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Muon —alpha-particle sticking probability in muon-catalyzed fusion
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The Green's-function Monte Carlo method is used to calculate the ground-state wave function of
the muonic-molecular ion composed of a negative muon bound to a deuteron and a triton. Using the
sudden approximation, the probability that the muon will remain bound to the escaping alpha parti-
cle after fusion occurs is found to be 0.90%, about 25% smaller than previous estimates based on

the Born-Oppenheimer approximation. The numerical method for determining the wave function is

discussed in detail.

I. INTRODUCTION

There has been considerable interest in catalyzing
fusion in deuterium-tritium mixtures with negative muons
because recent experiments have found that a single muon
can cause about one hundred fusion reactions. ' If the
only relevant rates were those governing the formation of
the muonic ion and the decay of the muon, approximately
one thousand fusions would be catalyzed. However, for
about 1% of the fusions, the muon sticks to the outgoing
alpha particle and is prevented from catalyzing further
fusions. This sticking mechanism limits the efficiency of
the process. Recent measurements of the sticking proba-
bility are about half of the theoretical estimates based on
the Born-Oppenheimer approximation. ' In this paper
the sticking probability is calculated without this approxi-
mation.

The sticking probability co is defined as the probability
that in the reaction

The final state is, of course, simply a neutron and a mov-
ing hydrogenlike ion. However, the initial state is a
genuine three-body system. Let B(rz, rd, r, ) be the full
three-body wave function in the coordinate system where
the center of mass is at rest. Then the initial muonic
wave function is

N;(r„)= Bt(r„,0,0)
(2)

(dt p )+~(p He)+ +n + 17.59 MeV,

the muon will remain bound to the alpha particle. We re-
strict the initial state of the muonic molecule to the
ground state. Because fusion occurs on a much faster
time scale than muonic-molecular motions, the sudden ap-
proximation can be used to determine this probability,
once the initial 4&t and final C&f muonic wave functions
are known at the instant of fusion, namely, at the coales-
cence point (taken to be the origin of the coordinate sys-
tem) where the deuteron and triton are on top of each oth-
er. Under the sudden approximation the sticking proba-
bility is

to= f d r @;(r)@f(r)

It has been previously assumed that one can make the
Born-Oppenheimer (BO) approximation ' for B; and
then 4; reduces to the ground-state wave function for a
hydrogenlike ion with a helium nucleus of mass 5. How-
ever, because the mass of the muon is not small compared
to the masses of the nucleons, this is not, as we shall see, a
very good approximation. Variational calculations of the
Hylleraas type could be used to calculate the muonic
wave function. However, a variational function is usually
accurate only in the region where the probability density
is high, not at the coalescence point. One expects those
calculations to converge exceedingly slowly there with in-
creasing number of terms in the expansion of the wave
function. Monte Carlo calculations do not have this limi-
tation.

Monte Carlo calculations have been used to calculate
ground-state properties for a wide variety of quantum sys-
tems. They are typically most useful when the number
of degrees of freedom is too large for other methods to
handle. However, the method is quite applicable to few-
body problems as well. Although the Monte Carlo
scheme to calculate wave-function values has been known
for some years, the emphasis has always been on obtaining
accurate energies. In the next section we will discuss the
application of the Green's-function Monte Carlo (GFMC)
method to this problem and introduce an improved
method for calculating wave-function values. Section III
will summarize the results for the muon —alpha-particle
sticking probability.

II. NUMERICAL METHODS

The particular form of the GFMC method applicable
to Coulombic systems has been discussed in detail in a re-
cent paper. We will assume the reader is familiar with
that paper and follow its notation. The units of length
used here will be muonic radii (a„=0.256X10 ' cm).
The energies will be given either in muonic hartrees
(5.6265 keV) or, when discussing binding energies [i.e., en-
ergies relative to the unbound system ( tp, ) +d j, in electron
volts. The Hamiltonian in muonic atomic units for this
system is

H = D„Vq D, V, DgV—d —1Ir„—d 1Ir—p, + 1/rd, , (3)—
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two sets of variational parameters (denoted I and II, their
values are given in Table I). The variational energy for
both of these trial functions is the same, namely,—0.5361+0.0002. This corresponds to a binding energy
of 305+1 eV which is about 14 eV above the exact
ground-state energy.

where the "diffusion constants" in these units are
Dp ——0.5, Dd ——0.028 17, and D, =0.018 81.

A. The importance function

Essential to an accurate solution with the Monte Carlo
method is an accurate importance function. Although the
calculated expectation value of any property is indepen-
dent of this function, the statistical variance is propor-
tional to its error. Since we are calculating the value of
the wave function at the coalescence point, the importance
function must be reasonable in that region. Since this
muonic ion is very similar to a hydrogen molecule, we use
an importance function of the pair-product form that was
successfully employed for H2..

B. Careen's-function Monte Carlo

The first step in calculating wave-function values is to
calculate the ground-state energy. Although this has been
done previously to the needed accuracy by both variation-
al and nonvariationa1' methods, it is instructive to
reproduce those results by GFMC. The GFMC algo-
rithm6 finds ground-state properties by applying the
operator

pr(R) gdt(rdt)gdp(re)gpt(r, ~)g(rdt)

&&[go(r„d)+go(r, ~)] (4)
G(R, R')=+r(R)(R

~
[1+v(H Er)] —'~ R')0'r (R')

where g (a, r) =exp[ —a~/(a2+r) a3r] —and g(a, r)
=exp[ —a|l(a2+r )). The analytic values for the
derivative of the wave function at. the point where two
particles coalesce can be used to eliminate some of the free
parameters and insure that the importance function has
the proper behavior there, giving

dg;, (r) a i 05
2 a3 +

g,i dy 0 g 2 D;+Di
These cusp conditions are applied to the first three factors
in Eq. (4) only and the cusp value for both go and g is as-
sumed to be zero. The importance function contains a
sum over the two orbital functions go, describing the al-
ternating binding of the muon to the two nucleons. In
principle, the parameters in these two orbitals could be
different, but for convenience we have kept them the
same. The additional function g has been added to im-
prove the importance function in the coalescence region.

After taking into account the cusp conditions, there are
ten free parameters in the importance function. The
values of these parameters are determined by minimizing
the variational energy using configurations derived from a
variational Monte Carlo calculation. A very strong
check on the correctness of the computer code is that the
final answers be independent of the importance function
within the statistical errors. Accordingly we have used

many times to the initial distribution f, =
~

Vz.(R)
i

lead-
ing to

f„+i(R)=I dR'G(R, R')f„(R'),
when R refers to the nine-dimensional vector of particle
positions, ~ is the generational time step, and Ez- is the
trial ground-state energy. The convolution required in
this equation is performed stochastically by using
branched random walks. Thus the distribution f„, re-
ferred to as the nth generation, consists of an ensemble of
configurations I R I and the convolution is interpreted as
sampling, conditional on those configurations, a new en-
semble of configurations from the operator (or matrix in
configuration space) G(R,R'). This can be done exactly
and an efficient method has been developed for Coulom-
bic systems.

The ground-state energy calculated with GFMC is
—0.53861+0.00004 which corresponds to a binding en-
ergy of 319.2+0.2 eV. This compares favorably with a re-
cent variational calculation of the Hylleraas type of
319.06 eV and a nonvariational calculation' of 319.15 eV.

C. Calculation of relative wave-function values

Repeated application of the evolution operator G can
also give wave-function values. " Consider the total popu-

TABLE I. Trial wave-function parameters, variational energies, normalization, and overlap integrals
for the two importance functions used. All lengths are in muon radii, energies in muon hartrees.

Function I Function II

Rd~

Rp, ~

Fpd
go
Ra

13.37
—1.15
—1.28

0.83
—0.0575

1.063
1.202
1.256
1.016
0.230

1.194
0.166
0.135
0.813

17,90
—1.14
'—1.25

0.83
—0.359

1.220
1.199
1.240
1.011
0.188

1.377
0.169
0.136
0.814

Cz-

Xz
Oz-

—0.5360+0.0002
0.394+0.002

864. 1

0.9980+0.0007

—0.5362+0.0002
0.402+0.002

17 124.0
0.9989+0.0006
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lation after n applications of the Green's function to a
single point Rp in the first generation, i.e., define

P„(Rp)= f dR f„(R), (&)

where f&(R)=6(R —Rp). Then using the eigenfunction
expansion for 6, it is easy to show that asymptotically

f dR 4'~(R)B(R)
lim P„(Rp)= (9)

n~m O'T(Rp) [1+~(Ep—ET)]"

where B and Ep are the ground-state eigenfunction and
eigenvalue, respectively. Unless the trial energy ET is
chosen exactly equal to the ground-state energy, the popu-
lation will tend to grow or decline asymptotically depend-
ing on whether Ez- is larger or smaller than E0. The un-
certainty in ET does not significantly affect the calculated
wave-function values because the energy is always calcu-
lated more accurately than wave-function values. Rela-
tive wave-function values are calculated by starting off a
number of systems at any desired configuration (Rp) and
finding the average number that asymptotically result. In
practice the walks are followed for a sufficient number of
generations until their distribution matches that of the
ground state. To get absolute wave-function values, the'
normalization constant must be determined as discussed
in Sec. II D.

Statistical fluctuations can be reduced by an order of
magnitude using the following transformation: apply the
inverse operator to 6 Ii.e., O'T[1+r(H ET)]/'PT—I to
both sides:of Eq. (7) and integrate over R. Then using

Green's identity for H and defining the local energy as
EI.(R)=+T'H%T E—r, we obtain

P+('Rp)=P++](Rp)+r f dR El (R)f +](R) . (10)

Using this relation recursively we obtain

P„(Rp)= g (I+~(EI.);)
l =2

where (EL ); is the average of the local energy over all
walks which reach the ith generation.

In GFMC, fluctuations in branching arise for two
reasons, namely, because one cannot sample 6 perfectly
and because the importance function does not equal the
ground-state wave function. In practice it is found that
the fluctuations in branching and hence in the total popu-
lation are an order-of-magnitude larger than those due to
the importance function alone. The above local energy es-
timate of the wave function, however, is only sensitive to
importance-function errors, leading to a much lower vari-
ance. Figure 1 illustrates the convergence of the popula-
tion and a comparison of the two estimators for walks
starting at the triple coalescence point [i.e.,
P„(rd r, =rz, )]. —W—ithin the error bars both estimators
give the same results but the local-energy-estimator error
bars are five times smaller.

Table II contains the results for various values of the
muon distance from the coalescence point. From 10 to
10 walks have been started from each initial point and a
generational time step of &=O.S was used. The wave-
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FICi. 1. The growth of the population vs the number of Monte Carlo generations using the population estimator (o ) and the local
energy estimator (~ ) at the triplet coalescence point (all three particles starting at the origin). The O s are shifted one-half generation
to the left for clarity.
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TABLE II. Normalized wave-function values e(r) at the coalescence point as a function of the
muon distance r computed using two different importance functions. The numbers in parentheses are
exponents. P5p(r) is the population after 50 generations (computed with the local energy estimator) and
re is the relative error of P5p and e.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0

P5p(r)

2.447
2.313
1.967
1.676
1.385
1.130
0.922
0.758
0.628
0.516
0.425
0.298
0.211
0.148

Function I
re

0.005
0.004
0.005
0.004
0.004
0.004 '

0.007
0.004
0.010
0.004
0.010
0.012
0.015
0.013

1.264( —3)
5.072( —4)
2.066( —4)
8.963( —5)
3.904( —5)
1.715(—5)
7.46( —6)
3.46( —6)
1.59( —6)
7.32( —7)
3.38( —7)
7.51( —8)
1.70( —8)
3.83( —9)

P5p(&)

0.852

0.220

0.0527

Function II
re

0.003

0.010

0.017

e(r)
1.265( —3)

1.61( —6)

3.87( —9)

function values are accurate to 0.5% for rz & 4 and 1.0%
for larger r. The error bars basically reflect the amount
of computer time expended at each point. Importance
function II has somewhat larger error bars for the same
length of run but their results agree rather well.

There are three sources of systematic errors in this cal-
culation, all of which are small. We have already men-
tioned that the ground-state energy must be known accu-
rately. Note that the statistical error of 4X10 in the
trial energy will give an error of 0.1% in the wave-
function values after 50 generations, somewhat less than
their statistical errors. Secondly, the local energy estima-
tor for the wave function will contain some bias because
the mean value of a product is not equal to the product of
the mean values. (The original population estimator does
not have such a bias. ) This bias is, however, very small
because of the large number of walks contributing to each
term. We can estimate this bias by dividing up the sample
various ways and arrive at an estimate to the relative bias
of one-tenth of the statistical error. Finally, convergence
of the wave-function values versus generation number
must be obtained. The walks are followed for 50 genera-
tions since by then it is found that the average deuteron-
triton distance reaches its asymptotic value and the wave-
function values have stabilized.

The above method of calculating wave-function values
has the desirable "zero-variance" property. By that is
meant that in the limit where the importance function ap-
proaches an eigenfunction of H, the variance of the calcu-
lated wave-function values goes to zero. But independent
of the importance function, the GFMC method always
yields the exact result within its statistical error bars pro-
vided the run is long enough that convergence has been
obtained. There is no particular difficulty associated with
computing wave-function values at the coalescence point.
The local energy is, initially on the order of unity, but it
quickly decays to zero once the two nuclei have drifted
apart.

1

CT f dR
~

VT(R)
~

(12)

where we assume the molecule is confined in a (very large)
box of volume Q because the center of mass is not other-
wise fixed. Variational Metropolis Monte Carlo is used
to compute the average:

f dR qlT(+g/O'T)
C (13)f dRVT

where %'z is the function

—a[1 —(rd+rg)/2]
gdg(rg, )g(re�——)e

and NT is its normalization

(14)

NT —f dR Vz 4m(n. l2a) ——f r——dr .gdt(r)g (r) .0 0

(15)

Care must be taken to prove that the variance of the esti-
mator of Eq. (13) exists. In the present case this is
equivalent to showing that the function %23/% T is bound-

D Normalization

Calculation of absolute wave-function values requires
two additional Monte Carlo calculations. Normalization
is not necessary to find the muon —alpha-particle sticking
probability since the initial muon-state functions are re-
normalized anyway [see Eq. (2)]. However, normalized
wave-function values are necessary in order to compare
results from different importance functions, to compute
other types of matrix elements (such as the fusion rate),
and to compare with other variational calculations.

Initially the importance function is normalized. For
some simpler importance functions this step is unneces-
sary. Define the constant C~ by
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Og —— lim P„(+z ) .

ed for all values of its arguments. The constants Cr and
Xr for the two trial functions are given in Table I.

The second step in calculating absolute wave-function
values is to compute the overlap integral Or [i.e., the in-
tegral in the numerator of Eq. (9)]. The calculation
proceeds exactly as in Sec. II C but the initial condition is
changed, namely, the first generation consists of points
sampled from the square of the importance function.
Then, as in Eq. (9), the population asymptotically be-
comes

2

State

1s
2s
2p
3$
3p
4s

Other

Monte Carlo

0.689
0.099
0.024
0.030
0.009
0.013
0.031

BO

0.9024
0.1288
0.0321
0.0391
0.0116
0.0166
0.0405

TABLE III. Comparison of the Monte Carlo determined
values of the muon —alpha-particle sticking probabilities (given
in percent) to various final states and the sum over all states,
with those from the Born-Oppenheimer approximation.
"Other" is the sum over all states not listed.

Figure 2 shows the exact wave function divided by the
Born-Oppenheimer value. Table II lists numerically the
wave-function values at the coalescence point as a func-
tion of the muon distance. Since the adiabatic approxima-
tion assumes that the muon responds instantaneously to
nuclear motions, the Born-Oppenheimer function is not
spread out enough.

The wave-function values have been used to compute

0
0

I

2

FIG. 2. The ratio of the exact wave function to the BO wave

function (i.e., an exponential) both normalized as in Eq. (2) at

various muon distances from the fused nuclei.

Note that the overlap with the ground state (see Table I) is
almost unity, showing that our importance function
overall is accurate. However, as we shall see in the next
section, this does not imply individual importance-
function values are accurate. Using the results of the cal-
culation of Oz and C~ we can now normalize the wave-
function values. The relative error of the normalization is
only 0.27% so the normalized wave-function values do
not have appreciably larger errors than relative wave-
function values.

III. RESULTS AND CONCLUSIONS

Total 0.895+0.004 1.1711

where p is the outgoing neutron momentum, R~„FI is the
Coulomb wave function, and R, is the center of mass of
the alpha-particle —muon atom. Setting the nuclear coor-
dinates to zero as given in Eq. (2), averaging over the
direction of p, and summing over m values, we obtain the
sticking probabilities in the various final states:

OO 2
co~„——(2l +1)4~ r dr 4; (rj)~(qr)Rrn(r)

0

where qa& ——5.844. ' They are given in Table III. Our
values are consistently 24% lower than those from the BO
function. This brings them into much better agreement
with experiment. Exact comparison to experiment is dif-
ficult as the measurements are at a finite density and col-
lisions with the surrounding molecules strip off some of
the muons [estimated to be (24+4)%]. ' The principal
contribution to the integrand comes from values of r less
than one, so the relative sticking probability is approxi-
mately equal to the square of the function plotted in Fig.
2 evaluated at the origin.

This calculation can be extended straightforwardly to
the other initial states of the mesic molecule in a different
symmetry class from the ground state, i.e., to the (J= 1,
v=O) and ( J=2, v=O) states, by using the methods al-
ready developed for fermion systems. ' However the
fusion cross section in these states is small because the
centrifugal barrier inhibits fusion' and so they are not
important to the muon-catalyzed fusion process. The ex-
tension to the more interesting states (J=O, v=1) and
( J= 1, v= 1) is more difficult because these states must be
explicitly orthogonalized to the ground state otherwise
any admixture of the ground state in the importance func-
tion will eventually dominate the numerical simulation.
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the sticking probabilities in the various final states. The
final-state wave function is

$p (R —I'„)
BJ(r&,r, r„)=e ' " Y~~(r &)R~„(r~&),



D. CEPERLEY AND B. J. ALDER 31

S. Jones et a/. , Phys. Rev. Lett. 51, 1757 (1983).
S. Jones, Proceedings of the Ninth International Conference on

Atomic Physics, 1984 (unpublished).
S. S. Gershtein et al. , Zh. Eksp. Teor. Fiz. 80, 1690 (1981)

[Sov. Phys. —JETP 53, 872 (1981)].
4L. Bracci and G. Fiorentini, Nucl. Phys. A 364, 383 (1981).
5A. K. Bhatia and R. J. Drachman, Phys. Rev. A 30, 2138

(1984).
6D. M. Ceperley and M. H. Kalos, Monte Carlo Methods in Sta-

tistical Physics, edited by K. Binder (Springer, New York,
1979), p. 145.

7D. Ceperley, J. Comput. Phys. 51, 404 (1983).
D. Ceperley and B.J. Alder (unpublished).
Statistical errors are computed by dividing the total computer

run into about twenty blocks. Errors quoted are always our

estimate of one standard deviation.
'oS. I. Vinitskii et al. , Zh. Eksp. Teor. Fiz. 79, 698 (1980) [Sov.

Phys. —JETP 52, 353 (1981)].
K. S. Liu, M. H. Kalos, and G. V. Chester, Phys. Rev A 10,
303 (1974).

This muonic momentum is slightly different from those found
in Refs. 3 and 4. We have used in 1977 atomic mass values
with the relativistic kinematic formula to determine the out-
going momentum.

' D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).
L. N. Bogdanova, V. E. Markushin, V. S. Melezhik, L. I. Po-
nomarev, Yad. Fiz. 34, 1191 (1981) [Sov. J. Nucl. Phys. 34,
662 (1981)].


