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WKB-type connection formulas, established by Miller and Good and based on the quadratic map-

ping of a section of a potential containing a local minimum, are used to obtain "modified-well"

quantization conditions for general double minimum potentials. Significant improvements in the
usual WKB eigenvalues may be achieved by combining these with the corresponding "modified-
barrier" rules. This is shown to be true in the context of the anharmonic oscillator potentials

V(x)= —kx +Ax (k, A. ~O) for a wide range of A, . The characteristic features of the different

modified formalisms are also discussed.

I. INTRODUCTION

The quantum mechanics of double minimum potentials
(DMP's) is a problem of recurring interest. The eigen-
value spectrum of such a potential often contains doublets
of energy levels which arise when one is near "degenera-
cy," that is, when either well, considered independently,
can support a bound state at the same energy. The semi-
classical formalism is well suited for estimating such
(asymptotically) degenerate energies E„andthe associated
splittings 6„.Using established' WKB-type connection
formulas corresponding to a quadratically mapped poten-
tial barrier, a modified barrier (MB-) quantization condi-
tion has been developed and applied ' recently to a num-
ber of DMP's, both symmetric and asymmetric. The
quantization rule for an individual well in the MB formal-
ism differs from the usual (linear) WKB rule in that the
former explicitly involves the "tunneling" integral. This,
consequently, leads to more accurate values for E„than
the usual WKB results, particularly when E„lies close to
the barrier maximum.

Starting from the connection formulas' based on the
quadratic approximation to the well region of a potential,
we have developed in this article a modified well (MW)-
quantization condition for a DMP. Unlike the MB for-
malism, the MW one gives the same value for E„asthe
usual WKB method. However, the MW wave functions
differ from the usual ones by an energy-dependent correc-
tion factor to the respective normalization constants.
This is reflected in different splittings of the level E„
from the corresponding WKB values. Taking as our clues
that, as compared to the usual WKB predictions, the MB
formalism leads to more accurate energies E„,while the
MW rule gives better normalizations of the associated (de-

generate) wave functions, these two quantization rules are

combined together. In this modified well a-nd barrier
(MWB) formalism, a simple expression for the doublet
splittings can be written that contains the desired features
of both the MB and the MW formalisms.

We have applied the above modified quantization rules
to a detailed investigation of the low-lying energy levels of
the double-well anharmonic oscillator potential V(x)
= —kx +M (k, A, &0) for a wide range of the parame-
ter A, . The eigenvalue structure of this potential has been
studied by a variety of techniques. Comparison with
the "exact" values available in the literature shows that
the MWB quantization rule brings about significant im-

provements in the usual WKB eigenvalues. In particular,
the doublet spacings are found to be fairly accurate over a
wide range of magnitude. Also, since the necessary phase
integrals can be obtained in simple closed form, the anhar-
monic oscillator problem allows a clear contrast between
the MWB and WKB formalisms. Such analysis, we hope,
will serve as a guide for choosing the appropriate formal-
ism not only for the symmetric potential considered here,
but for more general types of DMP's.

Several eigenvalues for a single such potential (fixed k
and A, ) were obtained in Ref. 3 through the MB formal-
ism, along with results for other (asymmetric) potentials
of interest in atomic and molecular physics. In contrast,
the single well, or the so-called normal form of the anhar-
monic oscillator potential (k &0) has been extensively
treated through sophisticated semiclassical formalisms.

II. MODIFIED QUANTIZATION RULES

Consider a particle of mass rn moving in a DMP such
as in Fig. 1 and an energy E corresponding to the line x &,

x2 x 3 x4 The WKB quantization conditions involve
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4-
p, =o.os prescribed in Appendix A, we arrive at the MW quantiza-

tion condition for a DMP:

2- cota cot/3= —,
'

exp( —2P) v —v
7T

(6)

X

FIG. 1. Sample plot of a double-we11 anharmonic oscillator
potential V(x) = —x +A,x . x&, x2, x3, and x4 are the classical
turning points corresponding to an energy E.

and the "barrier integral"

P = f ~(x)dx,

where

K(x) = j 2m [E—V(x)]/R I
'~ =i v(x) .

(lb)

(2)

We would like to emphasize at this point that even though
the potential in Fig. 1 is symmetric, what follows in this
section is valid for asymmetric DMP s as well, so that, in
general, &a/3. Applying the well-known connection for-
mulas (based on Airy functions), the usual WKB quanti-
zation condition for a DMP is easily obtained as

I

cota cotP= —,
'

exp( —2$) . (3)

Quantization for the individual wells follows, of course,
from this in the limit of negligible barrier penetration,
that is, P—+ oo, so that

a=(n~+ —, )~, /3=(np+ —, )vr, n, np=0, 1,2, . . . .

When both conditions (4) are satisfied at a certain energyE„,n = I n, n p [, the resulting splitting of the level due
to q'uantum tunneling is given in the usual WKB formal-
ism by

gWKB
( y )

da d/3

dE
„

dE

—1/2

Accuracy of the above (linear) WKB expressions are
known to increase with the mutual separation of turning
points. This, in general, implies that the phase integrals
in Eq. (1) should be large. If, however, the energy E in
Fig. 1 lies close to a potential extremum, say the bottom
of the potential well at left; the turning points x] and x2
nearly coincide and a=0. In this case, modified WKB-
type connection formulas have been established by Miller
and Good' via the Weber-function solutions of a quadrati-
cally mapped potential that includes the points x

&
and x2.

Using these for the two potential wells in the method

the usual phase integrals over the classica11y "allowed" re-
gions:

a= f K(x)dx, /3= f K(x)dx,

0, E&V
„

x xof K(x)dx+ f K(x)dx, E ~ V,
„

(12)

and

p(x)—:—p( —x)=argI ( —,'+ix)+x(1 —ln
~

x
~

) .
I

(13)

where the function

v(x)—:[(2~) '~ (e/x) I ( —,
' +x)]

Note that v(x) becomes unity when x~oo so that the
usual WKB rule (Eq. 3) is recovered when a and /3 be-
come large. Also, the same quantization rules for the in-
dividual wells are obtained in this formalism:

WKB MWE„=E„.However, the associated doublet spacings
are different:

gMW gWKBf

where "
If„=[v(n + —,

'
)v(n p+ —,

' )]'~ ) 1 .

A couple of remarks are in order here: that E„=E„WKB MW

is of course expected, since Eq. (6) is based on quadratic
mapping of the potential wells and, as is well known, even
the usual WKB rule happens to give exact results for a
purely quadratic potential. However, the MW and WKB
wave functions, though belonging to the same eigenvalue
E„,differ in their respective normalizations. This, in
essence, comes about as follows. While the usual quasi-
classical wave functions are normalized in the asymptotic
limit of large quantum numbers, the MW wave functions
(Weber functions), being continuous at the turning
points, ' can be properly normalized"' even for low quan-
turn numbers. The MW and the WKB splittings, depend-
ing as they do on the wave functions, are therefore dif-
ferent. The functions v that appear in Eq. (6) can be thus
identified as the correction factors to the normalization
constants of the WKB wave functions that are introduced
by the MW formalism.

The MB quantization conditions, derived using the con-
nection formulas for a parabolic potential barrier, have
been discussed elsewhere. ' Nevertheless, we list here the
relevant expressions for completeness and for a reason
that will become clear shortly. A single MB quantization
condition can be used for energies both below and above
the barrier maximum, say V,„.Thus, if the real turning
points x2 and x3 for E& V „become unambiguously a
pair of complex ones x +—(Imx+ &0) for E~ V,

„

the
MB quantization rule for any energy is given by

cos(a+ P) = —cos(a —/3+ y )[1+exp( —2P ) ]
where

a=a ——,
'
p( —P/m. ), /3=/3 —,p( —P/~), —
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a= f K(x)dx, P= f K(x)dx,

i—f K(x)dx,
(14)

xo being the point where- V
„

is located. In the defini-
tion of P, that branch of K(x) is chosen which renders P
negative. For F. sufficiently away from V,„,

~ P ~

is
large, and Eq. (10) reduces to forms similar to the usual
%'KB expressions. .Thus when E ~~ V „,it becomes

For E& V,„,a, I3, and P are given by (1) and for
E & +max~ 0.4-(

l

l

0.2-

0.0

I v(x)-q]

1.2 1.4 1.6
X

cos(&7+13)=0,
which paraHels the %KB rule

cos(a+P) =0,
and for E « V,„,Eq. (10) reduces to

cotc7 cotI3= —,
'

exp( —2$ ),

(15)

(16)

-0.2-

FIG. 2. Plots of the various functions required for calculat-
ing the modified semiclassical eigenvalues. p(x) and v(x) are
given by Eqs. (13) and (7), respectively.

=exp( —P„)
—1/2

dP
dE

-n&-

where the quantities on the right-hand side are to be
evaluated at an energy E„ that satisfies conditions (18).MB

In view of the preceding discussions, if we note that—MBE„andh„represent improvements over E„andMw ~ WKB

b,w+B, respectively, the MB and the MW formalisms can
be combined together. Such a combination then predicts
a spacing

gMW8 gM By (20)

of the doublet levels around the energies F.„.Note that
the combined MWB formalism represents an approxima-
tion in which the potential between x I and x4 is mapped
onto three parabolic segments. A further approximation
that underlies the expression (20) is that the exact quantal
solutions (Weber functions) for each such segment are
joined to those of the adjacent ones via their respective
asymptotic expansions. A formally rigorous approach in
this case would require matching the logarithmic deriva-
tives of the solutions at the turning points that separate
the segments. But in view of the surprisingly good results
that we obtain in Sec. III, the MWB quantization rules
[Eqs. (18) and (20)] may be of considerable practical use.
An attractive feature of the simple expressions (18) and
(20) is that they involve, besides the usual phase integrals,

which is similar to (3). Note, however, that for P large,
even while terms like exp( —2$) can be safely ignored in
Eq. (17), some coupling due to barrier penetration can still
be retained via the function p so that one gets the follow-
ing MB quantization conditions for the individual poten-
tial wells:

cY=(n + —,
'

}w, P=(nt3, + —,
'

)m, n~, n~=0, 1,2, . . . .

(18)

The expression for MB splittings, the equivalent of Eq.
(5), is now given by

only the universal functions p, , p', and v, which can be
easily calculated or read off the curves in Fig. 2.

III. APPLICATIQNS

The formalism developed in the previous section is used
here to obtain several eigenvalues of the double-well
anharmonic oscillator Hamiltonian H(k, A, ) = —(d /dx )
—kx +Ax . All the required phase integrals (note that
due to symmetry, a =@) can be obtained in simple closed
form involving complete elliptic integrals of the first (M)
and second (8') kinds only and are listed in Appendix B.
Evaluation of these integrals, as well as of the functions p,
is quite simple and has been done according to well-
known algorithms. " Also, from the appropriate expan-
sions of these functions in two distinct energy regimes, we
have obtained approximate expressions for the semiclassi-
cal eigenvalues. Even though, as has been done in Sec.
III 8, exact numerical solutions from the different quanti-
zation conditions are straightforward to obtain, we
present in Sec. IEEA the approximate analytical expres-
sions for these eigenvalues.

A. Approximate eigenvalues

1. Low-energy limit

This limit is obtained for very low-lying doublets of en-
ergy levels around E„andwith spacings 6„in two deep
potential wells separated by a thick barrier, and corre-
sponds to cases when the parameter u becomes vanishing-
ly small, where u=(4e'„A,/k )'~, F„=k/4A, +E„.As
expected from the quadratic expansions of the potential
around its minima, the zeroth-order solution for e„from
the usual WKB quantization rule (4) is

e„'=(2k)'~(2n+1) . (21)
u~0 therefore implies that the quantity A,k is to be
treated as the (small) parameter for expansion. To
O(kk ), Eq. (4) leads to a correction due to anharmon-
icity so that
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1 — Ak ' '(2n+1) (22)

(23)

This clearly demonstrates the importance of the
modified-barrier quantization rule in estimating e„.The
contribution to the correction due to anharmonicity ap-
pears in the very first order in A,k / and is roughly 17%
for the ground-state doublets S.ince P&y 1, the splitting
of the levels are exponentially small. Using Eq. (20) and
keeping only the dominant terms, we obtain

&MWB
(10n+ 13)/4 3/2

n n!

~2 k'"
Q exp (24)

When divided by the correction factor f„defined in Eq.
(9), the above expression reduces to the WKB value and
agrees with previously published results. " Note that as
expected from the behavior of the potential as x —&+ oo,
A, =O represents an essential singularity in the eigenvalue
spectrum.

2. High-energy /imit

This limit corresponds to energies much above the bar-
rier maximum and to cases when u ~ ao. The equivalent
of Eq. (21) now turns out to be

in the usual WKB approximation. The dominant term
being of O(A, 'k / ), the barrier integral P is very large.
Therefore, in the MWB formalism, e„may be calculated
first from Eq. (18) and, subsequently, the associated split-
ting can be estimated from Eq. (20). An approximate
solution of Eq. (18) leads to a correction of O(A, k /

)

appearing in Eq. (22). Specifically, the MB result is

1 — Ak (2n +1) 1+ 1
&n —&n

6(2n + 1)

TABLE I. Asymptotic behavior of the energy levels of the
anharmonic oscillator in the A,~ oc limit. C„:exact numerical
result from Ref. 12; C„:Eq. {26); C„:modified barrier,
Eq. {28).

0.820
0.990
0.997

CMB
n

C„'

0.878
0.998
I.OOO

brought about by the ability of the MB formalism to han-
dle complex turning points. The coefficients C„and
C„arecompared with the corresponding numerical cal-
culations of Chan et al. ' in Table I. To first order in
kA, ~, the energy is lowered due to the additional nega-
tive term —kx in the potential. The result is

MB CMBgl/3 1
i (( MB)I/2k' —2/3

&n = n 4

1

M (I/v 2) ~2 (29)

The corresponding WKB expression is also given by the
above with C„replaced by C„

It is well known that through a scaling transforma-
tion the eigenvalues E„(k,A, ) of the Hamiltonian H(k, A, )

can be mapped on to those of a reduced Hamiltonian
H(k'= l, A, '=Ak ) via the relation E„(k,g)

E„'( l, k,k ). From the approximate expressions
given in this section and the expansion parameters in-
volved, it is easy to check that the desired scaling property
of the exact eigenvalues is preserved by the semiclassical
eigenvalues as well. Also, as expected from Eqs. (18) and
(13), the MB formalism leads to a lowering (raising) of the
corresponding WKB eigenvalues lying below (above) the
barrier maximum.

(0) +WKB~1/3
&n = n (25)

B. Numerical results

where
' 4/3

(0)MB CMBg1/3
&n = n

with

1

18m(n+ —,
'

)

This correction due to the MB formalism in this order,
where there is no physical potential barrier (k =0), is

(MB CWKB (28)

3m(n+ —,
'

)

2W2M(1/v 2)

E» is the WKB eigenvalue [Eq. (16)] for the normal coun-
terpart of the potential in which k is replaced by zero.
Since e„' ' 0:A,', u ~ oo implies that the expansion param-
eter in this case is ki, . For large quantum numbers,

is large, and use of Eqs. (13) and (18) leads to a
correction to Eq. (25) even in the zeroth order in kA,

As per the scaling argument stated earlier, the results
shown here correspond to k =1 and different A, 's. Also,
the eigenvalues have been all shifted upward by I/(4A, ),
the depth of the potential wells, to make them positive de-
finite and amenable to ready comparison with the exact
values taken from Ref. 6.

In Table II we have shown the calculated eigenvalues
from the different quantization rules for sample quantum
numbers of n =0 (the ground state) and n =3 for dif-
ferent coupling parameters 2,. The n =0 level corre-
sponds to the lower member of the ground pair of dou-
blets for X&0.17, while the n =3 level represents the
upper member of the next excited pair of doublets for
A. ~0.07. For ease of comparison, we have shown in the
last three columns of the table the respective differences
of the different semiclassical eigenvalues from the exact
ones E„',listed in the second column. As expected, the
MB results are found to be considerably more accurate
than the others. For n =0, the error is less than 4%,
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TABLE II. The energy levels En of the anharmonic oscillator potential V(x)= —kx +A,x for sam-
ple quantum numbers n=0 and n=3. E„'.exact results from Ref. 6; E„:modified-well rule, Eq. (6);
En: Eqs. (3) and (16) En: modified-barrier rule Eq (10

0.03
0.04
0.05
0.07
0.10
0.15
0.17
0.20

1.3826
1.3711
1.3584
1.3234
1.2345
1.0625
1.0072
0.9418

EMW
n

1.3910
1.3828
1.3738
1.3472
1.2743
1.1188
1.0628
0.9901

EWKB
n

1.3910
1.3828
1.3738
1.3479
1.2780
1.1287
1.0745
1.0039

EMB
n

n=O
1.3863
1.3762
1.3648
1.3332
1.2519
1.0922
1.0405
0.9793

MW Ee
n n

0.0084
0.0117
0.0154
0.0238
0.0398
0.0563
0.0526
0.0483

EWKB Ee
n n

0.0084
0.0117
0.0154
0.0245
0.0435
0.0662
0.0673
0.0621

EMB Ee
n n

0.0037
0.0051
0.0064
0.0098
0.0174
0.0297
0.0333
0.0375

0.03
0.04
O.OS

0.07
0.10
0.1S
0.17
0.20

4.0067
3.9183
3.*8488
3.8331
4.0435
4.5898
4.8169
5.1483

4.0180
3.9378
3.8889

4.0180
3.9376
3.8872
3.9744
4.0639
4.5820
4.8058
5 ~ 1342

n=3
4.0106
3.9237
3.8554
3.8400
4.0486
4.5916
4.8176
5.1476

0.0113
0.0195
0.0401

0.0113
0.0193
0.0384
0.1413
0.0204

—0.0078
—0.0111
—0.0141

0.0039
0.0054
0.0066
0.0069
0.0051
0.0018
0.0007

—0.0007

while for n =3, they are lower than even 0.2%. The cor-
responding numbers for the WKB formalism are about
7% and 4%, respectively. We have noted similar im-
proved accuracies in the MB eigenvalues for the n = 1 and
n =2 levels also. For a given n, the variations in error
with respect to A, seem to correlate with the values of the
barrier integrals involved. Notice, especially, the results
for the n =3 level for A, =0.07, which lies slightly above
the potential barrier. While the usual WKB estimate is
rather poor in this case, the MB value is of quite accept-
able accuracy.

Table III compares the different semiclassical predic-
tions for the energies E„(n=0, 1; n =np=n) around
which the lowest pairs of doublets appear, with the corre-
sponding exact values E„'taken from Ref. 6. For this
purpose E„andE„have been calculated from the

—WKB MB

usual [Eq. (4)) and the modified-barrier [Eq. (18)] quanti-
zation rules, respectively. E„'represents the simple aver-
ages of the exact energies of the members of a doublet.
The entries in the last column are the corresponding esti-
mates from a recently proposed variational scheme that
is based on an independent minimization technique and
uses trial wave functions with two parameters. For n =0,
the MB results are seen to be, in general, more accurate
than the others and except for the MB results for
A, &0.10, they all overestimate the energies E„'.However,
for A, )0. 10, P becomes very small, and consequently, use
of the simplified Eq. (18), which is derived from Eq. (10)
on the assumption that exp( —2P) «1, becomes invalid.
The values within brackets for A, &0.10 are based on the
averages of the exact solutions of Eq. (10) for the doublets
n =0 which now remain above the corresponding exact
results. We also note that the variational estimates are
essentially the same as the WKB predictions except at
large A., when they improve slightly. For the next higher

pair of doublets n =1, the overall improvements of the
semiclassical results can be seen. Compared to these, the
variational estimates seem to be rather poor.

The results of our calculations for the doublet spacings

TABLE III. Different estimates of the energies En around
which the lowest two doublets (n =0, 1) appear in the spectrum
of anharmonic oscillator V(x) = —kx +A,x . E '„:exact results
from Ref. 6; E„:modified-barrier rule, Eq. {18);E„:Eq.
(4); E "„:a recent variational calculation, Ref. 7.

0.01
0.02
0.03
0.04
0.05
0.07
0.10
0.15

0 17'

E'„

1.4040
1.3935
1.3826
1.3712
1.3593
1.3334
1.2907
1.2418

1.2357

E MB
n

En

n=O
1.0009
1.0018
1.0027
1.0036
1.0046
1.0067
1.0072
0.9860
[1.0159]
0.9731
[1.0171]

E WKB
n

E'„

1.0019
1.0039
1.0061
1.0085
1.0113
1.0180
1.0302
1.0279

1.0125

En
Ee

1.0017
1.0038
1.0061
1.0085
0.0113
1.0177
1.0295
1.0251

1.0074

0.01
0.02
0.03
0.04
0.05

4.1702
4.0920
4.0064
3.9098
3.7979

n=1
1.0003
1.0006
1.0010
1.0014
1.0010

1.0007
1.0016
1.0028
1.0049
1.0082

0.9967
0.9927
0.9875
0.9800

'For A, )0.17, the upper member of the doublet lies above the
barrier maximum in the semiclassical calculations, though its
exact value is slightly less than the barrier maximum.
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0.02
0.03
0.04
0.05
0.07
0.10
0.15

0.17b

0.02
0.03
0.04
0.05

2.107(—9)'
4.339(—6)
1.862( —4)
1.712( —3)
1.999(—2)
1.124( —1)
3.586( —1)

4.571(—1)

4.956( —7)
6.063( —4)
1.690( —2)
1.019(—1)

gWKB
n

n=0
0.993
0.990
0.985
0.979
0.958
0.924
0.894

0.940

n=l
0.992
0.984
0.969
0.933

gMWB
n

1.000
1.000
1.000
1.000
0.993
0.977
0.977

[0.985]
0.943

[0.983]

1.000
0.999
0.998
0.997

1.005
1.006
1.007
1.008
1.006
0.975
0.934

0.940

'x( —n)—=x &10
See footnote a, Table III.

TABLE IV. The splittings A„ofthe levels E„for the anhar-
monic oscillators listed in Table III. b,'„:exact results, Ref. 6;

, Eq. (5); 6„:modified well and barrier rule, Eq. (20);
modified-WKB results of Ref. 6 (see text). The rest of the

notations are the same as in Table III.

for the anharmonic oscillators are remarkably accurate
over a wide range of the anharmonicity parameter which,
in turn, correspond to vastly different barrier thicknesses.
This, together with the fact that the functions p and v are
not very sensitive to the details of a potential, means that
the modified quantization rules are likely to be of some
success for other DMP's as well. Also note that com-
pared to the WKB method, the simple modified formal-
isms involve evaluation of only two extra functions p and
v. However, the arguments of these functions being the
familiar WKB phase integrals, the little extra work in-
volved in the application of the modified formalisms may
be quite justified considering the significant improve-
ments in the estimates that are achieved.
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A-PPENDIX A

h„(n=0, 1) are shown in Table IV. 5'„represent the ex-
act spacings and are taken from Ref. 6. Notice the im-
pressive accuracy of the MWB results. The spacings for
A, & 0. 15 are, however, more inaccurate for the same
reasons that make the values E„gobelow E„'in Table
III. If we use the more accurate energies from Table III
we obtain the greatly improved values shown here in ap-
propriate places within brackets. The entries in the last
column for n =0, taken from Ref. 6, are the ratios of the
exact splittings and the corresponding "modified-WKB"
splittings b,„.These modified-WKB splittings, though of
the same form as the MW expression (8), are somewhat
misleading in that they are evaluated at the exact energies
E„',instead of at corresponding semiclassical estimates.
In comparison, the MWB results, based entirely within
the framework of semiclassical formalisms, are seen to be
much superior.

IV. CONCLUSIONS

Two main features, which distinguish the MB and the
MW formalisms from the WKB method, are revealed in
the present analysis. First, the MB formalism, via the
function p of the barrier integrals, represents improved
coupling between the eigenstates of motion in the "isolat-
ed" potential wells. Secondly, the MW rules incorporate
better normalization characteristics of these wave func-
tions through the correction factors v. Thus, while the
WKB estimates of the (asymptotically) degenerate levels
E„aremodified by the MB formalisms, the MW one im-
proves the associated splittings, since they depend on the
overlaps of the respective degenerate wave functions
peaked in either well. The MWB conditions contain both
of these desirable features. Note that the MWB splittings

In order to derive the modified-well quantization condi-
tion [Eq. (6) of Sec. II], we proceed by writing the WKB
solutions to the relevant Schrodinger equations in the clas-
sically forbidden regions (x «x&, x2 «x «x3 x ))x4,'
refer to Fig. 1) as

f~ =AJ.@J++BqC&j, j=1,2, 3,4

where

(A 1)

I

N~
—= ~K(x)

~

'~ exp + J x(x')dx' . (A2)
X ~

The notations used here are the same as in Sec. II. Using
the results of Miller and Good, ' we first obtain a con-
venient matrix relation that connects the amplitudes A2
and B2 to the right of the turning point x2 with the corre-
sponding amplitudes 2& and B& to the left of x~. Specifi-
cally, they gave the following asymptotic behaviors of the
linearly independent pair of the exact quantal solutions
g+ corresponding to a quadratic mapping of the potential
between x~ and x2..

and

2v coscx 4 ~ +slncx N~ ~ P+ ~ C 27j X ((X) X ))X2

(A3)

—+ 2v ' —cosa@2 + sina42+ .
X ((XI X ))Xg 7T

Obviously, the most general solution in the region
x& «x «x2 will be a linear superposition of the type
aX+ +b X (a, b are two hitherto arbitrary constants)
whose asymptotic expressions will be of the form of g& for
x «x~ and of g2 for x &&x2. Use of Eqs. (A3) and (Al)
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CX

Tv coscx
7T

sine

(for j=1,2), leads to the following matrix relation be-
tween the corresponding amplitudes:

A2
=M(o. ) (A4)

2 1

where

APPENDIX B

Here we list all the integrals required for the results in
this article for the potential V(x)= —kx +M . These
can be obtained very simply from standard tables' and
involve elliptic integrals of the first (M) and second (8')
kinds. With the definitions

' 1/2

Q= 1+ 4EA,

k
(81)

M(a) =
—sino, 2v coscx

0,'

7T

C = (82)

Similarly, one obtains for the potential well between x3
and x4,

E~P1+0
Q —1 E~00+1

(83)

A4 A3
=M(P)

4 3
(A6) the required integrals are

r

Finally, since fq and f3 represent the wave function in the
same semiclassical region x2 &&x ~&x3, the correspond-
ing amplitudes are simply related through the barrier in-
tegral as

(1+u)'/ [8'((I—t )' )3+2
—(1—u)M((1 —t ) )],

(84)
. c ]n 2@ 1

( 1+t2)1/2

A3

B3

A2
=L(P) ~2

(A7) +(u —1)A
1

(1 t2)1/2 E&0

where

L (P)=

Equations (A6) and (A7) may be combined to write

(AS)

I

y=0 for all E,
=[2k(l+u)] ' A ((1—t )' ) E 0

dE dE

(85)

(86)

A4
'(P)M '(P) ~2 4

(A9)
vZ

3
c(l+u)'/'[5'(t) —uA (t)], E&0

Finiteness of the wave function as x~+ oo implies the
boundary conditions A~ ——B4——0. %'hen we use these i.n
Eqs. (A9) and (A4), we obtain

——u'/ (u +1)M
3 ( 1+t2 )1/2

(87)

A2

B2
= —,v —tant' =2v —e &cotp,p (A 10)

—28'
(1+t&)&/&

E&0

which immediately leads to the required quantization con-
dition (6) in Sec. II.

dk = —v 2k ' (1+u) '/ M(t), E &0.
dE

(88)

'S. C. Miller, Jr., and R. H. Good, Jr., Phys. Rev. 91, 174
(1953).

2M. S. Child, J. Mol. Spectrosc. 53, 280 (1974).
S. K. Bhattacharya and A. R. P. Rau, Phys. Rev. A 26, 2315

(1982).
S. C. Miller, Jr., Phys. Rev. 94, 1345 (1954).

5(a) See, for example, C. M. Bender and T. T. Wu, Phys. Rev.
Lett. 27, 461,(1971);Phys. - Rev. 0 7, 1620 (1973); B. J. Har-

rington, ibid. 18, 2982 (1978);J. L. Richardson and R. Blank-
enbecler, ibid. 19, 496 (1979); J. B. Bronzan, ibid. 25, 1065
(1982); J. Cizek and E. R. Vrscay, Phys. Rev. A 30, 1550
(1984), and references therein. (b) There is a considerable
voluine of work based on perturbation theory at large order.
Many references can be traced from an overview by B. Simon,
Int. J. Quantum Chem. 21, 3 (1982). (c) For applications of
the path integral and the %'KB methods that use the harmon-



1998 S. K. BHATTACHARYA 31

ic oscillator wave functions, see E. Gildener and A. Patras-
cioui, Phys. Rev. D 16, 423 (1977); E. M. Harrell, Int. J.
Quantum Chem. 21, 199 (1982), and references therein.

6K. Banerjee and S. P. Bhatnagar, Phys. Rev. D 18, 4767 (1978).
7Jorge Dias lee Deus, Phys. Rev. D 26, 2782 (1982).
See, for instance, P. Lu, S. S. Wald, and B. L. Young, Phys.

Rev. D 6, 1701 (1972); R. N. Kesharwani and Y. P. Varshni,
J. Math. Phys. 23, 803 (1982), and references therein.

~L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed.
(Pergamon, New York, 1977), Chap. VII.

IoW. H. Furry, Phys. Rev. 71, 360 (1947).
"M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1970), Secs. 17.6 and 6.1. Note
that the arguments of the elliptic integrals in this article cor-
respond to the square roots of those in the Handbook.

' S. I. Chan, D. Stelman, and L. E. Thompson, J. Chem. Phys.
41, 2828 (1964).

'3I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series
and Products (Academic, New York, 1965), pp. 246—249.


