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Nonuniqueness of solutions to the Lippmann-Schwinger equation in a soluble three-body model
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It is generally accepted that with suitable boundary conditions the Lippmann-Schwinger (LS) in-

tegral equation is equivalent to the Schrodinger equation, even in systems of more than two parti-
cles. It also is generally accepted that although in two-particle systems the scattering solutions to
the LS equation are uniquely defined by that equation without need for boundary conditions, the
same cannot be said of systems containing more than two particles; in such many-particle systems, it
is generally agreed, unique scattering solutions to the LS equation are not obtained unless boundary
conditions are imposed. However, these assertions have not been verified heretofore in any system
of three or more particles, because exact closed-form solutions of the Schrodinger or LS equation for
such systems are so difficult to achieve. We have examined these questions in a one-dimensional
three-body model first discussed by McGuire, wherein three equa1-mass particles-interact via equal
and finite strength attractive 5-function potentials. With this model, the scattering solutions to the
Schrodinger equation can be written exactly, in closed form. Thereby we are able to demonstrate ex-
plicitly that in this model the scattering solutions to the Schrodinger equation do satisfy the LS
equation; we also demonstrate explicitly that the LS equation's scattering solutions really are
nonunique unless boundary conditions are imposed. This latter result strongly suggests that, in
three-particle systems at any rate, recent criticisms of the aforementioned generally accepted
nonuniqueness thesis are not well taken.

I. INTRODUCTION

The Lippmann-Schwinger (LS) integral equation at real
energies E is

+=/; —G +'vivat,

where the "incident wave" f; (E) and the outgoing Green's
function G +'(E) satisfy, respectively,

suspect from the standpoint of mathematical rigor. Simi-
lar remarks pertain to other operator algebra analyses of
the nonuniqueness problem, e.g. , by Epstein.

These deficiencies largely were remedied by Gerjuoy,
who used conventional mathematical operations in config-
uration space to prove the nonuniqueness for systems of
nonrelativistic spinless distinguishable particles.
Gerjuoy's treatment indicates that solutions to Eq. (1.1)
are not unique because when particle rearrangement can
occur the "scattered part"

(H; —E)gg ——0, (1.2a) C =%1—g; (1.4)

(~ E)G~(+ ) (1.2b)

Here I is the unit operator in the multidimensional con-
figuration space of the particles comprising the system,
whose initial motion is described by g;.

More than two decades ago, Foldy and Tobocman'
showed that for a system of more than two particles the
solutions %(E) to the LS integral equation (1.1) at energies
E corresponding to scattering states need not be unique.
In particular, Foldy and Tobocman recognized that the
nonuniqueness was implied by the existence of nontrivial
solutions 4 to the homogeneous LS equation

(1.3)

However, Foldy and Tobocman's proof of nonuniqueness
was based solely on operator algebra manipulations; as
such their "proof" was both nonintuitive and highly

of the solution to Eq. (1.1) need not be everywhere outgo-
ing, even though G +' is an "everywhere outgoing"
Green's function. When particle rearrangement can
occur, therefore, unique scattering solutions to the LS
equation are not obtained without imposition of the
"boundary condition" that @ defined by Nq. (1.4) must be
everywhere outgoing. But Gerjuoy's analysis, though
based on straightforward mathematical operations com-
bined with very plausible assumptions about the asymp-
totic behavior of 6 +' and other relevant functions,
scarcely was mathematically rigorous in the strict sense.
It generally is agreed" that the necessary rigor is not easily
achieved, but has been supplied by Faddeev, especially in
his monograph. Various authors have shown that the
nonuniqueness of solutions to the many-particle LS equa-
tion is connected to the noncornpactness of the many-
particle LS integral equation kernel, which in turn is relat-
ed to the presence of disconnected diagrams in iterative
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expansions for that kernel. Faddeev himself has ex-
plained that he developed the Faddeev equations to avoid
inter alia the nonuniqueness property of the many-particle
LS equation.

Nevertheless, Mukherjee, in a series of recently pub-
lished papers, ' claims that the many-particle LS equa-
tion does have unique solutions. Although Mukherjee
refers to Faddeev, he does not directly challenge the pur-
portedly mathematically rigorous investigations of Fad-
deev et al. Instead, Mukherjee focuses on alleged defi-
ciencies in Gerjuoy's analysis, whose correction (Mukher-
jee claims) leads to the conclusion that the multiparticle
LS equation's solution are unique. In particular, accord-
ing to Mukherjee, the homogeneous LS equation (1.3) is
incorrect, ' and the scattered part of the solution to the
conventional LS equation (1.1) always is everywhere out-
going. Mukherjee's procedures (and his criticism of
Gerjuoy's results) themselves have been criticized in the
literature, notably by Adhikari and Glockle, ' Toboc-
man, ' Lovitch, ' and Levin and Sandhas. '

In this paper, we shed light on this nonuniqueness issue
by examining the scattering solutions to the Schrodinger
equation in an exactly soluble three-particle model system.
We show that in this model the scattering solutions to the
Schrodinger equation do satisfy the LS equation; we also
show that the LS equation indeed does have nonunique
solutions. We further show, in this same model, that the
homogeneous LS equation (3) is correct, and that the scat-
tered part of the solution to the conventional LS equation
(1.1) is not necessarily everywhere outgoing. To our
knowledge, there is no other many-particle model wherein
scattering solutions solving the Schrodinger equation have
been constructed and explicitly shown to satisfy either the
inhomogeneous or homogeneous LS equation in their in-
tegral operator forms (1.1) and (1.3), respectively.

The model we employ is that of McGuire. ' It involves
three equal-mass spin-zero particles moving on the same
line (the x axis say) and interacting via pairwise attractive
5-function potentials of equal strength. This model in-
corporates the mathematical and physical complexities of
many-particle systems, but is much simpler to treat
mathematically than the more conventional three-
dimensional three-particle systems mirroring the real
world. The same model has been used previously' to test
scattering theory predictions, in an application rather dif-
ferent from ours, however.

%'e now conclude this introductory section of our paper
with a brief summary of the contents of later sections.
The details of McGuire's model, along with the notation
we employ, are described in Sec. II; in Sec. II we also
present the scattering solutions solving the Schrodinger
equation in McGuire's model. Section III derives the
Green's function which, in McGuire's model, appears in
the LS equation. The scattering solutions and Green's
function are used in Sec. IV to demonstrate the results we
asserted in the penultimate paragraph. Our concluding
remarks are contained in Sec. V.

II. McGUIRE'S MODEL

Although McGuire' treats systems of particles with
unequal masses, we shall confine our attention to a system

of three distinguishable spinless particles of equal mass m
moving on the x axis and interacting via attractive pair-
wise 6-function interactions of equal strength. Denote the
particle positions on the x axis by xz, p = 1,2,3
( —oo &xz & oo ). Then the Hamiltonian in the laboratory
system is

8 8
HL ——— ~+ z+2m ()x I Bxp c)x3

—v 2g5(XI —xz) —v 2g5(xz —x3)—&2g5(X3 x J ),

(2.1)

where g & 0; the factor V 2 is introduced in the strength of
the attractive 5-function interaction for future conveni-
ence.

Removal of the center-of-mass motion from the right-
hand side of Eq. (2.1), to yield the Hamiltonian in the
center-of-mass system, is accomplished by the coordinate
transformation

1Z =
3 (x]+xp+x3), (2.2a)

(2.2b)

Y„=(—,
' )'~ [x&——,

' (x,+x )], (2.2c)

Xp+ Y„v 3 Xp —YpV3P P g P P
2 2

(2.3)

where p=1, 2, or 3. The three versions of H obtained
from employment of these three independent possibilities
for p in Eq. (2.3) are equivalent. For the collisions on
which we shall concentrate, however, namely collisions in
which (in the laboratory system) beams of particle 3 are
incident on beams of bound particle pairs 1,2, use of Eq.
(2.3) with the choice @=3 is most convenient. Especially
for such collisions, it is helpful to make the further
change of notation

where p, v, o. are any cyclic permutation of (1,2,3). In Eqs.
(2.2) Z obviously denotes the position of the center of
mass, X& is proportional to the relative displacement be-
tween particles v and o., and Y& is proportional to the rel-
ative displacement between particle p and the center of
mass of v and o. The transformation (2.2) is slightly dif-
ferent from the center-of-mass system transformation
considered by McGuire. '

Using Eqs. (2.2) in Eq. (2.1), and dropping the center-
of-mass kinetic energy —(A' /6m)B /BZ, the Hamiltoni-
an in the center-of-mass system is seen to be

$2 $2 Q2
H, =H =—,+ —g5(&„)

BXp 0 Yp
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X3 ——x, F3 ——y . (2.4a)

Now the dynamics of the actual three-particle collision
(especially with particle 3 incident on bound pairs of par-
ticles 1,2) can be visualized as the motion in the horizon-
tal plane z=O of a single two-dimensional particle whose
usual rectangular coordinates are (x,y). For similar
reasons we also will use

X) =u, F) =U (2.4b)
and

X2 ——r, Y2 ——s . (2.4c)

The three lines x=O and x =+V 3y, on which various
5 functions in the Hamiltonian (2.3) are nonvanishing,
divide the xy plane into six 60 sectors, as shown in Fig. 1.
These three lines are the loci x=0, r=0, and u =0, as can
be seen from the defining Eqs. (2.2) and (2.4). In fact,

v3 1 1 v3u= — y ——x, U= ——y+ x,
2 2

'
2 2

(2.5a)

(H —E)4=0,
where H from Eq. (2.3) now can be written as

(2.6a)

which will be useful later.
The six 60' sectors in Fig. 1 are characterized by dif-

ferent rel'ative values of the particle displacements
x $ x 2 x 3 along their original line of' motion. With the six
sectors labeled I—VI as shown in Fig. 1, the relative
values of x~,x2,X3 in the sectors are I, x~ (x2(x3,' II,
x2 (x j (x3,' III, x) (x3 (x2p IVp x2 (x3 (x]j Vp

x3 & x $ &xz and VI, x3 & x2 &x
&
. The directions of in-

creasing y, s, and U along the lines x=0, r=0, and u=O,
respectively, are indicated by arrows; also indicated are
the signs of y, s, and v, respectively, on the opposing
halves (relative to the origin) of these lines. Figure 1 also
shows the directions of increasing x, r, and u as these
respective x=0, r=0, and u =0 lines are crossed.

The Schrodinger equation describing the motion of the
three particles in the center-of-mass system is

V3
2

''
v3
2

X

u= — p'+ s, U= — s—
2 2

'
2

y ——x, s= ——y—
2 2

' 2

vS 1 1 v3r= — U — u~ $= — U+ u
2 2

'
2 2

V3 1 1 vSx= U — u, y= — U — u
2 2 '

2 2

(2.5b)

8 8H=- —g5(x) —g5(u) —g5(r) . (2.6b)2' Qx

0+—% (2.7a)

The equivalent two-dimensional particle moves freely (no
'interactions) in each of the six sectors I—VI. Along the
boundaries of these sectors, i e , al.on. g each of the lines
x =0, r =0, and u =0, the wave function 4 must obey the
boundary condition

1x= ——r—
2

v~y=
(2.5c) ae aq

Bn Bn

2vlg
$2

%'o = —2a%'o, (2.7b)

U -" 0

x=o
y&O

where n denotes the appropriate variable perpendicular to
the line (namely x, r, and u at the lines x=O, r=O, and
u =0, respectively); the derivative a/an is computed along
the direction of increasing n; the subscripts + and-
denote values at n=0, but are computed, respectively, on
the n ~ 0 and n (0 sides of the line; the subscript 0 merely
makes explicit the fact that the wave function is continu-
ous on the boundary lines; and Eq. (2.7b) provides the def-
inition of a (which is & 0).

For laboratory-system collisions in which beams of par-
ticles 3 are incident on beams of bound particles 1,2, the
incident wave in the center-of-mass system of the three
particles can be written as

f; =e'+w(x),

where

(2.8a)

S &0 X

~~ y&O
X =0

FIG. 1. Diagram showing the six 60 sectors I—VI into
which the x,y plane is divided by the lines on which the 5-
function interactions need not vanish, namely, the lines on
which the original locations x~„x2,x3 of the three particles are
not all different. The arrows show the directions of positive
x, r, u and y, s, u at these lines x=0, r=O, u=0, respectively.
The signs of y, s, U at the opposing ends of these respective lines
also are indicated.

Correspondingly, f; satisfies Eq. (1.2a) with

Ak
+Eh

2&l
(2.9a)

w(x)=brae- ~" ~ . (2.8b)
Here w(x) is the normalized wave function representing
the bound pair of particles 1,2 in their own center-of-mass
system, for the interaction v 2g5(xt —xq) appearing in
Eq. (2.1). The bourid-state energy is

fi cx
(2.8c)

2ppl
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where, from Eq. (2.6b), the "initial" Hamiltonian in the
center-of-mass system of the three particles is

H;=— + —g5(x) .2' Qx Qy
(2.9b)

Evidently, as we have defined y, when k&0 the initial
wave function f; has particle 3 coming in from —oo, and
going out at + oo, as seen froIn the center of mass of the
bound pair 1,2.

With the incident wave P; given by Eqs. (2.8), the solu-
tion qi; to the Schrodinger equation (2.6a) whose scattered
part (1.4) is everywhere outgoing now can be obtained
quite readily, by the ray-tracing method McGuire himself
employed, ' or by applying the boundary conditions (2.7)
to the most general forms of 4; in each of the sectors
I—VI consistent with the requirement that 4; —1'; is
everywhere outgoing at infinity (and, of course, bounded).
One finds (with k & 0 henceforth)

4;I——Ae' ye~,

gy g e ikye —cxx
i II

+im=Beikye +Ce'~e

eikye —ax+ Ceikve au

+;V—V aiekyeax+( e~kxear+Deikve —au

ql +aeik e
—a +xDe'+ear+ Ce' 'e

(2.10)

where

ikV3 a-=~a ~
ik~3 —aB=Va
ikv 3+a '

C= 2a (a —ik~3)
V 3(a+ik~3)(aV 3+ik)

3/2a=-
(a+ ik ~3)

(2.11)

It is easy to check that Eqs. (2.10) for qi; obey Eqs. (2.7)
when A, B,C,D are given by Eqs. (2.11). Equations (2.10)
keep qr; bounded at infinity because for each 60 sector
the exponentials appearing in Eqs. (2.10) are damped; for
example, referring to Fig. 1, it is apparent that in sector
III x &0 and I"~ 0, as required for damped e and e
respectively. Similarly, one sees that '0; —g; is outgoing
at infinity. For example, again referring to Fig. 1, in sec-
tor VI only the term Ce'""e " in qi; —g; is nonvanishing
at infinity, and this term is nonvanishing only on the line
u =0; on u =0 in sector VI u & 0, so that (with k & 0) the
e' " factor in the nonvanishing term indeed is propagating
outward at infinit.

Several interesting aspects of the solution (2.10) should
be pointed out. First, as McGuire' has observed, there is
no reflected direct scattering wave, i.e., there is no e
wave in sectors V and VI. Second, and the reason we
have undertaken to examine this model of McGuire's, the
solution encompasses rearrangement. For example, O';Iv
a,nd 4;vI contain terms going out to Oo along the u=O

line; these outgoing waves, proportional to e' ', represent
particle 1 proceeding to 00 relative to the bound pair 2,3,
i.e., these waves represent exchange (during the collision)
of particles 3 and 1. Similarly, the terms proportional to
e' ' in qi;ni and qi;tv manifest exchange of Particles 3 and
2. These exchange waves we have identified carry particle
1 out along U —++ ~ and particle 2 out along s —++ oo,'

there are no corresponding exchange amplitudes along
~~ —~ » +iI «+iIII n«»ong s~ —~ in +iII and

In other words, recalling the definitions (2.2) and
(2.4), McGuire's model permits forward exchange but not
backward exchange, i.e., the exchanged formerly bound
particle is not reflected, but continues out to infinity along
the same direction as was being traveled by the originally
unbound particle 3. Of course, the absence of reflected
waves, both in direct and exchange scattering, is an ex-
pected consequence of conservation of momentum in
these collisions involving equal mass particles moving on
a single one-dimension line. It also is noteworthy that the
solution (2.10) does not manifest any breakup, i.e., no
matter how large k is, all terms in Eq. (2.10) represent a
bound state of one of the three possible particle pairs.

In the foregoing, we have employed the subscript i to
denote the incident wave (2.8a), which propagates in the
initial channel (also denoted by the subscript i) wherein
particles 1 and 2 are bound. In what follows we also shall
require the solutions %'f to Eq. (2.6a) associated with an
incident wave gf in a rearranged or "final" channel; we
require, of course, that 0'f, like %';, be a scattering solu-
tion, " i.e., that +f —gf be everywhere outgoing at infini-
ty. For specificity, let the final f channel correspond to
propagation with particles 2 and 3 bound. Then an in-
cident wave of energy E in the f channel is

q =e'k"ui(u) =&ae'k"e (2.12)

where E again satisfies Eq. (2.9a), and we again suppose
k & 0. Referring now to Eqs. (2.2) and (2.4), as well as to
Fig. 1, it can be seen that the scattering solution %'f asso-
ciated with the incoming wave (2.12) is obtainable directly
from Eqs. (2.10) provided the following changes are made:
(x,y)~(u, u), (u, u)r(r, s), (r,s)~(x,y), V—rl, Vl rill,
IV—+V, II~VI, I~IV, III~II. More particularly, the
formulas for 0'f in the various sectors of Fig. 1 are

=v'ae' "eau+ Ceikye~x+De'"'e ar
fI

e ikve au+ geiky
7

q/n ~~eikue —au+ Deikye ax+ ( iks ar—
(2.13)

frv=

+fv ——&e' "e "+Ce' e ',
qy geikve —au

fVI

with A,B,C,D still given by Eqs. (2.11). As with 4; of
Eqs. (2.10), the fact that Eqs. (2.13) guarantee 4& is a
scattering solution of Eq. (2.6a) consistent with the
boundary conditions (2.7) easily can be checked.
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III. OUTGOING GREEN'S FUNCTION
FOR INCIDENT CHANNEL

fi 8
H) ——— —g5(x) .

2m
(3.3b)

6 +'(E)=limG;(E+ie),
@~0

where for complex A,

(3.1a)

In due course, we will verify that ql; of Eqs. (2.10) satis-
fies the LS equation (1.1). First, however, we must con-
struct the outgoing Green's function 6 +' in the i chan-
nel. Everyone agrees that, with the stipulation e & 0,

As with 6; for Eq. (3.2), for complex A, there can be only
one quadratically integrable 6~ satisfying Eq. (3.3a).

Except at x=0 and x =x', where the slope of 6& is
discontinuous, solutions to Eq. (3.3a) are linear combina-
tions of e -' ", with

i 1/2

(3.4)

6;(A, ) =

In less symbolic notation, Eq. (3.1b) becomes'

Specify the phase of complex P by

0& argk &2w, (3.5a)

P„(x,y)P'„(x ',y')
6;(x,y;x', y', A, ) = g

8 n

(3.1c)

where gn are a complete orthonormal set of eigenfunc-
tions of H; having energy E„, and g„denotes the sum
over all discrete eigenvalues plus integration over all con-
tinuous eigenvalues. The initial Hamiltonian H; is given
by Eq. (2.9b), as previously explained. Indeed, we see
from Eq. (3.1c) that

i.e.,

0 (algV A, (7T,

0&argE &n .
(3.5b)

Then for all k constrained by Eq. (3.5a), the quadratically
integrable 6& must be proportional to e' as x —+ oo, but
must be proportional to e ' " as x~ —oo. In view of
this fact, introduce the functions y, and yb satisfying

2+2m
—g5(x) —A, 6;(x,y;x', y';k)

or

(Hi —A, )q&=0 (3.6a)

=5(x —x')5(y —y') . (3.2)

The definition (3.1a) is meaningful because for complex A,

Eq. (3.2) has at most one quadratically integrable solution
6;; were there two such solutions, their difference would
be a quadratically integrable eigenfunction of H; for com-
plex A, , impossible since H; is Hermitian.

In the problem at hand, Eq. (3.1c) provides a con-
venient starting point for the computation of 6;(A, ), be-
cause finding the eigenfunctions and associated eigen-
values of H~ is straightforward. The eigenfunctions are
plane waves in y multiplied by the easily obtained eigen-
functions of the operator —(fi /2m)B /Bx —g5(x); the
corresponding eigenvalues of H~ run from Fb of Eq.
(2.8c) to ao. However, it is necessary to be assured that
the set fn thus obtained is complete, i.e., that gn Pnfn is
a resolution of the identity; otherwise Eq. (3.1c) is not
equivalent to Eq. (3.lb), and G; of Eq. (3.1c) does not
satisfy Eq. (3.2). Although we have no doubt that the set
Pn we have described is complete, the completeness might
be questioned (we suppose) on the grounds that H; in-
volves the singular potential g5(x). We certainly do not
want to prove the completeness of the eigenfunctions P„
of H~, which would take us far afield.

Consequently, because a major objective of this paper is
to remove doubts about the nonuniqueness of solutions to
the LS equation, we shall not construct 6; from Eq.
(3.1c); we employ instead a method which is completely
unexceptionable. Let G~(x;x';A, ) be the Green's function
satisfying

+2a5(x)+IC y=O,
Bx

(3.6b)

yb (x,K)y, (x',X)
(y„qb)

where the Wronskian

where yb is proportional to e as x~00, y, is propor-
tional to e ' " as x —+ —oo. Evidently the solutions y(x)
to Eq. (3.6b) satisfy the same boundary conditions (2.7) at
x=O as were previously stated for 4, with 8/Bn in (2.7)
now denoting 8/Bx. It is easily verified that solutions to
Eq. (3.6b) satisfying these boundary conditions are

—/Kx

qr~(x, E') = . , x &0a+iK '

i' e rKx x 0
A

a+ i'
(3.7)

CX

a+iK
iL;xpb(x, E)=— e', x & 0 .a+iK

The Green's function 6& now is given by the formula

g, (x,K)gb(x', X)
6)(x;x",k) =—

8'(qr„yb )

(3.8)

(H, —A, )G~(x;x';I, ) =5(x —x'), (3.3a)
dV'b df'a
dX dX

(3.9)

where is a pure number, independent of x. Equations (3.7)—(3.9)
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G)(x;x', k) = e — e
—iK(x —x') + —iK(x+x')

A+ EX

x &x'&0

Gi (x;x';1,) = All
e iK(x —x') —iK(x +x')ea+iK

—iK(x —x')
Gt(x;x';A)=—,x &0&x'

a+iK
eiK(x —x')

Gt(x;x';A)= — . , x'&0&x
cx+ iK

x'&x &0

(3.10)

yield the desired expression for 6&. However, it is neces-
sary to use the appropriate forms from Eq. (3.7) for y„yb
in Eq. (3.8), depending on whether x and/or x' are & 0 or
&0. We find

1/22' k
g2

(3.13b)

The corresponding expressions for 6; in the other
domains of x and x', e.g., in x &0 & x', are obtained simi-
larly from Eqs. (3.10) and {3.11); we shall not take the
space to write down these expressions. In Eq. (3.13a), and
in the corresponding expressions for 6; valid in other
domains of x and x', the values of y and y' are unrestrict-
ed.

In the k» plane, q of Eq. (3.13b) has branch points at
k» = + (2m A, /fi )

'/ . Correspondingly, cuts through
k» =+(2m', /fi )'/ are required; because k» runs over all
real values in the integral (3.13a), these cuts should not in-
tersect the real ky axis. Furthermore, it is implicit that q,
which by virtue of Eq. (3.11) replaces K appearing in Eq.
(3.10), is constrained in phase as was K in the quadratical-
ly integrable G&. In other words, from Eq. (3.5b), we
must have

G (x.x~.g)
mi iK(x —x') —+ eix(x+x')

g2K

0&x &x'

0&argq &~

at all real values of k».
From Eq. (3.13b),

(3.14)

G~ (x;x';A, ) =
AK

e iK(x —x') + iK(x +x')en+iK argq =
2 arg

1/2
2m', —ky

An alternative to Eq. (3.1c) is

0&x'&x .
+ —,arg

1/2
2m A,

g2
(3.15)

G;(x,y;x', y', &)= Q Xi(y)Xi (y')G t (x;x', A. Ei ), (3.—11)

where +I are a complete orthonormal set of eigenfunctions
of —(A' /2m)B /By [compare Eqs. {2.9b) and (3.3a)] hav-
ing energy EI, and the summation sign again includes in-
tegration over the continuous spectrum. It is readily veri-
fied that Eq. (3.11) does satisfy Eq. (3.2) when gi XiXi is
a resolution of the identity in the one-dimensional y space.
Now, however, in contrast to ltd„of Eq. (3.1c), there can be
no doubt about completeness, because the eigenfunctions
of —(fi /2m)B /By are the plane waves

Suppose i(, is such that v A, lies in the first quadrant. It
then can be seen that the requirements of the preceding
paragraph can be met by drawing the cuts as shown in
Fig. 2, with the understanding that at any k» the values of
the arguments in Eq. (3.15) are to be found by analytic
continuation from ky =0, where each of the arguments in
Eq. (3.15) is equal to arg~A, . For example, Fig. 2 shows
the values of these arguments when ky lies at the point 3

plpne

Xi —=X(y;k») =
2~

having energy

A ky

2m

Thus we find, using Eq. (3.10), that for x & x' & 0

G;(x,y;x', y', X)

(3.12a)

(3.12b) P

(zmx)~ o

where

ik (y —y')
1 mi ~

dk
e

2m g . —~. q

e
—iq(x —x ) + —iq(x+x')

A+iq'

(3.13a)

FIG. 2. Diagram showing the cuts and poles in the k„plane
for the integral of Eq. (3.13a). The cuts start at
Qi=(2m'/A' )' and Q2= —(2m'/h'2)'~2. The poles P; and
P2 (located at the crosses) denote the values of k~ at which
n+iq=O. The diagram also shows the values of the arguments
of [(2m', /%2)'~ —k»] and [k»+(2m'/fi2)'~2j; these values are
P& and P2, respectively, with P&+y& ——m.. The figure has been
drawn for V A, lying in the first quadrant.
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on the real axis. If AQ& is understood to be directed from
A to Q ~, and Qz A is directed from Q z to A, then

'
j. /2

27tl A,
arg —k» =argAQ &

——/3&,

Eq. (3.13a) has poles at

ky ——+ 2m',
g2

1/2

(3.17a)

arg

1 /2
2&l A,

g2

(3.168)
where

a+iq =0 . (3.17b)

=arg k ——
' 1/2

2Ptl A,

g2
=argQzA =Pz,

where it is obvious from the construction that

0&p~ &7T,

0&P2&m .
(3.16b)

Therefore, using Eq. (3.15), the inequality (3.14) necessari-
ly holds. As a matter of fact, since y»Pz in Fig. 2 be-
cause AQ~ & Q2A, and since P&

——m —y~, we actually have

0&argq &—
2 (3.16c)

when k„ is at A; indeed it can be seen that Eq. (3.16c)
holds for any k» on the real axis when the cuts are as
shown in Fig. 2. However, though the inequality (3.14)
continues to hold, argq will exceed m/2 for real k» when
V A, lies in the second quadrant.

In addition to the branch points at Q| and Qz, G; of
t

The locations of these poles, for the case that V A, lies in
the first quadrant, are given by the crosses at P~ and P2
in Fig. 2.

The foregoing completes the task of obtaining
G;(x,y;x', y';A, ). Incidentally, the result (3.13a) agrees
with the result we would have obtained from Eq. (3.lc),
and similarly for other (than x &x'&0) ranges of x,x',
showing that the orthonormal set of eigenfunctions g„of
H; indeed are complete. Next, recalling Eq. (3.1), we
want the limit of Eq. (3.13a) as A,~E from values of X
having a positive imaginary part. Suppose for specificity,
and as is surely sufficient for the purposes of this paper,
that E)0, i.e., that k )a according to Eq. (2.9a). Then
as A.~F. the termini Q&, Qz of the cuts in Fig. 2 wi'll ap-
proach the real ky axis; the poles P&,P2 given by Eq.
(3.17a) similarly approach the real k» axis. Correspond-
ingly, as values of A, in the first quadrant approach E~ 0,
the integration contour over k„ in Eq. (3.13a) must be de-
formed below the real axis near I'~ and Q~, and above the
real axis near Pz and Qz. Hence we find that

ik (y —y')

e
—ip(x —x') —sp(x+x')e

cx+ lp
x &x'&0

E

Eky(y
—y')

1 Uzi,'~ e
2~ g' r y p

IP (x —x') + ~IP (x+~')» x 0
cx+ lp

—1 I ik (y —y') edke"
A+ lp

x &0&x'

~, x'&0&x
a+ip

1 I
dk e

E.k (y —y) e p'—
2m g2 r

p
ik (y —y')

1 mi
&

e~
r p

ik (y —y')
1 mi

dk
e»

2~ g'
+ ' 0

(x+ lp

0&x'&xip(x —x') + eip(x+x')
Cf+Ep

(3.18)

where

p —(k a —k )' (3.19a)

the contour of integration I is as shown in Fig. 3, and the
phase of p from (3.19a) is specified everywhere in the k»
plane by the understanding that near ky 0

arg[(k' —a')'»' —k ]=-arg[k +(k' —az)'»2]=() .

(3.19b)
With Eq. (3.19b) and the branch cuts as drawn, we have
the following for real k„,

I

) (k2 ~2) I/2.

arg[(k —az) '» —k» ]=m. ,

arg[(k —a )'» +k»]=0,

argp =—
2 '

when —(k —a )'»2&k &(kz —~ )'»z.

arg[(k —u )
' —k» ]=arg[(k 2+~2) '»2+ k ]

=argp =0;

(3.20a)

(3.20b)
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when k & —(k —a )'
3'

arg[(k —a )'~ —k»] =0,
arg[(k —a )'~ +k»]=+, (3.20c)

k& plone

argp =
2

'

The phases of argp in Eqs. (3.20a) and (3.20c) show that
the points kz ——+k indeed are poles of the integrals in Eq.
(3.18), i.e., that p does indeed equal i a, not —ia, at P„P2
of Fig. 3. We are not able to perform the integrals over
k» in Eq. (3.18), but we will be able to use this integral
representation of 6 +'(x,y;x', y', E), as will be seen.

IV. NONUNIQUENESS OF SOLUTIONS
TO THE LS EQUATION

~ci,
r r

FIG. 3. The contour of integration I for the integrals of Eq.
(3.18). The termini Q (, Q2 of the branch cuts are at
ky +(k —a )' . The poles PI,I 2 lie at k~ =+k. Figure is
drawn on the assumption that k & a, by definition, k is & 0.

A. Demonstration that %'; satisfies
the inhomogeneous I.S equation P;:H H; =———g5(u) —g5(r) . (4.1)

We will verify that the LS equation (1.1) holds for 6
of Eq. (3.18) and ql; of Eqs. (2.10) and (2.11). From com-
parison of Eqs. (2.6b) and (2.9b)

Also, Eqs. (2.5) imply that the Jacobians of the transfor-
mations from x,y to u, U or from x,y to r,s, are equal to
unity. Thus Eq. (1.1) for ql—:(P; is

(P;(x,y) =g;(x,y)+g f dx'dy'6 +'(x,y;x',y';E)[5(u')+5(r')]P;(x', y')

=(I(;(x,y)+g f du'du'6 +'(x,y;x', y';E)5(u')q';(x', y')+g f dr'd Gs(+( yx; xy'„E)5( ')rq( lxy')

(4.3)

=0t(x y)+g f dU [Gt~ (»y x y E)'P((x y )]u'=o+g j ds [6( (xy x y 'E)qli(x y )]r'=o (42)

with g; given by Eq. (2.8a). Referring to Fig. 1, we see that on the line u'=0, (P;(x',y') in Eq. (4.2) has the form (P;t or
(P;t» for U'& 0, but has the form 'P;&v or 'P;vt for U' & 0; here it is indifferent whether we use %';& or (P;&tt, because these
forms are equal on u'=0 by Eq. (2.7a), and similarly for the pair (P;tv and %';vt. Hence Eq. (4.2) becomes

0 OO

(P;(x,y) =v ae'"»e ~"
~ +g du'(6 +'4;&)„o+g f du'(6 +'(P;&v)„

0
+g f ds (6 q'n) '=o+g f ds (6 q'tn) '=o.

In Eq. (4.3) 6 +'=—G +'(x,y;x', y', E) and (P; =—(P;(x',y'), of course.
Equation (2.5c) tells us that x'= —,

' W3v', y'= ——,U' on u'=0; similarly, x'= ——,W3s', y'= ——,'s' on r'=0. There-
fore, using Eq. (2.10), Eq. (4.3) can be rewritten as

O

(P;(x,y) =Mac'"»e '" '+g f du'6 +'(x,y; —,
' &3U', —,' U', E)Ae' '"+—

+g f dU 6(+)(x y. ( ~3Ui ( Ui.E)(Be( tk —av 3)U'/2+Ce—iku')

+g f ds'6'+ (x y ——&3s' — s'E)Ae' '"+—
+g f ds'6, .'+'(x y; ——,

' v 3s', —,'s', E)(Be' ' ' —+Ce' ) . (4.4)

So far, the values of x and y in Eq. (4.4) have been unrestricted. To proceed further, we must choose the sign of x, so
that we can determine which of the six possible formulas (3.18) must be used in the various terms of Eq. (4.4); there still
are no restrictions on y. So suppose for the present that x &0. Then in the first integral on the right-hand side of Eq.
(4.4), we must use the formula for 6 +' in the range x' &x & 0 when —,

' v 3U' &x, but must use the x & x' & 0 formula for
G;+ when x & 2 V 3U'. In the second integral on the right-hand side of Eq. (4.4), we use only the x &0&x' formula for
6 '. Proceeding in this fashion, and actually substituting the appropriate formulas from Eq. (3.18), we find that for
x &0 Eq. (4.4) reduces to
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) ~ tk» (xx

2x/~3 ik (y+u'/2)
( —'+~ )'

2& r p
ik (y+u'/2)

+ d g ( —k +~a)u'/2
2x/V 3 r y

p

eip (x —~3u'/2) —ip (x +~3u'/2)e
CX+ EP

e
—ip (x —~3u'/2) & —ip (x +3v'/2)

a+ ip

CX+ lP

CX
0 —ip (x +~3s'/2)

s e —ik +a~3)s'/2 ik&(y +s'/2) e
ye ~

2'7T r A+ ip

00 —ip (x —~3u'/2)
(i—k+av3)U /2'+Ceiku ) 'dk e' y +

2m I

l ~ —2x/~3 ik (y+s'/2)
i(g (ik—+aW3)s'/2+( eiks )'

2m' r y p
ik (y+s'/2)

+ ia
d r(Z —(ik+av 3)s'/2+Ceiks')

2m —2 r y
p

—ip (x +~3s'/2) + —ip (x —~3s'/2)
0!+ip

ip (x +~3s'/2) + —ip (x —~3s'/2)
CX+ lP

(4.5)

We stress that in Eq. (4.5) the limit as e—+0, which ap-
peared in the defining equation (3.1a) for G +'(E), has
disappeared; the limit at e~O has been taken while deriv-
ing Eq. (3.18). Correspondingly, all arguments in the
literature ' ' ' "oncerning the validity or invalidity
of taking the limit as e~o in expressions such as the LS
equation's key term G +'V;4—are totally irrelevant to
what follows.

If inversion of the order of integration in Eq. (4.5) is
permissible, the integrals over u' and s' can be performed.
Consider, e.g. , the third repeated integral on the right-
hand of Eq. (4.5), wherein u'~ oo, and let us concentrate
on that portion of the contour I where k»~ oo. In these
domains of u' and k», conditions for inversion of the or-
der of integration of the pertinent repeated infinite in-
tegral in Eq. (4.5) [namely the third repeated integral on
the right-hand side of Eq. (4.5)] can be stated. Specifical-
ly, sufficient conditions for the equality

f du' f dk»f(u', k»)= f dk» f du'f(u', k»)

(4.6a)

are essentially (i) that f du'f (u', k») converges uni-

formly in any fixed interval b & k» &IC, however large K;

b
(ii) that dk»f (u', k„) converges uniformly in any fixed
interval a & u' & V, however large V; and (iii) that one of
the infinite integrals

f du' f dk»f(u', k») or f dk» f du'f(u', k»)

(4.6b)

converges uniformly in the respective unbounded interval
EC & 00 or V& oo.

The modifications of Eqs. (4.6) appropriate to the por-
tion of I where ky~ —oo, or to the domain v' —+ —oo, or
the integrals involving s' in Eq. (4.5), are completely obvi-
ous and need not be written down. Hence it can be seen
that when the integrals over ky are performed first in Eq.
(4.5), those integrals do converge uniformly, because Eqs.
(3.20) and the signs of x, u', and s' guarantee that the in-
tegrands in those integrals are not exponentially increas-

l

ing as kyat+ac along I. For example, in the domain
—oo &u'&2x/v 3, remembering we have specified x &0,
we have

x ——,
' ~3u'&O,

(4.7)
x+ —,'WSu'(O.

Thus for the double integral in Eq. (4.5) involving the
range —oo &u'(2x/M3, the exponents ip(x ——,

' V3u')
and —ip (x + —,v 3u') appearing in that double integral go
to —oo as ky~+ ~, which is enough to guarantee uni-
form convergence of the k» integration, except perhaps
near u'=2x/~3, where ip(x —Tv 3u') does not go to
—oo because x —

2
W3u'=0; in the small interval near

u'=2x/v 3, however, the uniform convergence of the k»
integration over the term involving exp[ip(x ——,v 3u')]
(in the —oo &u'&2x/~3 domain) is guaranteed by the
factor p 'exp[ik»(y+ —,'u')], which essentially behaves
like (sink»)/k„at infinite k». The uniform convergence
of the integrals over k» for the other domains of u' in Eq.
(4.5), and for the various domains of s', similarly are seen
to be guaranteed by the appropriate generalizations of the
inequalities (4.7) to those domains.

When the integration over u' in —oo &u'(2x/v 3 is
performed before the integration over k» in Eq. (4.5), the
same inequalities (4.7) will guarantee uniform convergence
of the u' integration when argp =~/2, i.e., when k„ is
real and

~

k [ &
~

(k —a )
~

'/, recalling Eqs. (3.20). For
other values of k» on the contour I, especially for
—(k —a )'/ &k» &(k~—a )'/, where p is purely real
according to Eq. (3.20b), the exponential factors involving

p (relied on in the preceding paragraph) may not guaran-
tee uniform convergence as the v' integration is per-
formed. Uniform convergence of the u' integration over
—oo &u'&2x/W3 will be guaranteed, however, by the
factor exp(eau'/2) appearing in the corresponding in-
tegral of Eq. (4.5). Other integrals over u' and s' in Eq.
(4.5) are similarly kept uniformly convergent by similar
exponential factors; for instance, the factor
exp( —v 3as'/2) guarantees the uniform convergence of
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integration over s' in the range —2x /3/ 3 & s & oo.
On the other hand, not all the terms in Eq. (4.5) have

integrals containing the appropriate factors
exp(+3/3av'/2) or exp(+M3as'/2); such factors specifi-
cally are missing from the integrals in Eq. (4.5) involving
the numerical factor C defined in Eq. (2.11). To enable
inversion of the order of integration for the term involv-
ing Ce'"' in Eq. (4.5), an additional factor e " (cr &0)
can be included in the integrand with the limit as o.~0 to
be taken when the integration has been completed. This
procedure is legitimate because the convergence of the in-
tegrals in Eq. (4.4) is not in question here; what is in ques-
tion is only their uniform convergence when 6 +' in Eq.
(4.4) is replaced by its integral representation (3.18). In

bfact, Hobson proves that when dx y(x) exists and
is a continuous function of the upper limit b for all b ~ a,

the limit of f dxy(x)e " as o~O exists and equalsf dx p(x). Thus the extra factor e ",with cr +—0, can
be introduced into the term having the factor Ce' " in Eq.
(4.4) before G +'(x,y;, ~3v', —

2
v') is replaced by its

representation from Eq. (3.18).
Adopting the procedure just described, for any fixed o.

the integration over v'—in the range 0& U'& 00, for the
term in Eq. (4.5) having the factor Ce' ' modified by the
extra factor e "—now will be uniformly convergent for
values of k„on I, provided I remains exactly on or infi-
nitesimally near the real ky axis, as we presently assume j.
does remain. Similar remarks pertain to the integrals in-
volving Ce' in Eq. (4.5). Consequently, assuming pro-
visionally that condition (iii) stated in connection with
Eqs. (4.6) is satisfied, Eq. (4.5) can be replaced by

qi;(x,y) —3/ae'"»e "

ik y 2x/V 3

y U 8
En p dk &

e
d p ( —ik+~3a)v'/2 skyv/2, px ip~3v/2

277 r p —ao

—ipx —ip~3v'/2e ea+ EP

iky
ECX e y

+ dky A ( —ik+~3a)v'/2 ' yv —ipx ip~3v'/2
2m. r y

p 2x/V 3
—ip ~3v'/2en+ Ep

ikyy 00 I—(ik+a~3)v'/2 '
y —ipx ip~3v'/2

2~ r "a+ip

ik ya e ' 'k
dkyA ( —ik +a~3)s'/2 '

y 2 —ipx —ip~3s'/2
2K r cx+ Ep

ik y
—(ik+a~3)s'/2 '

y —ipx —ip»'/2 p
—2x/~3

0 a+EP
'

ik y

~ f d i (ik+aV 3)s—'/2 ~ »~ / iPV 3s'/2 iPx a
e iPx-

—2x/~3 n+ Ep

ik y

lim f dk„C f2~ 0 r n+Ep

ik y

+ lim dky C
E'a —2x/ 3, ~ ik s'/2—cT ks y e

— x
2m~ 0 r y

p
ip W3s'/2e

CX+ EP

ik y

+ 11m dky C
E'a, . ~s + iks ~kys'/ ip~3s'/2 ipx + —ipx

CEKy M
(X+EP

(4.8)

Introduction of the factor e ' is not really necessary in the next to the last double integral in Eq. (4.8), m o g
tegration over the finite s' interval () &s' & —2x /v 3, but does no harm. Note that the signs of the exPonents in all te~s
in Eq. (4.8), whether proportional to e +—' 3" / or e —+' ', always are such that —by virtue of Eqs. (3.20)—
convergence of the integrals over v' and s' as v' or s'~+ ao is guaranteed, for large

I k» I
on t"e «a k» axis.

pedo~ing the integrals over v' and s' in Eq. (4.8) (for x &0 only, we remember) y'ields, after considerable but quite
straightforward algebra,
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4;(x,y) —v ae'"»e

ik y
l cx e ~ [a+i (k —k)/~3]z

Aer y p

1

i (k„k—) +V 3(a ip—)

1

i (k» k—)+V 3(a+ip)

+Bela —i (k —k)/~3]x 1 1

i (k» k)—v—3(a+ ip) i (k» —k) —~3(a—ip)

[a—i(k+k /2)]2x/ 3
tkyy

0 r " p

1

2o.+i—(2k +ky —p~3)
1

—2o +i (2k +ky +p v 3 )

ik y
1—tpx

i (k„—k)+v 3(a+ip)
cx —lp 1

a+ip i (k» —k)+v 3(a —ip)

ik y

lim f dky e '»"C
K a~0 r p

—1 e —ip 1

i (k» k)—~3(a+ip) a+ip i (k„k) —V3(—a ip)—
—1 a —ip 1

—2cr+i(2k+k» —pv 3) a+ip 2o—+i(2k+k»+pv 3)
+ (4.9)

We now return to condition (iii) associated with Eqs.
(4.6). As we have explained, the written form of Eqs. (4.6)
is pertinent to inversion of the order of integration in the
third repeated integral on the right-hand side of Eq (4.5). .
The term proportional to B in that particular repeated in-
tegral, after inversion of the order of integration, became
the third repeated integral on the right-hand side of Eq.
(4.8). If, e.g., the u integration in this third integral on
the right-hand side of Eq. (4.8) had run to an upper limit
V rather than to ao [as in the double integral on the
right-hand side of Eq. (4.6b)], we would have found an
additional term in the integrand of Eq. (4.9), proportional
to Bexp[V( ik ——a@3+ik+»ip~3)/2]. But this addi-
tional term in Eq. (4.9) would be exponentially decreasing
for large

I k„ I

as V~oo, because of Eqs. (3.20). There-
fore there is no doubt that for this extra term just
described, dky in Eq. 4.9 would converge uni ormly
for values of V in the unbounded interval V & oo, as con-
dition (iii) associated with Eqs. (4.6) demands. Similar re-
marks obviously pertain to other extra terms which would
appear in Eq. (4.9) if the + ao integration limits of u' or s'
in Eq. (4.8) were replaced by + V or +S, respectively, with
V and 5 large and &0. Moreover, the infinite integrals
over k» already present in Eq. (4.9) are convergent because
their integrands all are of order k» at infinite k», even
when those integrands do not have an exponentially de-
creasing factor e 'y" at

I k„ I

—+ oo (x & 0, remember).
It follows from the preceding paragraph that, as ap-

plied to the integrals in Eq. (4.5), condition (iii) of Eqs.
(4.6) or of the appropriate obvious modification of Eqs,
(4.6)—is satisfied when the factors e " and e ' are
properly included in Eq. (4.5), as discussed above. We al-
ready have explained that conditions (i) and (ii) of Eqs.
(4.6) (or of their appropriate obvious modifications) are
satisfied for every fixed o.~O in Eq. (4.9). Thus we now
can conclude that the manipulations —introducing the
limits as o.~O and then inverting the order of
integration —which led from Eq. (4.5) to Eq. (4.8), and
thence ultimately to Eq. (4.9), indeed were legitimate. In

l

Eq. (4.9) however, the limit as cr—+0 can be taken under
the integral sign by virtue of the following theorem, also
proved by Hobson: If f dk„

I y(k»)
I

exists, and if
I f(k„,o)

I
is bounded for all a &k & oo in a domain

0 & o & e (e & 0), then

lim f dk»g(k»)f (k», o.) = f dk»y(k»)f (k», 0) .

(4.10)
For example, in the first term involving o. on the right-

hand side of Eq. (4.9), write

1 1

p 2o+i (2k +—k» —p~3)
1- 1

p [i (2k + k» —pM3)] 2io.
2k +ky —p~3

(4.1 la)
Then if we denote

q&(ky) = 1
(4.11b)

p 2k+ky —p 3)
the requirements for the relation (4.10) are seen to be
satisfied at

I ky I
~~, the only domain of k» in Eq. (4 9)

where taking the limit o.—+0 under the integral sign might
be questioned; in particular,

I y(k» )
I

of Eq. (4.11b), being
of order k», is integrable as k» ~ co. Similar arguments
pertain to the limit as k»~ —Oo in the first term involv-
ing o on the right-hand side of Eq. (4.9), as well as to the
other terms involving o in Eq. (4.9).

Setting cr=O under the integral sign in Eq. (4.9) we
find —though it hardly seems possible —that in the in-
tegrand of Eq. (4.9) the combination of terms proportional
to e '»" vanishes identically. The algebra needed to verify
this assertion is tedious, but straightforward; it is neces-
sary to make explicit use of Eqs. (2.11). The remaining
terms in Eq. (4.9) (the terms whose integrands do not in-
volve e '»") also simplify very considerably, with the re-
sult that Eq. (4.9) becomes
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( ) 3/ iky cps a~
dk g (a —ik/V 3)x ik (y +x/ 3)

2~

(a+ik/~3) ik (y —x/~3) I

(ky —k}(ky —k3)

+Ce ' e
(ky —k, )(ky —k2)

(4.128)

where

k) ———,
'

( —k +ia~3),

k2 ———,
'

( —k —ia~3) .
(4.12b)

XI: y~ —.
V3

III: ~ &y& —~3 3
(4.13)

The contour I in Eq. (4.12a) still is the contour shown
in Fig. 3. However, because the integrand in Eq. (4.12a)
no longer contains the double-valued quantity p defined
by Eq. (3.19a), the branch cuts drawn in Fig. 3 can be dis-
carded. It also will be noted that in Eq. (4.12a) there no
longer is a pole at k»= —k (we recall that k has been
specified &0}. Thus, in Eq. (4.12a) the contour I of Fig.
3 can be replaced by the contour I of Fig. 4; Fig. 4 also
shows the poles k), k2 of the integrand (4.12a).

We further recall that, starting with Eq. (4.5), our re-
sults have been restricted to the domain x &0. Thus our
present task, which is to verify that Eq. (4.12a) indeed is
true, is confined to verification for the three sectors I, III,
and V shown in Fig. 1. Referring to Eqs. (2.5), we see
that the interiors of these sectors are defined by the in-
equalities

V: y&

with the understanding that x&0. With x&0, the in-
equality y +x /u 3 & 0 implies y —x /v 3 & 0; similarly,
y —x/v 3 &0 implies y+x/V3 &0. Moreover, when
y+x/3/3&0, the integration contour for the term in
(4.12a) containing the factor exp[iky(y +x/3/3)] can be
closed in the upper half-plane; when y +x /V 3 &0, the in-
tegration contour for that same term can be closed in the
lower half-plane. The contours for the terms in (4.12a) in-
volving exp[iky(y —x/v 3)] can be closed similarly.

Therewith, the integrals in Eq. (4.12a) can be evaluated
by residues in the three sectors I, III, and V. We then
find, without difficulty, that Eq. (4.12a) is consistent with
Eq. (2.10). For instance, in sector I (y +x/W3 & 0,
y —x/v 3 & 0), evaluating (4.12a) by residues yields

ikye ax ~ 3/3 g (a ik/~3)—x e ik (y +x/W3)
i X,y

ik&(y +x/~3)
(k —k, )

(a+ik/~3)x ik(y x/~3) 1 ~ —2ikx/~3 ik1(y —x/ 3)+ e e +Ce e
(k( —k2)

(4.14)

Using Eqs. (2.5) we observe that

ik Xa — x + ik ( y + = ar +iks, —
v3 3

(4.15)

equally successful, as the reader now should have no diffi-
culty in ascertaining.

B. Demonstration that %f satisfies
the homogeneous LS equation

2ikx + lk )V3
X = —ar+iks .

3

We now shall verify that %f of Eqs. (2.13) satisfies Eq.
(1.3). The equation to be verified now, corresponding to
Eq. (4.3), is

Straightforward algebra now shows that Eq. (4.14) indeed
is consistent with Eqs. (2.10); in particular, we find that
the expression (4.14) reduces to (/I —va)e'"ye~ . The
consistency of Eq. (4.12a) with Eqs. (2.10) in the sectors
III and V defined by the inequalities (4.13) is shown simi-
larly.

This completes our objective of verifying that '0; of
Eqs. (2.10) satisfies the LS equation (1.1) for x&0. It
then is obvious by symmetry that (p; of Eqs. (2.10) also
will satisfy the LS equation for x & 0; in any event explicit
demonstration that (I/; of Eq. (2.10) also satisfies Eq. (1.1)
for x ~ 0 proceeds along the same lines as for x &0 and is

k
&

plane

X
2

FICx. 4. Contour of integration I for Eq. (4.12a). Crosses
denote poles. The values of kl and k2 are given by Eq. (4.12b).
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'pf(x y)=g f dv'(G;"'+fi). =o+g f dv'(G "'pfiv). =o+g f d~'(6 +'+fii~r =o+g f, d~'«;"''pfiii)'=o.
QO 0 00

(4.16)

Ag»n choosing x & 0, the right-hand side of Eq. (4.16) becomes the obvious analog of the right-hand side of Eq. (4.5); we
merely replace 'I;(u'=0) by 'Pf(u'=0). Thus the analog of Eq. (4.5) is

~ i(3 ~ / ~ ~ -/ 'k '
( —lk+V3 ) '/2 D ( —'k+V3+ e2'

ik (y+u'/2)

x f,dk,
' ip(x —~3u'/2) —p(@+au'/2) +. . .

a+ ip
(4.17)

where, to save space, we have written explicitly only the first integral on the right-hand side of Eq. (4.17); this integral
has replaced the first integral on the right-hand side of Eq. (4.5). The contour I in Eq. (4.17) is the same as in Fig. 3,
with the same poles and branch cuts.

It now is apparent from the untruncated version of Eq. (4.17) that inversion of the order of integration in Eq. (4.17)
can be justified as in Eq. (4.5), namely by introducing the appropriate convergence factors e+— " or e +— ' under the in-

tegral sign, in the limit o ~0 (o & 0); for example, in the very first term on the right-hand side of Eq. (4.17), we obvious-

ly must introduce the factor e ' to guarantee the necessary uniform convergence of the integration over v' in the range
—oo &v'&2X/v 3. It also is quite apparent that at the very end, after the order of integration has been interchanged,
and the integration over v' performed, the procedure of Eqs. (4.11), together with the theorem (4.10), will permit setting
(y=0 under the remaining integral sign (for integration over ky ).

In this fashion, proceeding as previously, but after even more tedious (though still straightforward) algebra than be-
fore, we arrive at the following analog of Eq. (4.12a):

)Ii (x )= dk (C+D)e' '" '"ef x»
(ky —k)(ky —ki )

~ )
(~+ik/v 3)x ik (y —x/~3) 1

(ky —k)(ky —k3

where I again is the contour of Fig. 4, with k~, k2 as in
Eq. (4.12b). As Eq. (4.18) shows, once again there has oc-
curred a miraculous cancellation of terms in the integral
proportional to e

Evaluating the integrals in Eq. (4.18) by residues, we
readily verify that Eq. (4.18) is consistent with Eqs. (2.13).
For example, remembering x &0, evaluating (4.18) by resi-
dues in sector III (y —x /V 3 & 0, y +x /V 3 & 0) yields

0'f (x,y)

2ik /~3 I (y+&/~3)k —2i~/~3 I y —&/~3)k
v~ne ' e "+Ce ' e (4.18)

(ky —ki)(ky —kq)

indeed does reduce to qifiii of Eqs. (2.13).
Now, it is not possible to infer immediately that our

having shown %f of Eq. (2.13) satisfies the homogeneous
LS equation (1.3) for x &0 means %f also will satisfy Eq.
(1.3) for x & 0; %'f (unlike (I';) is not symmetric about the
y axis. Nevertheless, %f does satisfy Eq. (1.3) for x&0;
after the results already obtained, a contrary result for
x&0 scarcely would be credible. We shall not detail the
verification that %f satisfies the homogeneous LS equa-
tion when x &0.

3/ 3 (D +3/ )e(a+ik/V 3)xeik (y — x/V)3 1

k —k2 V. CONCLUSION

2ikx/v 3 ' y+ 2o,e ' e
k2 —k)

+Ce ' eC —2k /~3 'ki(y —~/

(4.19)

The immediately preceding result indicates that the
homogeneous LS equation has been correctly derived, and
has solutions as previously predicted. In addition, our
explicit verifications that qi; of (2.10) satisfies Eq. (1.1),
and that Vf of (2.13) satisfies Eq. (1.3), immediately pro-
vide an explicit demonstration that any

(5.1)
Now supplementing Eqs. (4.15) by

2ikx x
3

+ik2 y + = —au +ikv,v'3 (4.20)

one readily sees that the right-hand side of Eq. (4.19)

(c any number) satisfies (1.1). In other words, we have ex-
plicitly demonstrated that in our model the LS equation
(1.1) does not have a unique solution.

Moreover, the nonuniqueness is broader than indicated
by Eq. (5.1). In Eqs. (2.13), the final f channel corre-
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sponded to propagation with particles 2 and 3 bound, as
explained in connection with Eqs. (2.12) and (2.13). How-
ever, because of the obvious symmetry of the problem, we
just as readily could have let the final channel correspond
to propagation with particles 1 and 3 bound [it will be re-
called that in the "incident" i channel of Eq. (2.8a), parti-
cles 1 and 2 are bound]. Thus we just as readily could
have constructed an analog 4f of Eqs. (2.13) by making
the following changes in Eqs. (2.10): (x,y) —&(r,s),
( r,s)~(u, v), ( u, v) ~(x,y), I~V, II~III, III~VI,
IV~I, V—+IV, VI~II. By symmetry, the scattering
solution %f constructed in this fashion must satisfy Eq.
(1.3) just as well as 4f itself does. Therefore any

0 =0, +c%f+d%f (5.2)

also satisfies the LS equation (1.1), where c and d are any
numbers.

The function 4'f satisfying Eq. (1.3) was constructed to
be a scattering solution of the.Schrodinger equation corre-
sponding to particle 1 incident on the bound pair 2,3.
This incoming part of %f is the term v ae'"'e " in %f& of
Eqs. (2 13), .or equivalently is the term Vae'""e " in
0 fgg At u =0, these are finite-amplitude waves proceed-
ing along increasing v. From Fig. 1 ones see that the
boundary between sectors I and III corresponds to V&0,
so that on this boundary a wave proceeding along increas-
ing v is coming in from v = —oo. Correspondingly, the
scattered part 4=%—1b; [recall Eq. (1.4)] of any 4' from
Eq. (5.1) with c&0 is not everywhere outgoing at infinity,
even though this 4 satisfies the LS equation (1.1) with
identical incoming wave 1lj; together with a kernel con-
taining the outgoing Green's function G +' for the same i
channel. Of.course, the solution to the LS equation (1.1)
can be specified uniquely with the aid of the additional
boundary condition requirement that the scattered part be
everywhere outgoing, but our results illustrate that in
three-particle systems —unlike two-particle systems—
there can be no assurance that any given solution of Eq.
(1.1) will satisfy this boundary condition, i.e., will have a
purely outgoing N.

In sum, the results we have obtained in this paper are
completely consistent with the earlier results' which
have been criticized; ' the results herein obtained also
serve as counterexamples to those criticisms. Our present
results also confirm that —in the inhomogeneous and
homogeneous LS equations (1.1) and (1.3)—the Green's
function can and should be computed at real energy E; as
suggested earlier, the literature seems to be in disagree-
ment on this point.

It is true that our actual calculations have been limited
to McGuire's very simple one-dimensional model of a
three-particle system. Nevertheless, this simple model is
sufficiently realistic to encompass scattering solutions
manifesting particle rearrangement; as the preceding para-
graphs have made manifest, the possibility of particle
rearrangement —which permits %f to propagate inward
from infinity in channels wherein G; ' does not
propagate —is the key factor permitting the construction
of solutions satisfying the homogeneous LS equation (1.3).

We conclude finally that any claims that the LS equa-
tion (1.1) has unique scattering solutions in three-particle
systems first must explain why our results cannot be ex-
trapolated to actual three-dimensional three-particle sys-
tems, as well as why "proofs" that the solutions are
unique fail in one dimension but not in three dimensions.
An abbreviated and much less detailed account of the
foregoing results has appeared recently.
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