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We study the strong-coupling limit of some relativistic wave equations describing bound states of
oppositely charged fermions or bosons 1 and 2, of arbitrary mass. Using both numerical and analyt-
ic momentum-space methods we find the value y,„ofy= —ele2/4m for which the lowest-lying
bound state disappears from the spectrum, as well as the smaller value ydec for which 2 becomes un-

stable to the decay into the composite (1,2) system and the antiparticle 1. We also consider the limit
m2~ go and discuss the connection of our results with the so-called breakdown of the vacuum in

quantum electrodynamics for a sufficiently strong external field.

I. INTRODUCTION

The study of relativistic wave equations describing
bound states of interacting particles is an old but still ac-
tive topic. An aspect of such equations which has re-
ceived renewed attention in recent years is their behavior
for large values of the associated coupling constant. In
some cases there is a maximum strength beyond which
one or more bound states disappear from the spectrum
and the physical interpretation of the equation becomes
obscure. The most familiar example is provided by the
Dirac equation for a one-electron atom,

Hg) ,„,g=(a.p+Pm . + V,„,)/=ED/ .

conclusions drawn from the external-field Dirac equation
remain unchanged when the finite mass of the source is
taken into account. In this case one should also consider
the effect of including transverse photon exchange be-
tween the source and the electron. One purpose of this
paper is to address these questions.

Our task is facilitated by a recent numerical study of a
two-body relativistic wave equation which provides an ap-
proximate description of bound states of two fermions of
arbitrary masses, m~ and m2, while reducing in the limit
m2~oo to an equation simply related to the external-
field Dirac equation. This equation has the form, in the
c.m. system,

For a point nucleus of charge Ze, V,„,= —o.Z/r and the
1s state has energy

ED( ls) =m (1—y )'~, y=—aZ .

[hD (1)+hg) (2)+A++ VA++ ]f=Eg,
where

hD(i)=a; p;+P;m;.

(1.2)

(1.2a)

ED(ls) vanishes for y=1 and becomes imaginary for
y & 1, while the higher-lying j = —,

' state energies become
complex. For general values of j the critical value of y is
j+—,. If the point Coulomb potential is spread out by
giving the source a size appropriate for a physical nucleus
of charge Ze, this situation changes: ED(ls) now van-
ishes for a somewhat larger value, y=1.10, corresponding
to Z=150, but for still larger y becomes negative rather
than imaginary. ED( ls) reaches the value —m, for a crit-
ical value y=1.24 (Z=170). These matters and related
problems such as the two-center Dirac equation have been
the object of intense study over the past decade in connec-
tion with the prediction of anomalous pair production in
heavy-ion collisions and the associated "vacuum break-
down" in the presence of super-heavy nuclei. '

It is natural to ask whether these features of the @-

number external-field Dirac equation are in any way asso-
ciated with the fact that the spectrum of HD.„, is not
bounded below. One may also wonder to what extent the

is the free one-particle Dirac Hamiltonian, w]th p ~

= —P2=p and

A~+ ——A~(1)A+(2) (1.2b)

is the product of the Casimir positive-energy projection
operators

A+(i) =[E;+hD(i)]I2E; (1.2c)

with E;=(m;+p;)' . The wave function P satisfies the
constraints A+(i)P=P so that the spectrum of (1.2) is
bounded below, unlike that of (1.1) or of the related
Dirac-Breit equation, obtained from (1.2) by omitting the
projection operators.

In Ref. 2 the eigenvalue E associated with the 1s
ground state of (1.2) was found for two choices of the po-
tential V, a Coulomb potential Vz and the sum Vc+ V&

of Vc and a Breit potential Vz..

Vc —— yjr, Vs ——(y—/2r)(a~ a2+a~. r a2 r), (1.3)
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and the dependence of E on the coupling strength

y= i eie2 i
/4n. (1.4)

was studied for small to intermediate values of y. In the
present paper we extend this to y-1 and study the criti-
cal values of y from both a numerical and analytic point
of view. We also report similar results for analogous
equations involving spinless particles and comment on one
aspect of some recent work on two-body bound-state
equations for such particles. ' The extent to which the
use of such equations as (1.2) or the closely related Bethe-
Salpeter equation represents an adequate approximation to
the physical situation involved in the strong-coupling re-
gime is not known. We regard (1.2) with V a one-
photon-exchange potential as a reasonable starting point
for the exploration of the effects of recoil in this regime at
the present state of knowledge and our study as a first
step in this direction.

We now outline the contents of the following sections.
In Sec. II we first reconsider the question of critical con-
stants for the Dirac equation, in momentum space rather
than coordinate space, as a test of the techniques we shall
employ. We then study the same problem for the no-pair
analog of the Dirac equation,

h+(1)f=[hD(1)+A+(1)VA+(l)]Q=E+Q, (1.5)

which is the m2 ——oo limit of (1.2). Our study of critical
coupling constants for the no-pair two-body equation (1.2)
is described in Sec. III; we emphasize that in the case of
the two-body problem, unlike the external-field problem,
one must be careful to distinguish between several dif-
ferent kinds of "critical values" for coupling strengths, in-

. cluding the value yd« for which E equals m2 —I& and
the value y,„ for which the expectation value of the po-
tential V diverges. In Sec. IV our study is extended to
some two-. body equations for spinless particles. A sum-
mary of our results and a concluding discussion are given
in Sec. V. The mathematical analysis needed for the
determination of the critical. coupling constants is
described in Appendix A. Some mathematical aspects of
the Dirac equation, which relate to the question of the
self-adjointness of HD ,„, for large y, are di.scussed in Ap-
penCkx B.

With lij(p) assumed to vary as p
" for

~ p ~
~ao, one

finds that the j= —,
' solutions must satisfy [see (A17)]

(2.2)

One readily verifies that (Vc) diverges for Rev&0, so
that y „=1as expected. As a test of our methods we
have extended the numerical solution of (2.1), carried out
in Ref. 2 for y &0.9, to larger values of y and, using the
onset of numerical instability and the growth of ( Vc) as
criteria, found y"",„=0.99+0.01. We have also solved
(2.1) with (q) = (p —p') replaced by
(q) —(q +p ) ', corresponding to a smoothed-out po-
tential

—y(1 —e "~ )/r, (2.3)

where R =p ' is the nuclear radius. We have verified
that the 1s state wave function continues to be associated
with a real eigenvalue for y ~ 1, which reaches the value
—m for sufficiently large y. This is in qualitative agree-
ment with the results obtained in r space for more realis-
tic potentials.

B. No-pair external field equation

After these preliminaries we are ready to consider (1.5),
the no-pair analog of (2.1). In p space Eq. (1.5) takes the
form

Hilbert space on which the Hamiltonian HD. ,„, is defined.
This restriction then leads to a domain on which HD. ,„, is
self-adj oint.

These matters have been discussed in the literature
from the viewpoint of the familiar coordinate-space for-
mulation of the Dirac equation. Let us see how they ap-
pear in momentum space. In Appendix A we outline a
derivation of the connection between the value of y and
the asymptotic behavior of the solutions of a variety of
relativistic wave equations, considered in p space, for
large

~ p ~. As a check for the cases to be treated later,
where analytic solutions are not available, we have applied
this technique to (1.1) written in p space, viz. ,

d(a.p+Pm)g(p) —,I,f(p') =ED/(p) .
2~ (p —p')

(2.1)

II. EXTERNAL-FIELD EQUATIQNS: SPIN 2
(p'+m')'~'g(p) — , A+(p) I , A+(p')g(p')

2m (p —p')

A. Dirac equation =E+g(p), (2.4)

As mentioned above, the value y=1 is critical for the
Dirac equation with a Coulomb potential, since ED(ls)
becomes complex for y ~ 1. For our later purpose we note
the less well-known fact that the value y, =M3/2=0. 87
is also significant. For j= —, and y &y, there is another
solution P', with the same energy as the usual one, which
does not belong to the Hilbert space and, a fortiori, is not
in the domain of HD ,„„because it is too singul. ar at the
origin to be square integrable. However, for y&y~ the
function g' also becomes square integrable and is excluded
from the domain only by the requirement that the expec-
tation value of the potential V be finite on the domain in

since g is subject to the constraint A+/=/ We have.
again extended the numerical calculations of Ref. -2 to
values of y above 0.9. Using the same criteria as in the
pure Dirac case we have found that the maximum value
of y for the 1s state is not much larger than 0.9,

0.90 ~ y „~0.93 . (2.5)

As shown in Appendix A, the relation between the ex-

Within numerical uncertainties, y „is also the value yo
for which E+ vanishes:

(2.6)
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ponent v in the asymptotic behavior p of the j= —,
'

bound states, and the coupling strength y is now given by
[see (A9), (A10), and (A19)]

y(v) =2 &V V 7TV
v tan + cot

1 —v
(2.7)

The variation of y with v in the interval ( —1,1) is shown
in Fig. 1. The maximal value of y occurs, as in the Dirac
case, for v=0,

j max
7T 2 =0.906 .
2 m.

(2.8)

We see from these results that the absence of a lower
bound for the spectrum of the Dirac Hamiltonian with a
point source is not related to the existence of a maximal
value for y since the spectrum of h+, defined by the left-
hand side of (2.4), is bounded below. The fact that both
y's are smaller than their counterparts for HD.„,
[y,„=l and y, =v'3/2] is a consequence of the cir-
cumstance that the effects of virtual pair creation, omitted
in (2.4) but included in (2.1), are equivalent to a repulsive
interaction of fermion 1 with the infinitely massive core 2.

III. TWO-BODY EQUATIONS: SPIN T~

A. Definition of "critical" coupling constants

Let E =E(y; mm]q) denote an eigenvalue of any rela-
tivistic two-body equation, which may be interpreted as
the mass of a bound two-body system (1,2). The variable

y denotes a parameter describing the strength of the bind-

2.0
l.8

Thus the result (2.5) is consistent with theoretical expecta-
tions.

For a given value of y & y,„there are, as for the Dirac
equation, two solutions of the same energy, g(p) and
]]t(]p) corresponding to positive and negative values of v,
respectively, with only f(p) normalizable for all y.
The value y, above which ]t]'(p) becomes normalizable
is given by putting v= ——,

' in (2.7):

(2 9)

ing interaction, with y&0 in the weak coupling limit,
where E & m &+mq. We define several critical values of y
as follows. With mq )m &, it may be possible to increase
y to a value yd„above which particle 2 becomes unstable
to the decay

2~(1,2)+1, (3.1)

where the bar denotes an antiparticle. This value is deter-
mined by

E(y d„,'m], mp)=my —m] . (3.2)

It may be also possible to increase y to a value beyond
which the equation loses its normal physical interpreta-
tion. We will refer to any such value as a y,„. For ex-
ample, if the equation is of Hamiltonian form

Hg=(K]+K, +y U)/=ED, (3.3)

y,„: X(y)~0]] for y~y, „. (3.5)

We will assume as a working hypothesis that these two
definitions are equivalent in the cases of interest to us. In
addition, one may wish to consider a value yo for which E
vanishes and a value y~ analogous to that considered in
Sec. II for the Dirac equation, but such values, if they ex-
ist, play at best a secondary role.

To deal with the case mq ~~m ~, it is useful to define an
effective one-body energy E(y;m] ) via

E(y;m] ) = lim [E(y;m], mz) m~] .— (3.6)

If E(y;m], mz) is defined by an equation of the form
(3.3) and the limits involved exist, then E(y;m] ) is deter-
mined by

where E; is the free Hamiltonian for particle i then y,„
may be defined as that value above which H is no longer
self-adjoint on a dense domain. Guided by experience
with the Dirac equation, we may alternatively use a more
practical definition of y,„as a value of y with the prop-
erty that the expectation value function

(3.4)

is well-defined for all y &y,„, but such that X(y)
diverges as y —+y,„ from below for at least one (normal-
izable) eigenfunction of H,

l.6 (K] +y U')t//'=E(y;m ] )y' (3.7)

l.2

I.O

0.8

0.6

where U' and 1t' are the mz ——co limits of U and g,
respectivdy. Correspondingly, in analogy with (3.2) we
define a yd„ for the associated one-body problem by

04
0.2

E(yd„', m] )= —m]

with

(3.8)

-l.O -08 -0.6 -0.4 -02 0 0.2 0.4 0.6 08 I.O

PFIG. 1. Relation between the coupling strength y entering
the bound-state equations and the exponent v describing the
large-p behavior, p ", of the corresponding ground-state
wave functions. Curves (a) two-body no-pair equation (1.2),
with V= V~+ V&, (b) no-pair external-field equation (2.4), (c)
Dirac equation (2.1), (d) two-body no-pair equation (1.2), with
V= Vc.

I q ~

/dec ~~m 7dec .
m~~ 00

(3.9)

B. Results

In Ref. 2 the dependence of the 1 'So-state eigenvalue E
of (1.2) on y was studied, for the case m] ——mz, in the
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range 0 & y & 0.6 and for two choices of V:

and

(3.10)
II.O"- q = IO

(3.11)V= VC+ Vg,

where Vc and Vz are defined by (1.3). The results of the
extension of this analysis to larger values of y and to dif-
ferent values of the mass ratio g=mz/m~ are shown in
Figs. 2 and 3.

IO.O—

9.0—

8.0—

I. V= Vc

We see from Fig. 2 that when g is unity

(3.12)

E 7.0—
Ol

E

E 60—

5.0—

The asymptotic analysis of Appendix A yields [see (A21)j 4.0—

y(v) =4 'ITV V KV
v tan + cot

1 —v
(3.13)

from which it follows that
2.0"

y,„=y(0)=4 =1.81,2
2 m

(3.14)

= IO
Il,o '

IO.O—

90—

8.0—
E

E 70—
E

6.0—
LLJ

5.0—

40 '

50

with which (3.12) is in agreement, within a few percent.
The analysis of Appendix A shows that (3.13) and

hence (3.14) holds for any value of g & oo, not just g= 1.
The curves shown in Fig. 2 are indeed consistent with the
independence of y,„on the mass ratio g. However, for
g= oo, y(v) is given by (2.7), which is just one-half the

I.O—

I I I I I I I

0 O. l 0.2 0.3 0,4 0.5 0.6 0.7 0.8
r

FIG. 3. Mass of the lowest-lying bound state, in units of m &,

vs coupling strength y for the two-body no-pair equation 1.2
with V = V~+ V~.

yd,", (g= 1)=1.86 (3.15)

which is equal to y „,within numerical uncertainty. %'e
also see from Fig. 2 that yd„(g) decreases as g increases,
having approximate numerical values of 1.86, 1.80, and
1.60 for q=2, 3, and 10, respectively. We have also veri-
fied that for g=100, yd„—1.25 (not shown in Fig. 2).
Thus we see that yd„(g) decreases very slowly as g in-
creases, presumably always remaining larger than y,„for
the mz ——oo limit, given by Eq. (2.8). In a further study it
would be interesting to investigate the behavior of yd„(g)
for very large ri and to compare the limiting value yd«de-
fined by (3.9) with the value of ym» when mq ——oo.

value (3.14). A fortiori, the factor —, also relates the two
values of ym». Thus the double limit, p~ ~, g~ao, de-
pends on the order in which it is taken

Let us now turn to the quantity yd„, defined by Eq.
(3.2), i.e., the value of y above which 2 becomes unstable
against the decay process (3.1). For q= 1, Eq. (3.2) shows
that yd„coincides with the value yo for which E=0.
From Fig. 2 we see that yo—1.86 so that also

I I I I

0.2 0.4 0.6 0.8 I.O I.2 I.4 I.6 18 20
2. V= Vg+ Vjy

Y

FIG. 2. Mass of the lowest-lying bound state, in units of m &,

vs coupling strength y for the two-body no-pair equation (1.2),
with V= V~, the quantity g denotes the mass ratio mq/mI.
The curve labeled g= oo is a plot of the ratio E(y;m&)/ml
whose numerator is defined by Eq. (3.6) of the text.

In Fig. 3 we show the results analogous to those of Fig.
2 for this choice of V. As already noted in Ref. 2 for the
equal-mass case, inclusion of the Breit operator lowers the
energy. Thus one expects that y,„ is reduced relative to
its value for a pure Coulomb potential for any value of the
mass ratio g. From Fig. 3 we see that when g is unity,
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y,„is not much larger than 0.74,

0.74 (y""„(0.77, (3.16) From Eq. (A16) of Appendix A we have

(4.3)

and so is indeed smaller than the pure Coulomb value,
given by (3.12). Equation (3.16) is consistent with the re-
sult obtained from the asymptotic analysis of Appendix
A, which gives [Eq. (A22)]

r

y(v) =sr/Fo(v) =v tan
2

so that

y,„=2/~=0. 637 .

(4.4a)

(4.4b)
KV V KV3v tan j cot
2 1 —v

and therefore

y „=y(0)=4/(3'/2+2/vr)=0. 748 .

(3.17)

(3.18)

Thus (4.3) is consistent with expectations. Equation (4.4b)
has also been obtained by Castorina et al. , who used r-
space methods to study Eq. (4.1) and, much earlier, by
Herbst, who has developed the spectral theory of {4.2) on
a rigorous basis.

As in the pure Coulomb case, the asymptotic analysis
leading to (3.18) holds for 1&g & oo. But here too y(v) is
given by (2.7) for rI = oo and again we see that the double
limit p~(x), g~oo depends on the order in which it is
taken.

The quantity yd„ for the case when V= Vc+ V~ ap-
pears to remain close to the value y „,as can be inferred
from Fig. 3. There we see that yd,", (g)=0.75 even for
g=10. We have found that for r1=100, yd,", (g)=0.72,
so that yz„(g) is again a very slowly varying function of
g 0

rV. TmO-BOSON BOUND STATES

[E1(pl)+E2(P2)+ Vcje E0' (4.1)

where p1 ———pz ——p as before and we restrict our attention
to a pure Coulomb interaction.

A. External-field limit

It is of some interest to see what the results analogous
to those of Sec. III are for the case of two spin-0 particles.
Instead of (1.2) we now have

B. Genuine two-body case

We only consider m1 ——m2 ——m. The results of calcula-
tion are shown in Fig. 4, from which one sees that

y""„=1.28 . (4.5)

The asymptotic analysis of Appendix A or more simply a
rescaling of (4.2) shows that y,„ is just twice the value
found in the external-field limit:

y „=4/m.=l.274, (4.6)

1/2

4
(4.7)

consistent with (4.5). Although we have not calculated
E(y;m&, m2) for g&1, Eq. (A16) shows that y,„ is in-
dependent of rI and hence given by (4.6) for all g & oo.

The result (4.6) is in conflict with some recent work of
Durand and Durand who have made an extensive study
of Eq. (4.1) in the equal mass case and claim to have
found a closed formula for the lowest eigenvalue of {4.1),
viz. ~

With E =E(y;m I ) defined as in (3.6), the m2 = co lim-
it of (4.1) is

If (4.7) were valid one would infer that
'

ymax= 00 (4.8)

[EI(pi)+ Vc]4=Ed' . (4.2)

Figure 4 shows the dependence of E on y, obtained by nu-
merical solution of (4.2), from whi'ch we see that

so that there is no maximum value of y, in contradiction
with (4.5) or (4.6). However, (4.7) also disagrees with per-
turbation theory. The leading correction to the nonrela-
tivistic energy Wo ———y /4m is given by

2 Oi(

l.6—
E

CV

l.2—
E

0.8—
IJJ

O I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 l.o 1.2 l.4

FIG. 4. Mass of the lowest-lying bound state, in units of m &,

vs coupling strength y for the spin-0 two-body equations (4.1)
(g= 1) and (4.2) (g= oo ). The lower curve is a plot of the eigen-
value of the one-body equation (4.2), in units of m ~.

is positive. Evaluation of (4.9) yields

5'4'E = ——,', y4m . (4.1 1)

[In Ref. 3 it is stated that perturbation theory gives the re-

4m 4m
(4.9)

where $0 is the nonrelativistic wave function. It is clear
from the second form of (4.9) that 5I 'E, which arises
from the difference between the relativistic and nonrela-
tivistic form of the operator for the kinetic energy, is neg-
ative whereas the term of 0 (y ) obtained from expansion
of (4.7), viz. ,

(4.10)
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suit (4.10), in agreement with Eq. (4.7); one can get the re-
sult (4.10) if one uses the first form of (4.9) in coordinate
space, but only if one omits a 5-function term arising in
the evaluation of V (V P).

As a further check on the numerical accuracy of the
curve shown in Fig. 4, at least for small y, we have used it
to find the limit,

lim E — m
y'

o 4
y"=—0.0781 . (4.12)

This is in very good agreement with (4.11) since
,'4 —0.078 125.

V. SUMMARY AND DISCUSSION

We have studied the question of critical coupling con-
stants for a number of relativistic wave equations in this
paper. VA'th regard to one-body equations, in Sec. II we
first used the p-space approach described in Appendix A
to recover the familiar result that y,„=1 for the Dirac-
Coulomb equation, from the requirement that ( Vc) be
finite. We then demonstrated that the absence of a lower
bound for the spectrum of the Dirac-Coulomb Hamiltoni-
an HD. ,„, is not related to the existence of a y~,„by show-
ing that the no-pair equation (2.4), for which the spectrum
is bounded below, also has a y „. It was seen that for
this equation, as for the Dirac equation, y', „coincides
with the value yo for which the lowest-lying bound-state
energy vanishes. In both cases the values of y,„ found
nurnericaHy were in good agreement with the theoretically
expected values. We also obtained in each case the value
y~ above which the condition that ( Vc) be finite serves
to ensure that the Hamiltonians involved are self-adjoint
on their domains.

In Sec. III we turned to the two-body problem. We saw
that one should distinguish in this case among a variety of
critical values of the coupling constant y: the value y „
for which the expectation value of the interaction operator
first diverges, the value yd„above which the heavier con-
stituent 2 becomes unstable to the decay 2~(1,2)+ 1 and
the value yo, if any, for which the mass of the bound state
(1,2) vanishes. When V= Vc, a pure Coulomb potential,
we found on the one hand that for m 2 )m» 0,
y,„=y,„(q) is given by (3.14), for any value of the
mass ratio g—=m2/m& ~ oo. This is however twice the
value found for g= co from the solution of the one-body
equation (2A), obtained by taking the limit mz~ oo in the
two-body equation. Thus y,„(g) is a discontinuous func-
tion of g= 1/g in the neighborhood of /=0. On the oth-
er hand, study of yz„(q) showed that the initial value
yd„(1)=y,„(1) decreases with increasing g. However,
this decrease is very slow, with yd„decreasing by only a
factor of —', as g increases from 1 to 100.

These results change considerably when the effect of
transverse photon exchange is approximately included in
V by adding the Breit operator to Vc. Again y,„(q) is
independent of g for y & ~, but its value, given by Eq.
(3.19), is smaller than in the pure Coulomb case by more

than a factor of 2. This can be understood qualitatively
from the observation that the inclusion of transverse pho-
ton exchange makes the effective interaction in the 'So
state more attractive. A simple way to see this is to con-
sider the Moiler form of the total one-photon-exchange
potential, viz. , VM=(1 —a& u2)VC. Since a;-p;/E; and
p] ———p2 ——p in the c.m. system, at large momenta Vz is
enhanced by a factor of order 1+p /E -2. [A more
careful analysis, similar to that used in Appendix A, re-
veals that Eq. (1.2) with V= VM leads to y,„=2/vr so
that Vc is effectively enhanced by a factor of 3.] For the
Breit form the calculation is more complicated (see Ap-
pendix A) but the net effect is similar, with Vc enhanced
by a factor of 2.4. Although yd„(g) certainly exists for
some range of g, the behavior of the quantity yd„(g) is
somewhat problematic for V= Vc+ Vz. From Fig. 3, we
see that when q =10, yd„-0.74 to 0.7S, very close to the
value y,„=0.748, but our numerical accuracy is really
not sufficiently high for us to be certain that yd„exists
for this value of g. For q = 100, we have found a numeri-
cal value yd„-0.72 which may represent a real solution
of the equation defining yd„. Whatever the case, yd„(g)
is again a very slowly varying function of g in the region
where it exists.

In Sec. IV we studied the spin-0 analog of the one- and
two-body spin- —, equations, considered in Secs. II and III,
for the case of a pure Coulomb interaction. We found the
values of y,„ in both cases, and the variation with y of
the ground-state energy E (y;m & ) of the one-body equa-
tion (4.2), exhibited in Fig. 4. From Fig. 4 and the under-
lying numerical work we have no evidence that
E(y;m ~ )~0 as y~y, „. If anything, the indications are
that it does not. If so, this is in striking contrast to both
the Dirac equation and the no-pair equation (1.5). It
would be interesting to eludicate further this apparent dis-
tinction between the spin-0 and spin- —,

' case by use of
analytical rather than numerical methods. Our numerical
results for (4.2) are consistent with the lower bound given
by Herbst,

E(y;m)) [1—(y/y, „) ]'~ m,
where y,„=2jm. As a by-product we saw that the
analysis of Eq. (4.1) given in Ref. 3 requires modification,
and that an exact formula for the lowest eigenvalue of
(4.1) or (4.2) is still not on the market.

We note in passing that Herbst comments on the rela-
tive neglect of the study of the one-body square-root equa-
tion, augmented by an interaction with a magnetic field
with vector potential A(x), viz. ,

I [(p—e A) +m ]' —eAO(x) IP(x) =EP(x), (5.1)

compared to the Klein-Gordon (KG) equation. This is so
despite the fact that in contrast to the KG equation, (5.1)
is of Hamiltonian form and, in the pure Coulomb case, al-
lows a larger range of values of Z (y,„=—,

' for the KG
equation which is less than 2/n). Herbst vent'ures the
opinion that the main reason for this is that, unlike the
KG equation, (5.1) is not explicitly solvable even for the
pure Coulomb case. While this may very well be correct,
from a sociological point of view, we take the occasion to
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emphasize that, as shown long ago, Eq. (5.1) with E re-
placed by i Bldt and P(x)~P(x) =P(x, t) is not invariant
under Lorentz transformations, with P(x) a world scalar,
unlike the time-dependent KG equation. Thus, the com-
parative neglect of (5.1) may to some extent be regarded as
benign. Indeed, the noninvariance of the square-root KG
equation, when the minimal principle is used to generate
interactions with an external electromagnetic field, is cited
by Dirac, when he presents the reasoning which leads to
the relativistic wave equation for an electron.

In conclusion let us comment on some other features of
our results which merit further study.

We have already mentioned that in the two-body pure
Coulomb case the function y,„(g) is, on the one hand,
independent of the mass ratio g=mz/m~ for 0&g & oo.
On the other hand, its constant value ( —1.81) is not equal
to the value of y,„(oo) [m2 ——Do, m»0], i.e., to the
value appropriate for the external field problem, being in
fact twice as large. We have also seen that the inclusion
of transverse photons can have a significant effect on

y,„. Now quantities analogous to y,„(~) have been
used in predicting the onset of "vacuum breakdown" in
the collision of heavy ions or subsequent to the production
of superheavy nuclei, as manifested by the anomalous pro-
duction of positrons. Thus, there appears at first sight to
be some danger that the neglect of recoil as well as the
neglect of transverse photon exchange might lead to a
substantial change in the critical values of Z needed for
such experiments. However, one must remember that the
point charge cases we have studied in this paper are an
idealization of the actual physical situations which in-
volve nuclei with distributed charge and that the replace-
ment of point charges by distributed charges can have, as
it does in the external-field Dirac equation, a drastic effect
on the bound-state spectrum for large Z values and hence
on the values of critical coupling constants. Thus, it
would be premature to draw any conclusions from our re-
sults with regard to the validity of the extant theoretical
analyses of the experiments in question. Nevertheless, the
discontinuity between the mz & oo and mq ——oo values for
y „suggests that one's understanding of the physical sig-
nificance of this quantity is incomplete. It may be that
further study of the behavior of yd„(g) for large q, to-
gether with the inclusion of distributed charge and virtual
pair effects will ameliorate this. In view of the interest at-
tached to these topics such an extension of our analysis
would appear to be a worthwhile project.

As a final remark, let us see how the anomalous pro-
duction process in, say, U-U collisions would be described
in terms of the concept of the "decay coupling strength"
yd introduced in Sec. III A. There yd„was defined as a
value, if any, such that

E(y;m], m2) —m2 & —m$ (y) ydg, )

where E is the mass of the lowest (1,2) bound state. With
m ~

——m, and m2 identified as the mass M* of an excited
U-U complex X* formed during the collision, we can en-
visage the process
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APPENDIX A: COUPLING CONSTANT BOUNDS
FROM p-SPACE EQUATIONS

1. Preliminaries

The action of the Coulomb potential Vc(r) = y/r on-
a function which has the form, in p space,

P(p) =h (p) I't (p)

is given by

( I'cy)(p) =I~(p;h) I'I (p),
where

(Al)

(A2)

It(p;h) = — J dp'p'Qt(z)h (p') .
ap

Here Qt(z) is the Legendre function of the second kind
and z =(p +p' )/2pp'. We shall need the asymptotic
behavior of It for p~ oo, with h (p) assumed to fall off as
an inverse power of p

(A3)

h(p)-Ct /p'+' (A4)

To be precise, we assume that there exists a positive A
such that h(p)=(Ct, /p +")[1+6(p ')] for p)A. We
break up the integration range in (A3) into the intervals
(0, A) and (A, oo ). In the first interval we may let p~ oo

inside the integral and replace Qt(z) by its leading term
for large z, viz. , Qt-Ctz ' and z by its value for large
p, z-p/2p', to get a contribution It'" proportional to
p

—2—I.

It' "(p;h)— (A5)
p

From the second integral we get, using (A4), a contribu-
tion

X*~(X*,e )+e+
provided that y=aZ* exceeds the value yd„determined
by the equation

E(yd„,m„M') —M*= rn,—.

Note that in this way of looking at the process we have
not needed to make any explicit reference to the vacuum
state or to the concept of "vacuum breakdown. "

Note added in proof. The authors of Ref. 3 have in-
formed us that they agree with our criticism of Eq. (4.7).

U+U —+X* .
This can be followed by the decay

IJ"(p;h)— VCg ~ dp' p +p
, .Qt

~p " (p')'+

On setting p'=py in (A6) and letting p ~ oo we get
—7CI

It' '(p;h)-, Iit(v),
&p

(A6)

(A7)
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where

From (AS) one finds that

Fo(v) =—tan
7T KV

v 2

F,(v)= 7TV &V

which are all that we wi11 need.

(A8)

(A9)

(A10)

a. Dirac equation

We restrict ourselves to j = —, and positive parity. The
coupled p-space equations for the wave functions g(p)
and f(p), the Fourier-Bessel transforms of the usual radi-
al functions, read

pf —(p)+Io(p;g) =(ED m)—g (p),
—pg(p)+I~(p;f) =(E~+m)f (p) .

With g(p)-Cg/p +', f(p)-Cf/p + we get, using (A7)

—Cf — C Fo(v) =0, —C — C/F((v) =0
m

2. Spin-0 equations

Consider an eigenvalue equation of the following gener-
ic form:

which requires that
2

y (v)= =1—v
Fo(v)F, (v)

b. ¹pair external fieid eqtt-ation

(A17)

K(p)h (p)~I. (p)II(p;h) = IVh (p) . (A 1 1)

For K(p)=p /2m and L(p)=l, this is just the p-space
Schrodinger equation for orbital angular momentum l. In
this case, the leading term in K(p)h(p) behaves as p
for p~a&. This can only be balanced by It'"(p;h), so
that we must have v=2+I or h(p) cc 1/p + for large p,
in agreement with the explicit solution, given, e.g., in the
book of Bethe and Salpeter. "

Now suppose that IC(p) has the form of a relativistic
kinetic energy, e.g.,

As shown in Ref. 2, f(p) can be eliminated and the
equation for g(p) reads, for a j= —,

' state with positive
parity,

yA i(p)
Ei(p)g(p) — f dp'p'Ai(p')g(p')

mp

X Qo(z)+, Q i (z)
E)(p)+m) E, ( p) +m)

=E+g (p), (A18)

K(p)=(p +m )'~ —m

for the one-body problem, or

&(p) =(p'+m )
)' '+(p'+m 2)'~' —m, —m,

for the two-body problem. Then for p~ ao

K(p)-ap (a =1 or 2)

(A13)

(A14)

where

A, (p) =
I [E,(p)+ m

& ]/2E, (p) I
'

With g(p)-Cz/p +" for large p, A&(p)~1/v 2 and
(A18) leads to the condition

Cs — [Fo(v)+F) (v) ]Cz ——0
2m-

and the leading term in E(p)h ( ) now behaves as p
This can only be balanced by It '(p;h) so that we get the
relation

a y Ft(v) =0
~ 1+V ~p ]+V

or

OI

2m'

Fo(v)+F~(v)
y(v) =

c. h++ equation

(A19)

ma
y(v) = (A15)

(i) V= Vc. For a singlet j=0 state the relevant equa-
tion is now

In order that h (p) be square integrable, with weight p,
we need v & ——,

' . Let Ft ;„denote the min.imum value of
Ft(v) in this region. Then we must have y &y,„,where

[Ei(p)+E2(p)]g(p) ——f, ko +(pp')g (p')p'dp'

=E++g (p), (A20)

~a
3 max

+I;min

3. Spin- z equations

(A 16) where

ko+(p p"')=, [(I+bib2Kbz)Qo(z)++
PP

+(btbI +b2b2 )Q&(z)]

The treatment of these is a straightforward extension of
the spin-0 case.

with b; =p/(E+m), b =p'/(E +m), and A (p)
=A~(p)A2(p). For large p, the b's +1, the A's~ —,—- so
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that we get, with g Cg /p

2Cs —+—[2Fo(v)+2F((v) ]Cs ——01

with the property

h~. P(r) —+(h~g)(r) =—(a p+Pm)g(r) . (85)

y(v) = 4m

Fo(v)+Fi(v)
(A21)

+2b ]b2 )Qo(z)

+(biK+b2bz)Qi(»] .

For large p we then get

2C ———[6Fo(v)+2Fi(v)]C =0y1-'.
4 g

(ii) V=VC+Vz. The kernel ko+ in (A20) gets re-
placed by

ko.~ (p,p')=, [(1+b,b~b', b2+2b)bp
A (p)A (p')

PP

It can be shown that Do is dense in A and h~ is self-
adjoint on Do.

Now let T =T(y) denote the linear-differential opera-
tor on the subspace of once-differentiable spinors in W
defined by

T(y)f(r)= a.p+Pm ——f(r) . (86)

The attempt to define H~ ,„„wi.th V,„,= —y/r, as a
self-adjoint linear operator on Do, via

H~. ,„,: f(r)~(H~. ,„,Q)(r)—= T(y)g(r), QCDo (87)

T(y)g(r) =Eg(r) (88)

succeeds only for y & y, =v 3/2. For y )y„ the operator
defined by (87) is not self-adjoint on Do. This is related
to the fact that for 1&t )y, each of the usual normaliz-
able solutions with j= —, of the equation

or

y(v) = 4m

3Fo(v)+F)(v)

APPENDIX 8: THE DIRAC EQUATION
FOR aZ &1

(A22)

is accompanied by another one for which, however, the
expectation value of Vc ———y/r diverges. One is thus led
to define the domain of H~ ,„,as.

D =[/
~
/CA, T(y)geA, &P

~
Vc

~
P) & oo], (89)

where

As mentioned in Sec. I, the Dirac-Coulomb equation, &Ol Volt&= y f——«0'(r) 4(r). —1

r
(810)

a

a p+13m ——P(r) =E~g(r),
r

(81) The linear operator H~. ,„, is then defined by

H~ ,„,. $(r)~(H.~ ,„,Q)(r): T(y)g. (r), P—eD . (811)
has y—:aZ =1 as a critical value in the sense that Z~( ls)
becomes imaginary for y&1. However, just precisely
what it is that goes wrong at y = 1 is not made entirely
clear from a reading of the extant literature. The most
comprehensive recent discussion of (81) for large y ap-
pears to be that in the book by Richtmyer, where refer-
ences to earlier work can be found. The purpose of this
appendix is to extend that discussion, which we first brief-
ly review.

1. Review
/

Let M denote the linear space of Dirac-spinor func-
tions g(x) and let A denote the subspace of square inte-
grable f's:

This limits the bound-state eigenfunctions of Hz. ,„t to the
usual ones. It is apparently still only a conjecture that for
any y &1 the thus-defined Hz.„, is self-adjoint on the
domain D, which presumably is also dense in A .

2. Remarks

Ez(ls)=(1 —y )'~ m (812)

becomes complex when analytically continued to y ~ 1 is
not the end of the story. Let us first consider the eigen-
functions

The above discussion does not make it clear in just
what way things go wrong for y & 1, and it is to this ques-
tion that we address ourselves. The fact that the function

—1+{1—y ) ~ rmr—2 1/2
(813)

with

&1(~1()=f d.y'(. )y(.) . (83)

g's differing only on a set of measure zero are considered
equivalent; A is then a Hilbert space. The domain of the
free Dirac Hamiltonian h~ is defined by

Do=[q
~
qC~, a Vqe~] (84)

and hz itself is defined as a linear mapping of Do into ~
T(y)les;+(r, y)=+i(y' —1)' P„.~(r;y) . (814)

Thus as far as Eq. (88) is concerned, nothing spectacular
happens when y exceeds unity. In particular, as is readily

associated with the eigenvalue (812); an angle-dependent
spinor-factor is suppressed. The function P&, . is the one
for which & Vc) = ~. It is readily verified that the ana-
lytic continuation of these functions to the region y& 1

satisfy
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and

T(y)g(r) =Eg(r) (r&0) (816)

(p~g)= lim f dr/(r)g(r)&", (817)

we can set (g
~ g) =1 and, on multiplying (816) by ft(r)

and integrating over r, write

E= lim f dr/ (r)T(y)f(r) . (818)

Although for y &1 and g=f» +, the kin. etic and poten-
tial terms on the right-hand side of (818) separately
diverge as a~O, these divergences cancel in the sum.
Now from (818) we see that, for any real potential V,

verified, both the functions f', +(.r;y) remain square in-
tegrable for y& 1, contrary to what one might perhaps
have guessed. The fact that the "Hermitian-looking"
T(y) has complex eigenvalues for y &1 cannot therefore
be associated with failure of normalizabihty of the P&, .+
for y& l.

The key to understanding what is going on is to note
that for y & 1, both g's violate the condition

(815)

so that neither belongs to D, and that the violation of this
condition is directly connected with the possibility of
complex values for E. To see this, note that if

We can now return to the question of what happens to
the operator HD. ,„„as defined by (89) and (811), for
y & l. It is readily verified that H is symmetric (Hermi-
tian) on the domain D(H) defined by (89) even when

y & 1, and it is plausible that D(H) continues to be dense
in A for y &1. But H is not self-adjoint because there
exist vectors P in A which satisfy (P ~

T(y)g)
=(T'(y)P

~ g) for any /ED(H'), but which do not be-
long to D(H). An example is provided by the choice
P=g', .+(r;y) given by (813) with y&1, i.e., with
(1 y—)'' =i ~1 —y~''. It follows that the domain
D(Ht) of the adjoint Ht of H, defined as the set of all
+~A for each of which there exists a (unique) vector
X'=HtX with the property that (X~T(y)g)=(X'~P)
for all f~D(H), is larger than D(H'). Thus, a vital as-
pect of the definition of self-adjointness, the equality of
D(H) and D(H"), is not satisfied. Moreover, His not'

symmetric, so that H also cannot be essentially self-
adjoint.

As a final point, the reader may be wondering whether
the function g&, . (r;y) does not provide a counter exam-
ple to our explication of the connection between the diver-
gence of ( Vc) and the existence of complex eigenvalues
for T(y) when y&1. After all, for V3/2&y&1, the
quantity (f»

~
Vc

~
g». ) is in inite but, nevertheless,

the associated energy E is real. The answer to this lies in
the phrase "barring cancellations" used in our d'iscussion
above. It is easy to verify that the functions

E E*= lim f —dr[Pt(r)a. pf(r) —c.c. ] . (819)
F+(r;y) =q$, , +(r;y)~.re), +(r;y) (822)

The integrand in (819) can be rewritten as the divergence
of —igtag so that on use of Gauss' theorem one gets

E E'=limir —f ding"a rg. (820)
r~o

It follows that E is complex if and only if the integral in
(820) behaves precisely like llr for r —+0. (If it were
more singular, then E would be infinite. ) Barring cancel-
lations, this requires that

(821)

for r +0 Th—is i.s, however, just sufficiently singular
behavior to make (Vc) infinite. This establishes the
claimed connection between complex values for E and the
divergence of ( Vc).

vanish for y& 1, because of a cancellation between the
cross-terms arising from t'he mixing of the upper and
lower components of P with the lower and upper com-
ponents of P", respectively. Thus for y &1 the integrand
on the right-hand side of (820) vanishes for both g', . +
and P', . and there is, in particular, no constraint on the
behavior of g', . as r~0. However, because of the com-
plex conjugation involved in (822), the functions F+ are
not analytic functions of y. Hence they can be and indeed
are nonvanishing for y & 1, consistent with the fact that E
is complex in this region. A nice feature of (820) is that it
expresses the imaginary part of E directly in terms of the
wave function at the origin, where lies the source of both
the Coulomb potential and the troubles for y ~ 1.
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