equations

d l(1 +1) —corn EGI (E,r, r') = o(r r')—, —
4&
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f(~(E,&)=f('m'(E, r) —f dr'G(~(E, r, r') g V(m, (m (&')f('~ (E "'»
I', m'

where the f(~' are solutions of Eq. (5.3).
A scattering state described by the time-dependent Schrodinger equation is then given by [cf. Eqs. (3.9) and (5.5)]

g( t) y f dE (~ '
e i—(E+u)m)(Y (8 y)

m ( (Er)
—tom

I, m

(5.9)

(5.10)

with f(~ given by (5.9) [i.e., as a superposition of eigenfunctions of H(0) —coL3]. Using Eqs. (5.9) and (5.5), we can write
g(x, t) as a sum of a free solution g' '(x, t) and a remainder which comes from the interaction with the external field.
According to our choice of the Green's function (5.2), this remainder consists only of outgoing waves h '(+'(p~r)-e
for large r, in agreement with one s intuition for scattering systems.

It is useful to consider the Born approximation f('~ (E,r), which is obtained by replacing f( (E,r) on the right-hand
side of Eq. (5.9) by f('~ (E,r). As an example, we consider the scattering of a spherical wave with angular momentum
lo, mo and energy k, given by Eq. (5.6),

g' '(x, t)=P' '(r, 8,$,t)=
j( (kr)

Y, ,(8,$)e (5.6')

Observe that all initial states g' ' can be written as an appropriate superposition of the states (5.6'). For g(x, t) the Born
approximation reads

g"'(x, t)=g' '(x, t) —g f dE f dr—'6( (E,r, r')V( ( ~ (r')5(k —coma Ej)( (Q—E+comor)
l, m

™r

Xe '
Y( (8,P) .

Because of the 5 function, only the terms with k —comp & —corn contribute to the sum over l and m. Thus we obtain

—i fk2+a)(m —m )]tP'"(x, t)=g' '(x, t) —Q e(k +co(m —mo)) —f dr'Glm(k coma (' r )Vlm, l m (r')J'( (kr')e Y(~(8,$) .
I, m

(5.11)

We see that in the Born approximation the scattered state contains only values of l and m for which

(i) V(~( ~ &0, (ii) k +co(m —mo)&0.

(5.12)

If the incoming particles have energy k, observers far away from the scattering center see only states with energies
k +co(m —mo) in the Born approximation. Transitions to states with the same magnetic quantum number mo do not
change the energy. For the rotating magnetic dipole this means that, in first order, only transitions to angular momenta
( lo

~
mo, ma+ l, mo+2) or ( lo+2

~
mo, mo+2) and to energies k, k +co, k +2co (as long as k is sufficiently large) are pos-

sible.
For the behavior of the Born solution at large distances from the origin, we obtain, from Eq. (5.11),

g"'(r, 8,g, t)~Y(,~ (8,$)e '" '—sin(kr —ln/2) —g Y( (8,$)e eA(~—
( ~ (k) as r~oo,

I, m

where p~=[k +co(m —mo)]'~ and

] 00

Al, l (k) dr Jl(p r)V(, l (rV( (kr)

P(lp, mo~l, m)-
~
A(~( ~ (k)

~

(5.14)

(5.13)

The functions e(p~) can be omitted in (5.12) because, for
p~ & 0, the second term is damped exponentially for large
r and vanishes in the asymptotic expression for P"' [we
have to choose p = +i ( —p~ ) '~, so that g" ' is regular
at infinity]. From (5.12) we conclude that the probability
for the transition from a state with the quantum numbers

lq, mo, k to a state /, m,p in the Born approximation is
proportional to the square of (5.13),

Since for the magnetic point dipole g (r) = 1/r [cf. Eq.
(4.2)], most of the V( ( contain a singularity of the
form 1!r . In order to make all the A( ( ~ finite, one
would have to introduce a cutoff at r =0. If, however,
the angular mome;ntum and hence the impact parameter is
sufficiently large, the particle becomes insensitive to the
singularity at r =0 or to the explicit form of the function
g (r) in a neighborhood of r =0, and, indeed, since
j((kr)-r +' as r —+0, the integral (5.13) will exist in the
point-dipole case if and only if I +lo & 1. This means that
only the Born approximation for the elastic s-wave-
scattering amplitude diverges.

For the rotating magnetic dipole (4.4), the transition
amplitudes (5.13) can be expressed by the integrals
[p (((c)=—(k'+cop)'~']
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Ig (k; I, m )
—= J dr Jt+ i i2+q(p (p )r )

—ip(co/c) r
xJi+igp(kr) (5.15)

2

A, . (k)=mE(l, m) I, +I
C

~E(l, m) co 2k
2l + 1 c2 (2l —1)(2l +3) (l &1),

which, in turn, can be evaluated in terms of hyper-
geometric functions (cf., e.g., Eqs. 6.574 and 6.626 of Ref.
13). For elastic scattering these expressions can be further
simplified, and we obtain (since I i— ' ——0)

Ai 2 i~(k) =mD(l, m)I3

k ~D(l, m)
(2l —3)(2l —1)(2l + 1)

At+2 ~ t(.k) =mD(l +2,m)I3'

k ~D(1+2, m)

(2l +1)(2l ~3)(2l+5)

(5.16)

Only the diagonal term contains an ~-dependent contribu-
tion. The remainder is identical to the contributions one
would obtain for a static source.

Finally, we want to indicate how to obtain information
about plane-wave scattering. Inserting (5.7) in (5.9) and
(5.10), we obtain a solution P(x, t) of the Schrodinger
equation which initially corresponds to a plane wave
exp(ik. x —ik t) Sin. ce plane waves are a superposition of
spherical waves, we obtain, for the Born solution, the
asymptotic form

P"'(x, t)~exp(ik x —ik t) —g f (k, 8,$)—e px[ip(m —m' )r i[p(m——m')] t J as r +oo-
m, m'

(m, m'=0, +1,+2, . . . ), where

4m. 00f (k, 8,$)= Q g i ' 'Yt (8,$)At t (k) Fi (8;P') .
E=)m

J
1'=(m'f

(5.17)

(5.18)

f .(k, 8,$) ' .
Im, m

Im —m =p

(5.19)

VI. CONCLUDING REMARKS

The aim of this work was to understand quantum-
mechanical systems with a special form of time depen-
dence that is related to symmetry transformations. We
considered highly nontrivial examples such as tirne-
dependent external fields, which are realistic solutions of
the free Maxwell equations. Exploiting the symmetries of
the system, we were able to reduce the problem to a time-
independent one, and even to develop something like a
stationary scattering theory. It was our goal to stress
physical intuition and not to derive the best possible

The coefficients At t ~ in (5.18) are given by (5.3), and
O', P' denotes the direction of the initial wave vector k.
The dependence of the amplitude (5.18) on two directions

(8,$,8', P') is due to the fact that the external field A in-
troduces an independent direction (the rotation axis of the
source in the case considered here) which we have chosen
as the reference axis for the angular-momentum decompo-
sition. Therefore we are not allowed to choose k as this
axis (in contrast to scattering by a scalar potential). As a
consequence, the scattering amplitude (5.18) is rather
complicated and cannot be represented in terms of the
usual phases. By the usual (heuristic) arguments we may
define, nevertheless, a differential cross section for the
scattering of particles (characterized by k) into the solid
angle (8,$) and to energy k +top, which reads, in Born
approximation

I

mathematical conditions for admitted potentials. The
present paper should mainly serve as a guide to future in-
vestigations; we have left many problems open for discus-
sion.

One of these problems concerns the development of a
general scattering theory for the evolution groups
exp[ —i (Ho coL3)t] and—exp[ —i (H coL3)t], where—
H = Ho+ H „and the precise formulation of the relations

between the time-independent scattering theory [e.g., Eq.
(5.8)] and the time-dependent formalism with Manlier

operators.
Another problem arises if we want to generalize the

scattering theory outlined in Sec. V. We have considered
here a particle that is only subjected to the external mul-

tipole field. In practice, one would like to consider a par-
ticle in the presence of an additional Coulomb potential
y/r in order to deal with atoms in radiation fields. Since
the Coulomb potential is long ranged, the wave functions
cannot be approximated asymptotically by plane waves.
Possible ways to treat H(t) with additional Coulomb
forces are to use distorted plane waves or to take, instead
of (5.4),

r

d l(l+1) y+ +— rom f~~—(E,r) =Eft~(E, r) (6.1)
dr r

as the modified "free" equation for comparison with the
full problem [(6.1) can be solved exactly]. For scattering
states (i.e., free-free transitions) most of the calculations
of Sec. V remain valid if one only replaces the Riccati
Bessel functions by regular Coulomb wave functions ft .
For example, the amplitude for the transition from a
Coulomb scattering state with quantum numbers (k, lo, m)
to another Coulomb state (p, l, m) is given by
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~tm, tm, «)= I, «ft (Itmr)l tm, t, m, (r)ft, («)
m

(6.2)

in ihe Born approximation.
To study the influence of Coulomb bound states (e.g.,

bound-free transitions, ionization) is certainly mo'r e in-
-teresting. Naively, one could try to use a bound-state
wave function ft in (6.2). The question to be asked before
doing this is, however, whether H (t) has any bound states
(in the sense of states which stay near the origin for all
times) at all, so that an ionization probability can be de-
fined. In a mathematical context this is certainly a ques-
tion involving geometric scattering theory, ' which pro-
vides appropriate characterizations of bound and scatter-
ing states even for time-dependent external fields.
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A (l, m)=

' 1/2
(t +m —3)(l +m —2)(l +m —1)(l +m)

(2l —3)(2l —1) (2l + 1)

B(l, m)=2 [(1+m —1)(l +m)(l —m + 1)(l —m +2)]'~2
(21 —1)(2l +3)

C(l, m)=[(l+m)(l —m +1)]'~

D(l, m) =
1/2

(I +m —1)(l —m —1)(l+m)(l —m)
(21 —3)(2l —1) (2l+ 1)

2
(l +m)(l —m)+(I +2)(2l —1)

(2l —1)(2l +3)

APPENDIX

For the sake of completeness, we list the coefficients
appearing in Eq. (4.6):
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