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Optical bistability and switching dynamics in an exciton-biexciton model for CuC1
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The dynamical evolution of the electromagnetic field amplitudes is numerically calculated using an
exciton-biexciton model of CuCl. For a bistable system we determine the switch-down and switch-up

times and find them to be well explained by the polariton escape time using the group velocity for the po-
laritons. Our switching times, about 80 psec at photon energies of 3177 meV, are at least an order of mag-

nitude larger than a previous theoretical estimate and we predict the switching times will become longer as
the exciton resonance is approached.

In this paper we consider results for optical bistability in
the nonlinear optical medium, CuC1, in a Fabry-Perot
geometry and report results for the transient dynamics of
the transmitted intensity. ' The model we use for CuC1 is
based on the production of excitons and of excitonic
molecules, the so-called biexcitons. The biexcitons are
strongly bound and have been observed, for instance, in
two-photon absorption experiments. Biexcitonic states
have served, therefore, as a mechanism of optical non-
linearities in CuC1 and, in particular, they provide the possi-
bility of using CuCl as an optically bistable device. This was
proposed by Hanamura and Koch and Haug, and their
results paved the way for further, more detailed theoretical
calculations and for experiments, which successfully
demonstrated optical bistability in this medium. ~

The experiments have not yet accurately reported the
switching times, although the switching is known to be fas-
ter than 500 psec. The only theoretical statement about the
switching times was by Hanamura3 in which he states that
the switching should be of the order of a picosecond. His
results were based on a mean-field treatment of the
Maxwell and Heisenberg equations of motion, as well as an
adiabatic elimination of the exciton and biexciton dynamics.
We find that both of these approximations are unwarranted
for CuCl and we treat the problem in a more precise
manner; this technique should also be useful for other sys-
tems.

We have developed a slowly varying envelope approxima-
tion9 (SVEA), appropriate for the CuCl system. Our theory
provided an accurate reconstruction of. the steady-state field
values obtained from a numerical treatment of the second-
order Maxwell equation in the large Fresnel number limit.
Employing the mode expansion appropriate for slowly vary-
ing amplitudes, ' we express our dynamical equations in
terms of forward- and backward-propagating electric fields
EF(x, t), Es(x, r), exciton fields bJ;(x, t), bs(x, t), biexciton
fields BF(x,t), Bs(x,t), and a complex biexciton amplitude
80(x, t). The propagation direction is along the x axis. Pre-
vious publications by Bishofberger and Shen" and Gold-
stone and Garmire' have studied the dynamic response of a
Fabry-Perot cavity filled with a Kerr medium. Our work.
differs from those by the inclusion of propagation in the
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The negative sign of the left-hand side of Eq. (1) is taken
for the backward (8) field amplitude. The laser frequency
is cu, 5 = (eo„—co) is the detuning of the laser from the exci-
ton transition frequency co„, and 6= (cu —2') is the de-
tuning of the laser from the biexciton transition frequency

The exciton and biexciton decay rates are y„and y
respectively, and g~ and g2 are coupling constants between
the exciton and field and between the biexciton-exciton and
field. e is the high-frequency dielectric constant of the
medium, i.e., it contains the optical modes not including the
exciton or biexciton contributions. The exciton coupling g&
is strong and is treated exactly; this alters the low-field
value of the dielectric constant significantly, e(0) = e
+ 4mgj/(S —iy„); e~(0) is the real part of this expression.
v is the phase velocity of light in the medium,
v = c/Qe)t(0), where c is the velocity of light in vacuum.

Equation (1) needs to be supplemented by the appropriate
boundary conditions. For a medium of length I and exter-
nal dielectric mirrors of reflectivity R, the boundary condi-
tions are

equations and, as we shall see, by the large dispersion of
phase velocity in this system.

The equations of motion in the SVEA are written in the
following compact form:
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and

Ep(0) = IEs(0) [(1+JR )peg(0) —1+JR ]+2v'1 —REgq}/[(1+v R )peg(0)+1 —JÃ]

Es(L) = EF(L)e2'~[(1+JR )pea(0) —1+@R ]/[(1+v R )Qe~(0) + 1 —JR ] (6)

Eq~ is the electromagnetic field amplitude of the injected
photons and k is the wave number of the photons in the
medium. All numerical results quoted below use the values
summarized in Table I.

In Fig. 1 the SVEA steady-state solution is plotted for the
output intensity versus input intensity and the correspond-
ing average biexciton density

pL
&s= —„, (l~ol + I&FI + I~el )d

is also shown in the same plot. The biexciton density is
proportional to the square of the internal field intensity at
low powers, since it is a two-photon process. These curves
were generated using 100 points along the x axis and a
predictor-corrector integration method. We have chosen the
laser frequency far enough off resonance so that any reso-
nance enhancement of the biexciton linewidth may be
neglected. '3 The biexciton density is multivalued and at
least an order of magnitude smaller than the exciton densi-
ty,

I

rz =2L/v =0.165 psec. For the switch-up curve in Fig. 2
our initial input intensity is 32.09 MW/cm2 and the s~itch-
down curve starts with an input intensity 15.75 MW/cm.
The total reflection coefficient after accounting for the index
of refraction changes at the surfaces is Rq= 0.96; therefore,
the photon escape time is about rg=rR/(1 —RT) =4.1
psec. This is comparable to the exciton and biexciton relax-
ation times (see Table 1), v,„,= y„'= 2.2 psec and
vb;,„,= y

' = 0.22 psec. Since the exciton and photon relax-
ation times are the same order of magnitude, this incidates
that the dynamics of the electric field alone do not dominate
the time behavior and the exciton modes cannot be adiabat-
ically eliminated. '5

Our numerical results for the dynamics were obtained by
solving Eqs. (1)-(4) using the method of characteristics.
As the photon-exciton interaction is strong, in this case, and
the exciton resonance is close to the biexciton resonance,
the fields have a strong frequency-dependent dispersion
curve. Using Eqs. (1) and (2), the group velocity is
(y„=0, g2=0) (Ref. 16)

1 1 L
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at the largest input intensity in the figure. We found the
exciton density to be a monotonic function of the input field
and at low intensities it is proportional to the internal inten-
Sity.

We note that multistability is also obtained at higher in-
tensities within the present theory. The mean-field theory
used by Hanamura follows the development of Bonifacio
and Lugiato. ' This theory has only a single bistable regime
and we find, using our equations for the exciton and biexci-
ton densities, switching intensities which are three orders of
magnitude greater than demonstrated in Fig. 1. We remark
that the steady-state fields generated from Eqs. (1)—(4) vary
across the cavity only by 10%-20% at the largest input in-
tensities shown in Fig. 1, and at low intensities the variation
is much less. Therefore, we expect that an averaging tech-
nique performed on these equations, similar to Ref. 14, will
describe the essential features found here.

The switch-up and switch-down times were determined by
starting the system in a stable steady state very close to the
turning points in Fig. 1. The fields in both directions were
ramped at a constant rate 0.01 MW/cm2 per round trip,
where the round trip was calculated from the phase velocity
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At co=3177 meV, u~= v/12; hence for the strongly in-
teracting system, i.e., polariton modes, the signals propagate
with a reduced velocity, namely, the escape time for polari-

TABLE I. The physical parameters used in the numerical work.
These values are identical to those in Ref. 9.

eo = 3177 meV

co~ =6372.5 meV

y~=0.3 meV

meV cm
g$ =1.875x109

L =9.98165 p, m

ao„=3202.7 meV

y„=0.03 meV

4~gj2 =27.5 meV

=5
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FIG. 1. Steady-state values of the input intensity vs the output
intensity (solid line) and the biexciton density vs the output intensi-
ty ( ———). Values chosen are displayed in Table I.
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tons which is ~E ~,~=3007~. This result is in agreement
with our numerical results plotted in Fig. 2. %e obtain
from that figure a value for the switching times, defined as
the time required for the output intensity to attain an ex-
tremum value. This time is about 500m~ = 80 psec and it is
the same for both the switch-up and switch-down curves.
%e note in the figure that there is a ringing of the output
intensity which is quite pronounced in the switch-up case.
Also shown in Fig. 2 is a run with a constant input field
shifted 2% below the upper branch turning point in Fig. 1.
This curve dramatically demonstrates the critical slowing-
down phenomenon in the unstable region near the turning
points.

The group velocity of the linearized exciton-photon sys-
tern provides the major contribution to the cavity relaxation
time and therefore the polariton is the dominant slow mode
of the system. This suggests that an adiabatic elimination
procedure should be possible based on the polariton modes.
Furthermore, we can infer that the switching times will be-
come dramatically longer as the laser frequency approaches
the exciton resonance. The group velocity, Ecl. (7), is ap-
proximately inversely proportional to 5; therefore, provided
that the energy velocity is close to the group velocity, ' we

expect that at ~ = 3186 meV, the switching times would be
about four times longer. The actual magnitude of the
switching times would depend on the cavity quality and cav-
ity length as well as the material parameters. At this point
no optimal set of parameters has been determined; howev-
er, it would be an important test of the theory if the trends
in the switching times were experimentally confirmed.

FIG. 2. The output intensity vs time in units of 7.&. The switch-

up and switch-down times are nearly equal. The dashed curve is

generated by holding the input intensity constant at I&&=15.4
MW/cm~.
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