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Wigner-like expansion for the quantum-statistical mechanics of
solids: Application to the sine-Gordon chain
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A semiclassical expansion for the quantum partition function of solids is presented. With respect to the
usual Wigner method, the temperature range where the expansion is significant is broadened owing to the
correct quantum-statistical treatment of the harmonic modes, while a Wigner-like expansion is retained only
for the anharmonic part. As an application, the lowest quantum correction to the specific heat of a one-
dimensional sine-Gordon model is calculated analytically.

A,)= (2m) 'p'+4(r)
then one finds for the first coefficient (p = 1/k~T)

C t = —(p'/24m ) (8'4&/Br') d .

(2)

The expansion (1) is usually assumed at least asymptotically
convergent.

Most of the problems of statistical mechanics are studied
in the classical limit because, in this case, calculations of
thermodynamic quantities are reduced to the simpler prob-
lem of evaluating phase-space integrals. In this approxima-
tion Monte Carlo and molecular-dynamics methods have re-
vealed themselves as powerful tools. Moreover, for one-
dirnensional systems thermodynamic properties can be cal-
culated exactly by means of the transfer-matrix technique.
However, because of the intimately quantum-mechanical
nature of real systems, theories which take into account the
contribution of the quantum fluctuations may be important.
Of course some problems require an ab initio quantum treat-
ment, while in the so-called "almost-classical" systems it is
possible to expand physical quantities in terms of t. For
this kind of system, many years ago, Wigner' introduced
into quantum mechanics a phase-space distribution function
which is an analog to the distribution function of classical
statistical mechanics. This distribution function is particu-
larly useful in order to obtain quantum corrections for the
classical partition function because it gives a systematic
method of expanding physical quantities in terms of A. The
Wigner theory has been recently reviewed and extended by
Kubo, Imre, Ozizmir, Rosenbaum, and Zweifel, and
Nienhuis, while Fujiwara, Osborne, and Wilke have shown
that the same results can be derived by using the Feynman
path-integral description of the partition function.

In particular, the Wigner expansion of this quantity as a
power series in I// is

Zr"= Zd(1+t Ct+t4C2+ . . )

where Z, l is the classical partition function of the system,
while the coefficients C s are expressed in terms of classical
thermodynamic averages. For example, if it is assumed
that4

ZQ 2 4=1+t Qt+t Q2+
ZdG

(4)

where 6 is the function which transforms the classical parti-
tion function Z, l of an assembly of harmonic oscillators
with frequencies cok into the corresponding quantum parti-
tion function Z~

Z",lG = Zq",

1 ptcok6 = exp X —
2 ptcok+ln

1 —exp( —ptru„)

The Wigner method has been applied to introduce quan-
tum corrections to equilibrium properties of fluid systems
while Fukuyama has estimated the role of quantum fluc-
tuations on melting temperature of the two-dimensional
Wigner solid.

In this Rapid Communication we propose a different
Wigner-like expansion for the partition function which we
think particularly useful to study the properties of solids.
Usually, for these systems the contribution to thermo-
dynamics from small oscillations, with frequency cok, around
the potential minima is the most relevant one at low tem-
peratures. However, it is well known that a classical treat-
ment of the statistical mechanics is totally inadequate to cal-
culate some thermodynamic properties (e.s., specific heat).
Therefore it is clear that, to obtain the correct behavior in
the low-T limit, the contribution of the harmonic modes of
frequencies cok has to be evaluated in the framework of
quantum-statistical mechanics. While the quantum partition
function of a system of free bosons can be calculated exact-
ly, one has to resort to approximate methods in the pres-
ence of interaction terms. Here we propose a Wigner-like
expansion only for the anharmonic part, while a correct
quantum treatment of the statistical mechanics of the har-
monic modes is preserved. This should allow us to broaden
the range of temperatures for which the usual Wigner ex-
pansion is significant. However, the low-T limit is still
unattainable by our treatment because it is semiclassical as
far as the anharmonic part is concerned.

We consider the general expansion of the quantity
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In order to obtain the explicit expressions of the coefficients
Q s in the expansion (4), we perform the Cauchy's division
between the usual Wigner expansion for Z~/Z, ~ [Eq. (1)]
and the expansion of the function 6

Cl=—
t

pN cp
2 —

2
+ cup2(cos@), (

24 a2

From Hamiltonian (11) Ct turns out to be

(12)

6 =1+a'C", +h'C,"+
Because of the assumption about the asymptotic nature of
expansions (1) and (7) and the properties of such series, p

the expansion (4) is unique and at least asymptotically con-
vergent. For the first Q, 's we find

&uk ——[tp2p+ 4(cp2/a') sin'(~ka ) ]'t' (13)

and finally we obtain

In order to obtain Cf we expand the G function (6) in the
0 limit. The frequency cuk is given by

Qt= (Ci —Cf )

Q2= (C2 —C2 ) —C) (C( —Cp)

(sa)

(sb)

c'
C = 2 +OJ

24 a2 (14)

At this point we can give a generalized asymptotic expan-
sion for Zq

Consequently the first coefficient of our expansion (9) is
given by

Zq = ZdG(I+ll2Q)+it Q2+ )

The free energy per particle is then given by

N 'F, =N 'FH+N 'F", —P 'ln(I+a'Q, + )' ~,

(9) Qi=
24

~p(1 —&c»4).i) .p N

From Eq. (10) the free energy per particle at the lowest or-
der in h is given by

N 'F, =N '(F-H+F"„+-aF,), (16)

where FqH is the free energy for a system of free bosons and
J',l is the classical contribution due to anharmonicity.

In order to clarify the improvement of our formulation
with respect to the usual %igner expansion we investigate
the case of one-dimensional sine-Gordon (SG) model,
~here the effects of the anharmonic part are particularly im-
portant and where the calculation of the expansion coeffi-
cients can be done analytically. In the classical case it is well
known that such a system bears soliton excitations in addi-
tion to the usual linear ones. The former are found to give
a significant contribution to the classical statistical mechan-
ics. In particular, they give rise to a Schottky-like peak in
the specific heat versus temperature as shown by exact nu-
merical calculations based on the transfer integral method. '0

This peak cannot be correctly reproduced. in the framework
of an ideal soliton gas phenomenology (valid for ks T« E„energy of the static soliton) but requires to take ac-
count of soliton-soliton interaction. " The effect of quan-
tum fluctuations has been included by Maki and Takaya-
ma, ' who used the functional integral method. This semi-
classical approach is not able to go beyond the ideal soliton
gas approximation. A different approach to the quantum-
statistical mechanics of the SG model has been proposed by
Tsuzuki who used the coherent state representation of the
density matrix. Taking into account the lowest quantum
corrections in the displacive limit he obtained an approxi-
mate expression for the free energy valid beyond the ideal
soliton gas regime. '

%e now present the application of our expansion to the
SG system limiting ourselves to the lowest quantum correc-
tion. The Hamiltonian is

M = Aa g —'-; +—
2 (y; —@;+))'+o)2p(I —cosP;)

where

N 'F,"=P '-N 'X I-n[2s-inh(Pe~„)] .
k

(17)

Depending on temperature, we use the following expansion
for F",~.

" for low temperatures (t = ks T/E, & 4 )
( 't

F,") = NAa cup $ a„t" 7, (t)—+ r„(t)
n=2

(ls)

where 7, and v„are the one and two-soliton contributions,
respectively,

t

r, (t) =1642/mt'2exp( —1/t) 1+ X b„t"
n= 1

(19)

1

r„(t)= exp( —2/t) ln (I —&t —+'t') —T't —Tt'
vr

1

F,"j = NAa cpp2 1+ g A2„ tq
"

n= 1

(21)

where q = 1/(4t) and the coefficients A 2„~ are given in
Refs. 13 and 14. The lowest quantum correction to the
nonlinear part AFq is

ph cp
N 'AF~ = —P ' ln 1+ ( I —(cos@),i), (22)

(20)

where lny=0. 577 is the Euler constant and the values of
coefficients a„and b„are quoted in the original paper. "
For high temperatures (t & T) the anharmonic part takes
the form

where 3 is a constant with dimensions of (energy)
& (time) x (length) ', cp and cop are characteristic velocity
and frequency, respectively, a is the lattice constant, @, and
p; are canonical conjugate variables.

where

(cosP),~= I —(AaN)
|l (~p)

(23)

It is interesting to compare our expansion with the usual
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Wigner one (1). In the latter case one would obtain
f

N KFo"= —p In 1—,2
+ (cos@),1

p t ooo 2co
' cooa

(24)
0.4

is given by the sum of three contributions.
(i) The quantum harmonic part

Co =X ' gxk exp(xk)[exp(xk) —I)
k

with

xk ——(Q/T) [I+2R (1 —cosk) ]'

(ii) The classical anharmonic part
1

4C,„+C,+C„, (27a)
Cd=A

A2„ i(8n —6n+ 1)q " ', r & 4 (27b)
n=1

where 4C is the contribution due to the interactions
among linear modes, C, the contribution from the ideal gas
of solitons, and C„ is due to the interaction between two
solitons. The explicit expressions are given in Ref. 11.

(iii) The lowest quantum correction for the anharmonic
part

Q2 I

D, Co = —(I —(cosp),1)+——(cos4).1
— (cosp), 1 .

24 t Bt Qt

(28)

The conditions for which the t terms in (22) and (24) are
much smaller than one are, respectively,

Q «412r (25a)

QR «~12r, (25b)

where we have defined Q =theo/E& and R =co/~oa. Ile-
cause in the displacive limit the soliton length R && 1 and
in the semiclassical approximation Q « 1, our expansion is
significant down to temperatures lower than those of the
%igner expansion. Of course the limit T 0 is still beyond
the validity range of our expansion, owing to its intrinsically
semiclassical origin.

From Eq. (16) it is possible to calculate the thermo-
dynamic quantities for the SG model. In particular the
specific heat per particle
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FIG. 1. Nonlinear contribution to the specific heat -ACR vs re-
duced temperature t for R =10 and 0=0.1. Full line: classical
result; dashed line: quantum result.

In Fig. 1 we report the nonlinear contribution to the specific
heat ACR = (C",i +6 Co)R vs t for R = 10 and Q =0.1, to-
gether with the classical result. The quantum corrections
have the effect of lowering the peak height by 10%-1S%
with respect to the classical result. Also the temperature at
which the peak occurs is reduced. The curves in Fig. 1 have
been obtained matching the low- and high-temperature ex-
pansions for the classical quantities C",

1 and (cos@),1.

It is worthwhile to compare our results for AC with those
of Tsuzuki. '3 Generally he obtains quantum corrections
much larger than ours, for example, a reduction of about
20% in the peak height for R = 10 and Q = 0.01, while, with
the same parameters our theory gives results for ACR which
are undistinguishable from the classical ones. The amount
of the quantum corrections found by Tsuzuki appears to be
excessive for this low value of Q. This parameter is related
to the parameter g in the quantum SG field theo'"y, '
g't= 8Q, and from Maki's theory" it is known that at low
temperatures a system with g't = 0.08 is substantially classi-
cal.

In conclusion, for the specific heat of the SG model we
find that the greatest correction to the classical result is due,
for low values of Q(g & 0.1), to the harmonic part, while
the nonlinear contribution seems not to be very sensitive to
quantum effects. This result is in agreement with the con-
clusions of Imada, Hida, and Ishikawa, ' who calculated the
specific heat of the quantum SG model through the
equivalence with the massive Thirring model.
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