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An efficient discrete-ordinate method of solution of the time-dependent Boltzmann equation is

employed in the calculation of the zero-field electron mobility and diffusion coefficients for hot-
electron thermalization in rare-gas moderators. The discrete-ordinate method is modified to permit
a rescaling of the quadrature points. This procedure is somewhat analogous to the two-
temperature-moment methods employed in the theoretical analysis of electron swarms. The time-
dependent transport coefficients are given as a sum of exponential decay terms characterized by the
discrete eigenvalues of the Lorentz-Fokker-Planck operator for elastic electron-atom collisions. For
argon, krypton, and xenon, the time dependence is strongly influenced by the Ramsauer-Townsend
minimum and leads to maxima in the transient mobility and diffusion coefficient. Helium and neon
with hard-sphere-like cross sections exhibit transient mobilities which initially are below the thermal
zero-field mobility and then increase to the thermal mobilities as the electron distribution ap-
proaches equilibrium. The transient mobility for cross sections with Ramsauer minima are suffi-
ciently sensitive to the details of the cross sections such that it may be feasible to distinguish between
different cross sections experimentally. The calculations also indicate that the transient mobility is
insensitive to the initial distribution function. A nonequilibrium phenomenon not previously recog-
nized is the possibility of a negative transient mobility which occurs provided that the momentum-
transfer cross section increases sufficiently rapidly with energy.

I. INTRODUCTION

There are a variety of physical phenomena which in-
volve a knowledge of the time evolution of the velocity
distribution function (VDF) of strongly epithermal elec-
trons. Some examples include the calculation of electron
thermalization times in the analysis of swarm experi-
ments, ' studies of electron scavenging or attachment,
delayed luminescence in gases, pulsed transient conduc-
tivity experiments, thermalization of photoelectrons in
the ionosphere, ' and the VDF of solar-wind electrons.
The need to develop a computationally efficient and accu-
rate method of solution of the Boltzmann equation (BE)
which yields the time-dependent VDF is clear.

The present paper employs a modified version of the
discrete-ordinate (DO) method introduced in previous pa-
pers. ' ' The DO method is a familiar method of solu-
tion of integral equations and has been employed in this
way in the solution of the integral BE for the relaxation of
test particles in a heat bath' and for the reaction of hot
atoms. ' In these applications, the DO method is based
on a Gaussian quadrature rule for numerical integration.
For the electron thermalization problem, the integral
Boltzmann collision operator is well approximated by the
differential Lorentz-Fokker-Planck (LFP) operator, ow-
ing to the small electron-atom mass ratio. Shizgal and
Blackmore' have recently developed a DO method appl-
icable to differential equations analogous to its use in the
solution of integral equations. In the present work, as in
the earlier calculation of electron thermalization times, '

the DO method is based on the Gaussian quadrature rule
associated with speed polynomials. ' The previous pa-
per' demonstrated the efficiency of the DQ method in

the calculation of the VDF, the energy thermalization
times and the influence of Ramsauer minima in the cross
sections. The present paper extends the earlier work to in-
clude a calculation of the (zero-field) electron mobility
and diffusion coefficients.

The DO formalism is here extended to permit a rescal-
ing of the quadrature points while retaining the self-
adjoint form of the LFP operator. The rescaling of the
quadrature points is an important procedure, since it ex-
tends the energy range spanned by the quadrature points
without an increase in their total number. The procedure
can be compared with the two-temperature electron trans-
port theory' ' where one uses a weight function charac-
terized by an effective temperature which differs from the
temperature of the moderator. It is anticipated that the
present method will be computationally more efficient
than the traditional moment methods. ' The DO
method is certainly more efficient than the numerical in-
tegrations by Braglia et al. ' in the determination of the
eigenvalues and eigenfunctions of the LFP operator.

The basic objective of the present work is to determine
the time dependence of the mobility and diffusion coeffi-
cients of electrons in inert gas moderators. The initial
VDF of electrons is chosen to be either a 5 function or a
Gaussian distribution in speed and unidirectional con-
sistent with the work by Mozumder, " and Knierim
et a/. It is important to mention that our calculations
show that the relaxation times are not very sensitive to the
details of the initial distribution provided that the initial
energy is above the Ramsauer minimum. Mozumder as-
sumed that the VDF can be taken to be a pseudo-
Maxwellian throughout the thermalization process. The
relaxation is then followed with a numerical integration of
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moment equations for the temperature and bulk velocity.
As discussed in the previous papers, "' there is no justifi-
cation for this procedure. The work by Knierim et al.
is an extension of Mozumder's work in that additional
moments are retained. However, since the moment equa-
tions have to be integrated numerically this approach is
not as efficient as the present DO method. It is useful to
point out that the moment method transforms a linear
operator equation into an infinite set of coupled differen-
tial equations with nonconstant coefficients. This does
not appear to be a useful approach.

In Sec. II, the Gaussian quadrature procedure based on
speed points is applied to the calculation of the thermal
mobility and diffusion, and the rescaling procedure is in-
troduced. Section III contains a brief development of the
electron transport theory with numerical procedures and
results presented in Sec. IV.

II. GAUSSIAN QUADRATURE EVALUATION
OF THERMAL TRANSPORT COEFFICIENTS

The standard expressions for the thermal electron mo-
bility p,h and diffusion coefficient D,h are '

—3/2
2mkTb —mu /2kTb2 3

e dU
0 (u)

4me
&Pth= 3kT

kTb
Dth — Pth ~

e

where m and e are the electron mass and charge, respec-
tively, Tb and n are the temperature and number density
of the moderator, respectively, and o (u) is the
momentum-transfer cross section for electron-atom col-
lisions. With the substitution of the reduced speed

x =(m/2kT)'~ v, characterized by a temperature T not
necessarily equal to the moderator temperature Tb, we get

—1/2
4e mmkTb

&Pth=
3 2

S

X e x
—x (s —1)2 2

e
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0 o~((2kTblm)'i sx)
(2)

where s =(T/Tb)' . The integration in Eq. (2) is done
numerically with an 1Vth-order Gaussian quadrature pro-
cedure defined by

00 N
e "x f(x)dx=g w;f(x;),

i=1

where w; and x; are the weights and points, respectively.
This quadrature is based on speed polynomials orthogonal
on (O, ao) with weight function w(x)=e "x . '6 The
variable s in the integrand in Eq. (2) is the rescaling pa-
rameter and the integral is independent of s. However,
for a given set of quadrature points, increasing s permits
extension of the speed range so as to ensure convergence
of the integral. It is important to note that there is a
dependence on Tb and s in the momentum-transfer cross
section. To simplify the notation we will henceforth write
o~(x) =o ((2kTb/m)'~ sx). .

The momentum-transfer cross sections employed are
the cross sections reported by Nesbet, O' Malley and
Crompton, and Haddad and O' Malley for helium,
neon, and argon, respectively. In addition, the cross sec-
tions tabulated by Mozumder for argon, xenon, and
krypton were used in the form

12

cr (u) =o (0) exp g ak(v/u„h)
k=1

TABLE I. Convergence of na, h (10 cm ' sec ') with N and comparison with experiment

( Tb ——300 K).

2
4
6
8

10
20
30
40

He'

0.6390
0.6389
0.6389

Ne

7.5539
7.5038
7.5029
7.5029

Ar'

2.1895
2.3556
2.3607
2.3604
2.3604

Ard

2.6068
3.1747
3.0789
3.0631
3.0676
3.0754
3.0751
3.0751

Xe'

0.0826
0.0881
0.0880
0.0880

Kr'

0.239
0.251
0.251

Experiment
0.641 '
0.635 *'

7.48' 2.85 I 2.85 g 0.103" 0.324"

'Cross section of Nesbet (Ref. 26).
Cross sections of O' Malley and Crompton (Ref. 27).

'Cross sections compiled by Mozumder (Ref. 22).
Cross sections of Haddad and O' Malley (Ref. 28).

'Reference 25, p. 600; asterisk denotes Tb ——295 K.
Reference 25, p. 605; asterisk denotes Tb ——293 K.
Reference 25, p. 608.

"Reference 31.
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TABLE II. Convergence of na, h (10 cm 'sec ') vs % and
s for neon; Tq ——290. 1 K.

~fl eE ~fo+ v—lf IBt m BU

10 20 30 40

0.5
0.8
1.0
1.2
1.5
2.0

7.2877
7.4638
7.4640
7.4640
7.4637
7.4557

7.4591
7.4640
7.4640

7.4638
7.4640
7.4640

7.4640
7.4640

III. TIME EVOLUTION
OF THE ELECTRON DISTRIBUTION

Table I demonstrates the extremely rapid convergence
of the quadrature rule with s = 1, in the calculation of
nD, h. The convergence is marginally slower for argon
owing to the deep Ramsauer minimum at 0.25 eV and a
cross section which varies rapidly with energy.

Table II shows the convergence of nD, h for neon as a
function of the number X of quadrature points and the re-
scaling parameter s. For s & 1.0 the quadrature points are
scaled to lower energies and the contribution to the in-
tegral in Eq (2) f. rom the high-energy portion of the elec-
tron distribution function is too small, and nD, h decreases
with decreasing s. For s ~1.0 the points are scaled to
higher energies and are spread out in the thermal energy
range and the accuracy of the integration at the lowest en-
ergies is diminished, and nD, h decreases with increasing s.

where M is the mass of the moderator atoms, E is the
electric field strength, and v&(U)=nun (U) is the collision
frequency. An equivalent approach to Eq. (5) is based on
linear-response theory.

The relaxation of the VDF can be divided into two
broad time domains defined by (i) vlt ( 1 and (ii) vlt » l.
This epochal relaxation of the VDF arises from the small
mass ratio m/M in Eq. (5a). Anisotropies of the VDF,
i.e., ft(U, t), l & 1, decay quickly to zero in time domain (i),
while the isotropic portion of the VDF, fo(U, t), which in-
volves energy exchange, approaches the thermal distribu-
tion slowly in time domain (ii). ' "' The directed veloci-
ty decays to zero in time domain (i), whereas the mobility
and diffusion coefficients exhibit some initial transient
behavior followed by a much slower approach in time
domain (ii). We present the formalism for the analysis of
the time evolution over both time domains in comparison
to the work of Mozumder " and Knierim et ah. ' De-
tailed numerical calculations presented in Sec. IV are re-
stricted to the long-time dependence. Although field-
dependent terms appear in Eq. (5), we are here interested
in the behavior in the limit E~O. &e also take all elec-
trons to have an initial speed of U0 in the z direc-

n 17,22 —24

Equation (5b) can be integrated for f, and is given by

Since the formalism of electron transport theory ap-
pears in standard references, ' only a brief outline is
presented here. The time evolution of the anisotropic,
spatially homogeneous, electron VDF is based on the ex-
pansion in I.egendre polynomials, ' that is,

,q' dfp(U, t —t )fl Ut= I UO)e e ' dt',
m BU

(6)

f ( v, t) = g fI(u, t)&~(cosO),
1=0

(4)
where f&(U, O) is the initial value. With Eq. (6), Eq. (5a)
gives a single equation for fo(U, t). The net directed velo-
city is given by' '

where 0 is the angle between v and the polar axis chosen
in the direction of the external electric field which is con-
sidered in the present case to be vanishingly small. The
coupled equations for the first two terms fo and fl

17,25

—, f fi(u, t)U'dU
w(t) = f fp(U, t)U'dU

~fo eE
Bt 3tn BU U

+ +

m kTb Bfo
U vl fp+

MU ~U mU BU
(5a)

which consists of a field-independent transient contribu-
tion that arises from the term fI(U, O)e ' in Eq. (6), and
a field-dependent part b.w(t) that arises from the integral
term in Eq. (6). The field-dependent part defines a mobil-
ity which is defined by p(t) =hw (t)/E and given by

r

—.,i, Bfo(u, t —t')
p(t) =— 1 3

3m 0 0 BU
dU dt f fpU dU

where it is understood that fo is evaluated in the hmit
E~0.

The mobility for time domain (i) should be the mobility
for free electrons plus corrections to take account of col-
lisions with atoms. The velocity v after a time interval t
is related to the initial velocity v0 by v =v0+eEt/m ow-

I

ing to the field acceleration. The free-electron mobility is
therefore

pt„,(t) =
i

v —vp
i
/E = t .

m

The initial transient mobility in domain (i) can be calcu-
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lated by replacing fo(u, t t'—) with fo(u, O) -5(u —uo)lu
in Eq. (8), since in this time domain fp is little altered
from its initial value. This procedure yields

and
(T)~f] i (z')+u( ~f2 —fo)= v—if i (13b)

—
vente 1 —e

m

Vp dVi
1

3 Vi dU p —p

The time dependence of fp is given by Eq. (5a) and of fi,
l)0, is given by'

evot dv&
+

3m vi

—v)t0
e

ft(u, t) =f((u, O)e

(9) where

vt =nu (op —oi),

(14)

1 d 1nuo' (v)

3 d lnv U =Vo
+o(t')

which for very short times v, t « 1, is given by

etp(t)= 1 —, nup—o (up)t
m

and

crt =2m.Pt(cos8)o(u, 8) sin8d8 .
0

The initial values ft(u, O) are related to fp(v, O) with
f, (u, O)=3fo(u, O) and f2(u, O)=5fp(u, O). For an initial
5-function distribution and with Eqs. (7) and (14) we have
that

where an expansion in t has been used and v&
——vi(vp).

The mobility given by Eq. (10) gives the free particle mo-
bility et /m as t ~0. For long times in domain (i)
v&(uo)t) 1, though short with respect to domain (ii), the
exponential terms in Eq. (9) vanish and we obtain

(o) 2 e 1 1 v d~m(u)
p 3 m nvpo(up) '2 0' (u)

(11)
p' ' is the effective "initial" mobility for the relaxation in
time domain (ii) and can be negative if o~(u) at v =up in-
creases sufficiently rapidly with u. The significance of
negative contributions to the mobility are discussed in Sec.
V.

The longitudinal diffusion coefficient DL(t) and the
transverse diffusion coefficient DT(t) are velocity mo-
ments of the functions f' '(v, t) and f' '( v, t), respective-
ly, where these are the coefficients in the expansion of the
spatially inhomogeneous distribution in powers of the spa-
tial gradient of the electron number density. ' ' 9 Sym-
metry considerations show that f' ' and f' ' have Legen-
dre polynomial expansions of the form' '

f' '(v, t)= g ft' '(v, t)PI(cos8),
l=o

fi '(u, t)= fI '(u, O)e ' — f&(v, O)(e ' —e ')
Vi

—vjt —v2t

+ —', vf 2(U, O)
V2 —Vi

—vent'+v f e fp(u, t —t')dt' (15)

and

f i '(u, t)= f'i '(u, O)e ' ——,'uf2(v, O)
V& —V2

—v, t'
+v f e ' f ( otut')dt'. —

With Eqs. (15) and (16) in Eq. (12), the diffusion coeffi-
cients are given by

—(v2 —vo)t

DL(t) =Dr(t)+e '
DL, (0)+—uo

V2 —V)

—v, t
w (t) =upe

The solutions to Eqs. (13a) and (13b) can now be obtained
and are

f' '(v, t)= g fi' '(u, t)Pt"'(cos8),
l =0

-v, t
21—e—Vp 0 (17)

where 0 is the angle between v and the average directed
velocity, and Pl'" is the associated Legendre polynomial
of order 1. The diffusion coefficients are given by

—,
' f f', '(u, t)v du

Dx(t) = m (12)
fp(u, t)u du

0

where K denotes either I. or T. The coefficients fP' are
evaluated in terms offp, fi, and f2 and are given by

(I )af, (I-)

Bt
+tv(t)fi —v(fo+ 5f2) = —&if i (13a)

—(vp —u
$

)t
1 21—e

DT(t) =DI(t)+e ' DT(0) ——up
3 V2 —Vi

(18)

where

DI(t)= —,
' f f e ' fo(u, t t')—

Xu"dt'dv f fpu dv . (19)



1898 DARRYL R. A. McMAHON AND BERNIE SHIZGAL 31

where

f fo(u t) du

(20), v, t v'dv

For an initial 5-function distribution DL (0)=DT(0)=0 in
Eqs. (17) and (18), and from Eqs. (17)—(19) for time
domain (i), we have that

D(t) =

Dt. (t)=D (1—e ' )(1—3e '
)

In the long-time limit v&t &&1, the initial transients of DI,
DT, and DI decay and the diffusion becomes isotropic,
that is,

Dt. (t) ~Dr(t) =D(t) for t &&1/v~0

beam of monoenergetic electrons. This has no effect on
the asymptotic approach to D' ' and the relaxation in
domain (ii).

IV. DISCRETE-ORDINATE EVALUATION
OF TIME-DEPENDENT MOBILITY
AND DIFFUSION COEFFICIENTS

In this section, the time evolution of p(t)/p, h and
D(t)/D, h as given by Eqs. (8) and (19) are determined
with the solution of Eq. (5a) for fp(u, t) in the limit E~O.
This corresponds to time domain (ii) with initial values
calculated with Eqs. (11) and (23) representing an initial
6-function speed distribution. As in previous papers, '

fo(u, t) is determined in terms of the eigenfunctions and
corresponding eigenvalues of the Lorentz-Fokker-Planck
operator, defined by the right-hand side of Eq. (5a), that
1S,

—(8—v', )~

o 1 —e
+2~~ o o

V2 —VI

—v)t0
e (21)

nkTb

M
a 2 i3 mv+—ua (u) + fp,

m kTb ~fp
~fo 2 u vl f0+~v2 Bv mv Bv

(24)

0
—(v2 —vI )t0 0

DT(t)=D 1 —e —v)(0) —Ytt 0

V2 —V)

—
vent

0
e (22)

where the definition of v~ has been used. With the re-
placement of u with the dimensionless speed x, and the
definitions

where D' ' is determined from Eq. (20) with the 5-
function speed distribution, that is,

gp(x, t') =e r" fo(x, t')

3n om v

1 vo

3n cr (up)
'

(23a)

(23b)

1/2 1/2
T 1 nmom 2kTbt'=t

Tb 2 M m

Eq. (5a) is transformed to

(25b)

The quantity D' ' is the isotropic diffusion coefficient at
the start of domain (ii), analogous to p' ' given by Eq.
(11). It is important to point out that Mozumder em-
ployed the definition Eq. (23a) with a pseudo-Maxwellian
distribution over the domain (i) for which the definition is
not rigorously correct and diffusion is anisotropic. Also,
Eqs. (21) and (22) differ from the corresponding results
derived by Knierim et al. ' who defined quantities in-
dependent of the initial number-density gradient which is
equivalent to a neglect of the time derivatives of f'& ' and
f~ ' in Eq. (13). We have employed the general time-
dependent definition ' of the diffusion coefficient for
the special case of an initial localized and unidirectional

= —I 'go (26b)

where y is a constant to be specified later. In Eq. (25b)
o. is some convenient hard-sphere cross section' and
&~ (x)=cr~ ( )/xV ~ in Eq. (26). The quantity
s =(T/Tb)'~ is the scaling parameter introduced in Sec.
II. In terms of these new variables, the mobility and dif-
fusion coefficients are given by

~go 2 - a+2yx+ —x& (x) +2x(y+s2) gpBt' Bx Bx

(26a)

1 M 1 2enp(t')= ——
3 m o mkTb

2kT
nD(t') =—

3 m

g)(xp) f f tu(x)x e ' e"+r'" go(x, t' t")dx dt", —
xpa'~ (xp )

1/2

s tu(x)xe e +r" +2yx gp(x, t' t")dx dt", —(27)

(28)

where rt&(x) =nuo (x)t/t'. It is useful to note that gp is
normalized according to

s m xe +~ goxt'Ch=l. (29)

I

The formal solution to Eq. (26) is

gp(x, t') =e 'gp(x, O),
where gp(x, O) is the initial value. If gp(x, O) is expanded
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in the eigenfunctions pk(x) of the Lorentz-Fokker-Planck
operator L', then

00 A,

g.(x,t')=g f w(x )yk(x )go(x', 0)dx' pk(x)e
k

1Dk=
3n

2kT 4 g, (xo)
Qks

xoo (xo)

(31)

The eigenvalues and corresponding
eigenfunctions of l. ' are determined with the discrete-
ordinate method. ' The method is based on the discrete-
ordinate representation D of the derivative operator de-
fined such that the derivative of some arbitrary function
at a quadrature point is given by

N

g (xi ) —g Dik V wk /wi g (xk )
k=1

where

w (X)x (i+r)~2
2

e
2

k X X 7

rti x

Qk= LU X k XgoX~OdX

For the initial 5-function distribution, that is,

e -'i+re"5(x xo)
go(x, 0)=

w (x)s

we have that

(37)

The construction of the matrix D for the quadrature
based on speed polynomials' is described in detail in an
earlier paper. ' The eigenvalues and eigenfunctions are
determined with a numerical diagonalization of the
discrete-ordinate representation of L', that is, the matrix
with elements

N

[Dk'+25'kxk(1+y)]xk~ (xk)
k=1

—(1+y)x02
ak ——s e Ok(xa) . (38)

The present study of the thermalization of hot electrons is
based on Eqs. (34)—(38), with the discrete-ordinate deter-
mination of the eigenvalues i(,k and eigenfunctions pk.
The integrations in Eqs. (36) and (37) are performed with
the quadrature rule [Eq. (3)] and the eigenfunctions deter-
mined at the quadrature points.

and

N
A,kkt

k=1
(34)

&& [D., +25Jkxk(y+")]

Although y in Eq. (25a) is independent of the scaling pa-
rameters, the choice y = ——,

'
(s + 1) yields a symmetric

matrix
N

~'j g [Dk'+5ikxk(s 1)lxktr (xk)
k=1

&& [Dkj +5kjxk(s 1)]— (33)
which for s =1 (no scaling), reduces to Eq. (19) of Ref.
12. The eigenvalues of L' are real and the corresponding
eigenfunctions satisfy

f w(x)Pk(x)Pi(x)dx =5ki .

With the approximation rli(x) »Ak in Eqs. (27) and
(28), the expressions for the relaxation of the mobility and
diffusion coefficients can be written as a sum of exponen-
tial terms, that is,

V. CALCULATIONS AND RESULTS

The time variation of the diffusion coefficient and the
mobility were determined with Eqs. (34)—(38) with the
eigenvalues A,k, determined by diagonalizing the DO
representative of the Lorentz-Fokker-Planck operator [Eq.
(33)]. The reduced time t'=tlr [Eq. (25b)] is employed,
and the time scales are listed in Table III together with
the hard-sphere cross sections o . The hard-sphere cross
sections are defined so that A. 1 is the same for each case.
The convergence of the eigenvalues was reported in the
earlier paper. ' In the present work, the invariance of the
product A.kt' with the scaling parameter was studied. De-
tailed calculations demonstrated that if the number of
quadrature points is moderately large (N & 30) then Akt', ,

for many of the lower-order eigenvalues, is independent of
the scaling parameter s for s in the range 0.5—3. This
permits rescaling the quadrature points so that a particu-
lar point coincides with the initial speed as required to
represent a 5-function in the DO basis.

TABLE III. Definition of time scales.

M 2e

3nm o. ~k Tb

1/2

N
A,D(t')= g Dke (35)

k=1
where the coefficients depend on the expansion of the ini-
tial distribution in the eigenfunctions pk. These coeffi-
cients are given by

Moderator

He
Ne
Kr'
Xe'
Ar'
Ar'
Ar'
Ar"

290.1

290.1

290.1

290.1

290.1

450.0
700.0
290.1

0. (A )

5.457
0.366

10.53
18.71
1.191
0.713
0.473
0.702

7 ( 10" sec/cm )

28.52
2143

309.0
273.0

1303
1748
2113
2213

)& f e"+r'" +2yx P„(x)dx,
'g i (x ) dx

(36)

'Polynomial fit to the tabulated cross section data given by
Mozumder (Ref. 12).
Cross section given by Haddad and O' Malley (Ref. 28) ~
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FIG. 2. Time variation of the mobility (see caption, Fig. 1).

tegration in Eq. (40). For an initial nonequilibrium aniso-
tropic distribution, where fo is replaced by fo(u, t) as
shown by Eq. (8) for v&t ~~ I, these negative contributions
may dominate such that initially and for short times the
average motion of the electrons can be opposite to the
direction of force owing to the electric force (in the E~O
limit). This can be understood physically as follows. In
the limit E~O and for short times in domain (ii), the
velocity distribution is almost isotropic. Electrons with
velocity components in the electric force direction gain
energy, whereas other electrons with velocity components
opposite to the force direction lose energy. Hence the
forward-moving electrons have shorter free-flight paths
than backward-moving electrons when the cross section
increases rapidly with energy. Hence the average dis-
placement is slightly in favor of backward-moving elec-
trons and the net mobility is negative. These ideas are im-
plicit in the standard free-path method of transport
theory. The extent of the negative mobility depends on
the details of the momentum-transfer cross section and its
variation' with energy. Table IV lists the initial values

p(0)/p, „ for argon with two different cross sections and
several temperatures. The sensitivity of the initial mobili-

ty on the cross section is evident. Figure 3 shows the en-

TABLE IV. Initial mobilities p' '/p, q for argon.

2.0
3.0
4.0
4.8

Tb ——290. 1 K'
4.702
0.4999

—0.6354
—0.036 27

290.1 Kb

7.296
—2.740
—0.1824

0.0021

.4SO K'

3.101
0.3300

—0.419
—0.0239

700 K

2.196
0.234

—0.297
—0.0169

'Cross section by Mozumder, Ref. 23.
Cross section of Haddad and O' Malley, Ref. 28.

ergy variation of the two momentum cross sections, one
reported by Mozumder and the other by Haddad and
O' Malley.

The behavior in Fig. 2 demonstrates that for uo above
the Ramsauer minima, the mobility can decrease below
the initial value to a minimum, then increase to a max-
imum followed by a slower monotonic approach to the
thermal value. The behavior for Kr and Xe is qualitative-
ly similar whereas the results for Ar differ owing to the
Ramsauer minimum occurring at a lower energy than for
the other moderators. As might be expected there is a
close similarity in the time-dependent relaxation of the
mobility and diffusion coefficient. We can write
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TABLE V. Relaxation times vs initial speed. T=290. 1 K; uo is the initial speed in units of
u, h ——1.148 &(10 cmsec '. ~(1.01) is the time, in units of 10"seccm, required for each quantity (en-
ergy, mobility and/or diffusion coefficient relative to the thermal value) to decay to within 1.01 of the
thermal value. Asterisks denote values of ~ for relaxation to 1/1.01 or 1/1. 1 of the thermal value.

Helium
2.0
3.0
4.0
4.8

Neon
2.0
3.0
4.0
4.8

Argon
2.0
3.0
4.0
4.8

Xenon
2.0
3.0
4.0
4.8

Krypton
2.0
3.0
4.0
4.0

Energy

29.64
31.49
32.34
32.73

1905
1964
1986
1994

1430
2277
2505
2547

152.7
346.6
636.9
741.2

267.7
493.1

764.7
872.2

~(1.01)
Mobility

29.29
31.16*
31.99*
32.39

2306
2366*
2387
2396*

1416
2259
2487
2529

150.6
364.6
663.1

767.7

244.3
477.7
751.9
859.6

Diffusion

25.75
27.61
28.45
28.85

1322
1382
1403
1412

1727
2586
2814
2856

186.2
435.4
748.0
853.2

305.3
562.2
847.4
955.9

Energy

15.83
17.70
18.54
18.94

903.9
963.6
985.4
994.0

826.6
1626
1853
1895

88.73
238.0
496.5
589.9

158.2
344.2
599.5
705.0

w(1. 1)
Mobility

15.55
17.41*
18.24*
18.64*

1275
1334*
1356*
1364

819.5
1606
1832
1873

82.99
252.6
524.5
627.7

132.9
334.0
588.3
694.2

Diffusion

11.93
13.80
14.64
15.04

310.8
370.6
392.3
400.8

1102
1942
2170
2211

112.9
316.2
611.8
716.3

189.3
416.9
689.2
796.8

the cross section reported by Mozumder. The results are
understood by noting that for the higher temperatures the
momentum-transfer cross sections at the higher energies
are sampled and the effect of the Ramsauer minimum is
reduced. The departures from the thermal values is
smaller at the higher temperatures, though the time varia-
tion is qualitatively similar.

As is clear from the results shown in Figs. 1, 2, and 4,
there is no unique definition of a relaxation time which is
characteristic of the time required to attain thermal
equilibrium. We have chosen to follow the previous
work ' and define relaxation times w(1. 1) and r(1.01) as

the times to relax to within 10% and 1% of the thermal
value of the average energy, mobility, and the diffusion
coefficient. These relaxation times are shown versus the
speed uo for an initial 5-function in Table V. For helium,
energy and mobility relaxation times are very close
whereas the diffusion relaxation times are 10—20 %
smaller. Neon is markedly different with larger mobility
relaxation times than average energy relaxation times and
considerably smaller diffusion relaxation times. For the
three moderators with Ramsauer minima, the relaxation
times for the average energy and mobility are similar
while the diffusion relaxation times are 10—30% larger.

TABLE VI. Temperature dependence of relaxation times. 7.(1.1) in units of 10" sec cm; cross sec-
tion from Mozumder

2.0 290.1

450
700

Energy

903.9
577.2
220.S

Neon
Mobility

1275
872.6
399.8

Diffusion

310.8
124.1

Energy

826.6
748.7
390.7

Argon
Mobility

819.5
685.6
373.7

Diffusion

1102
1044
576.0

4.8 290.1

450
700

993.9
671.7
447.0

1364b
966.0
673.5

400.8
219.7
116.7

1895
1948'
1887

1873
1805
1314

. 2211
2277
2114

'D {0)/D,h
——1.058.

Relaxation time to 1/1. 1 of the thermal value.
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TABLE VII. Energy relaxation times; different argon cross
sections. Tb ——290. 1 K.

Qrr

M cross section' HO cross section

2.0
3.0
4.0
4.8

826.6
1626
1853
1895

1067
2614
2767
2810

'Mozumder, Ref. 22; 0. =1.19 A.
"Haddad and O' Malley, Ref. 28; V~ =0.712 A.

Note that the relaxation times for u0 ——4.0 and 4.8 for ar-
gon are almost identical. Also, for u0 ——4.0 and 4.8, the
curves for the time-dependent mobility and diffusion coef-
ficient for argon (Figs. 1, 2, and 4) almost coincide for all
times. This confirms the suggestion by Mozumder
and Sowada and Warman that the relaxation times are
insensitive to the initia1 speed if it is well. above the Ram-
sauer minimum.

The variation of r(1.1) with temperature for neon and
argon is shown in Table VI. The relaxation times general-
ly decrease with increasing temperature owing to the in-
crease in the cross section with energy. For argon with

ua ——4.8, the energy and diffusion relaxation times show a
maximum at 450 K. In this case the initial speed is just
above the Ramsauer minimum and the cross section in the
vicinity of the minimum is sampled.

A comparison of energy relaxation times for two dif-
ferent argon cross sections is presented in Table VII. The
Haddad and O' Malley cross section gives much longer re-
laxation times owing to the generally smaller equivalent
hard-sphere cross sections o. . The relaxation times for
the Haddad and O' Malley cross section are on the average
longer by a factor of 1.57, which is close to the ratio of
the om values of 1.7 for these two cross sections.

It is of considerable interest to compare the present cal-
culations with available experimental results. One of the
difficulties of such a comparison is that the initial distri-
bution in the experiments is largely unknown. We have

I pJ
I
I

/
I
I

/

00

carried out a study of the dependence of relaxation times
on the form of the initial distribution. The results shown
in Table VIII are for the mobility relaxation times for an
initial gaussian distribution function of varying width.
The form of the initial distribution function is given by

g0(x, O) =Ax 's exp[ —yx —(x —x0) /ax0],
where a determines the width and 3 is a normalization
constant. The case a=0 corresponds to the 5 function.
This form of the initial distribution function is chosen to
give the same average energy independent of o.. It is clear
from the results in Table VIII that except for perhaps
some initial transient at very short times, the nature of the
approach to equilibrium and the relaxation times are
somewhat independent of the form of the initial distribu-
tion function. In the table, t „is the time to attain the
maximum in p/p, h. This study lends added confidence to

8G 1ZO 160
nt(10 secrcm')

FIG. 5. Electron mobility in argon: + + +, experiment,
Ref. 5; ———,Haddad and O' Malley cross section, Ref. 28;

Mozumder cross section, Ref. 22. Tb ——290. 1 K;
u0 ——4.0. Curves (a) initial 6-function distribution; (b) initial
Gaussian distribution, n =0.4, see text.

TABLE VIII. Mobility relaxation times for initial Gaussian distribution. Tb ——290. 1 K; 00=4.

P'"~Pth
Mozumder cross section'

~p depth)max ~max

0
0.10
0.20
0.30
0.40

—0.635
—0.503
—0.229
—0.028

0.105

3.60
3.55
3.47
3.39
3.33

585
575
565
565
565

1832
1817
1805
1796
1790

Haddad and O' Malley cross section"

0.00
0.10
0.20
0.30
0.40

'Reference 22.
"Reference 28.

—0.182
—0.365
—0;315
—0.180
—0.065

4.36
4.34
4.26
4.18
4.14

850
840
840
840
830

2880
2868
2851
2836
2826



31 HOT-ELECTRON ZERO-FIELD MOBILITY AND DIFFUSION. . . 1905

the significance of a comparison with experimental results
where the effective initial distribution of electron speeds is
unknown.

The comparison discussed above is presented in Fig. 5
where the transient mobility in argon as measured by
Sowada and Warman (curve labeled + ) is compared
with theoretical results for both initial 5-function [Fig.
5(a)] and Csaussian [Fig. 5(b)] distributions, with either the
Mozumder cross section or the Haddad and O' Malley
cross sections. The best fit to the experimental results is
the Mozumder cross section and an initial Gaussian dis-
tribution (a =0.4, uo ——4.0).

A comparison of our calculated energy relaxation times
with other theoretical calculations and the available exper-
imental data has been presented in a previous paper. '

The present paper has reported the corresponding mobili-
ty and diffusion relaxation times. At the present time, the
only relevant data with which to compare are those of
Sowada and Warman. As is clear from the results in Fig.
5, we find close agreement between this experiment and
our calculations with Mozumder's tabulation of the argon
cross section. Table V shows almost identical energy and
mobility relaxation times for argon thereby validating our
original comparison with the data. '

VI. SUMMARY

In the present paper, we have demonstrated the efficien-
cy of the discrete-ordinate method in the calculation of
the transient behavior of an electron swarm. An impor-
tant advantage of the DO method is that matrix elements
of the differential Fokker-Planck equation need not be

calculated. Rather, the matrix representative of the dif-
ferential operator in the DO basis is determined in terms
of the DO derivative operator and involves the evaluation
of the cross sections at the set of discrete energies. This
procedure is computationally accurate and efficient. The
possibility of rescaling the quadrature points as discussed
in the paper is an additional flexibility of the method.

In addition to the calculation of the relaxation times of
electrons in inert-gas moderators, the present work has
noted some unusual nonequilibrium phenomena with re-
gard to the transient transport coefficients. We have
shown that Ramsauer minima effects are clearly discerni-
ble in the transient mobility and diffusion coefficient. It
has also been demonstrated that for certain moderators
with Ramsauer minima in the cross sections and for par-
ticular initial distributions, the mobility can be negative
and remain negative during an initial transient. It is in-
teresting to speculate as to the possibility of observing this
effect experimentally.

The present work has been restricted to thermalization
by elastic collisions alone. The extension of the DO
method to include both inelastic collisions and finite elec-
tric field effects is in progress. Although there are some
important modifications to the method, preliminary cal-
culations suggest that the method is competitive with oth-
er methods of analysis such as Monte Carlo and moment
methods.
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