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The Bogoliubov prescription relevant to the equilibration of a gas is reformulated to describe
dense fluids. The revised description assumes that in the "kinetic state" of a dense fluid, multiparti-
cle distribution functions are functionals of the one- and two-particle distribution functions. This
principle is applied to the Bogoliubov-Born-Kirkwood-Green- Yvon (BBKGY) sequence and a closed
kinetic equation for the radial distribution function, g(x, p, t), is obtained relevant to a homogene-

ous, anisotropic fluid, where x and p are relative two-particle displacement and momentum, respec-
tively. In the equilibrium limit the kinetic equation reduces to a linear integro-differential equation.
A closed solution to this equation is obtained in operational form which, in the limit of weak in-

teractions, reduces to the canonical exponential form, and, with interactions turned off, gives the
correct unit value of g. These equilibrium equations are applied to the specific configuration of a
fluid whose particles interact under point repulsion and Newtonian attraction. Asymptotic expres-
sions for the radial distribution function for large and small values of interparticle displacement give
oscillatory decay to unity and vanishing decay to zero, respectively. These findings are consistent
with previously described behavior of the radial distribution.

I. INTRODUCTION

In Bogoliubov's description':" of the evolution of a gas
to equilibrium, there are three periods of development:
initial, kinetic, and hydrodynamic. It is assumed that in
the kinetic stage, multiparticle distribution functions are
functionals of the one-particle distribution.

Rosenbluth and Rostoker applied this ansatz to a
weakly coupled plasma in derivation of the Vlasov equa-
tion. ' The Bogoliubov hypothesis was employed by vari-
ous authors in developing generalizations of the
Boltzmann equation to denser configurations.

In the present study, the Bogoliubov prescription is re-
formulated to describe dense fluids where correlation be-
tween particles is important. Our hypothesized extension
of Bogoliubov's principle reads as follows: In the kinetic
stage of evolution of a dense fluid, multiparticle distribu-
tion functions are functionals of the one- and two-particle
distribution functions.

This principle evidently remains in the spirit of
Bogoliubov's original ansatz. Furthermore, we note that
Kirkwood's classical superposition approximation" is
likewise in keeping with the proposed generalization.

In the present study this principle is applied in deriva-
tion of a kinetic equation for the radial distribution func-
tion relevant to a moderately dense Quid. Specifically, the
fluid is assumed to be homogeneous but anisotropic.
Furthermore, it is assumed that the fluid is in a near-
equilibrium state. This assumption permits a symmetry
argument to be applied to interaction integrals which sim-
plifies the resulting equation of motion.

It is hypothesized that for the given state of the fluid,
appropriate independent variables are x, p, and t, where
x is relative two-particle displacement, p is relative two-
particle momentum, and t is time. This assumption is
borne out by the form of the derived equation.

Various well-known conditions on the radial distribu-
tion function come into play in the analysis. These are as
follows:"

(a) g(x, p, t) —+g(x), equilibrium;
(b) g(x)=exp[ —u(x)/ka Tl, weak couphng;
(c) g(x)-1, as x~m,
(d) g(0) =0; and
(e) g(x) =1, no interactions.
In the equilibrium limit the kinetic equation for

g(x, p, t) reduces to an integro-differential equation for
g(x). A closed solution for this equation is given in
operational form which, in the limit of weak interactions,
returns the canonical exponential form (b) whereas in the
absence of interactions the solution yields the correct unit
value (e).

These equilibrium equations are applied to the specific
configuration of a fluid whose particles interact under
point repulsion and Newtonian attraction. A differential
equation is obtained for the radial distribution function
which contains irregular singularities at the origin. The
form of the general solution to this equation is described
and asymptotic expressions are obtained for the solution
in domains of large and small interparticle separation.
These expressions exhibit oscillatory decay to unity and
vanishing decay to zero, respectively, consistent with pre-
viously described behavior of this distribution. Further
discussion of the initial and hydrodynamic stages together
with an overview of these extended descriptions relevant
to dense fluids are presented at the close of the paper.

II. ANALYSIS

A. Mayer expansion

In the description of dense fluids it is appropriate to
work: with correlation functions as opposed to joint mul-
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tiparticle distribution functions. Thus let F,(1, . . . , s)
denote the joint s-particle distribution function with nor-
malization

I F,(l, . . . , s)dl . . ds= 1 .

Correlation functions are then obtained through the
Mayer expansions'

F2(1,2) =FI (1)Fi(2)+C2(1,2),
F3(1,2, 3)= Fi(1)Fi(2)Fi(3)

(4)

Thus the coefficient that multiplies the integral term in
(5) may be written 2) /4m. An interpretation of this pa-
rameter is revealed through introduction of the term

~=4mnr o
3

which permits the relation

+ g F)(l)C (22, 3)+C3(1,2, 3),
P(1,2, 3)

(2)

In this expression P(1,2, 3) denotes permutation of the
three integers. The preceding notation is such that "1"
represents the phase variables x1,p1, where x and p are
displacement and momentum, respectively.

We may therefore identify g with the ratio of pair in-
teraction energy to thermal energy in the range volume,
-ro. The parameter q may therefore be taken as a mea-3 2

sure of the degree to which the fluid is strongly coupled.
The BY, as given by (3) may be rewritten in the more

concise form

B. Equations of motion

We consider an aggregate of X neutral molecules of
mass I confined to the volume V. The sth equation of
the Bogoliubov-Born-Kirkwood-Green- Yuon (BBKGY)
hierarchy (called BY,) is given by

F (7)
Bt ' ' ' 4~

A A
The operators K„B„and I, follow by identification with
parallel terms in (3). Substituting the expansion (2) into
(7) gives the following forms for BY, and BY&..

S S S

+gp; +up gG;,
ax )=1;=1 "

ap, . Bpj
F, Bt

+K( F)(1)=— I)[ F)(1) F)( 2)+C2(1,2)],4~

S

f d(s+1)G;, +,F,+, .
4m@,. 1 gp, ++2+AIl2 [Fi(1)F)(2)+C2(1,2)]

Parameters occurring in this equation are defined as
follows: I2 )F(1) )F(2) )F(3)+ g F)(1)C (22, 3)

4a P(1,2, 3)

(3a) +C,(1,2, 3) (9)

Variables in (3) are related to reduced valuables according
to

x=rox, p=mCp, mC =k&T,
(3b)

Barred variables are dimensional (i.e., carry units).
These relations serve to identify the strength and range of
potential, +0 and ro, respectively. The interaction force
on particle i due to particle j is G;~. The distribution
function in (3) is similarly rewritten as

F, =(mC) 'V'F,

It proves convenient to introduce the interaction param-
eter"

C. Moderately dense fluids

Working with correlation functions, our proposed
description of the kinetic stage of a dense fluid asserts
that higher-order correlation functions, C, (1,2, . . . , s),
s ~2, are functionals of C2(1,2). Application of this
statement in the present work is well described with the
aid of the following diagrammatic representation:

F, (1)F,(2)=—.
C2(1,2):—=

C2(1,2)C2(2, 3)—:=

In accord with our extended Bogoliubov principle, the
Mayer expansion (2) is written in terms of two-body
correlations only, as described by the following equations:
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F (1,2) = ~ ~ + =

F (1 2 3) ~ ~ ~ + Z ~ e 0 + Z + (10)

F (I 2 3 4) = ~ ~ ~ s + Z ~ o =- — + Z= = = = + Z ~

+ Z= = = = + Z ~ + Z ~ +
L

Summations are over permutation of particle numbers.

Note that~ corresponds to the Kirkwood superposition F3(1,2, 3)=Cz(1,2)Cz(2, 3)C2(3, 1).
A moderately dense fluid may be described by the following scheme. We introduce a parameter of smallness e, and

weight the correlation coupling, = =, with e. In this representation the preceding expansions assume the form

F (1 2) = ~ ~ + c= =,

F (1,2, 3) = ~ ~ ~ + cZ ~ = = + c Z= = = + ~ Z ~
F4(1,2, 3,4) = ~ ~ ~ ~ + sZ ~ ~ = = + g Z= = = = + g Z ~2 2

+ Z
— + Z ~ + 4Z ~ + 4

Sufficiently close to equilibrium we assume homogeneity
and that the time dependence of F2(1,2) is contained pri-
marily in Cz(1,2). ' Accordingly we set F~(1)=F~(p~).
The relation (8) then gives the constraint

I i C~(1,2) =0 . (12)

I2 g F(p))Cq(2, 3) . (13)
I'(1,2, 3)

A more tractable reduced equation stemming from the
preceding relation follows below.

D. Total correlation function

Near equilibrium we further assume that C2(1,2) has
the form

C2(1,2) =F(p &)F(P2)h (x, p, t), (14)

With coupling parameters ri and a taken to be O(1) and
keeping terms to O(e) in (11), substitution into (9) gives
the following equation of motion for C2(2, 3). Here we
are writing F for F~(1):

T

at
+X2 C2(1,2)+aBp[F( p ))F(p2)+ C2(1,2)]

change in variables

X=X1 X2~ p p1 p2 ~

X= —,'(x)+x2), P= —,
' (p(+p2) .

Thus X and P may be identified with the displacement
and momentum of the center of mass of the two-particle
system.

It should be noted at this point that the specific depen-
dence of h on its independent variables is hypothesized.
This choice of dependence must be corroborated by the
form of our final equation of motion for h. Note in par-
ticular that the hypothesized x dependence of h relates to
invariance under translation in coordinate space. The p
dependence relates to invariance under translation in
momentum space, which in the present instance is
equivalent to Galilean invariance.

Discrete operators in (13) have the form

I{2C2(1,2)=F(p&)F(p2)p h(x, p, t) (17a)
BX

82C2(1,2)= G)q. F(pp) F(Pl) —F(P)) F(Pz) h
~Pr Bp2

where h is called the "total" correlation function. ' ' It
is related to the "radial distribution function" as

+2F(P i)F( P2)&i2.
Bp

(17b)

h(1,2)—:g(1,2)—1 .

The variables x and p in (14) are defined through the
In (17a) we set Bh/OX=0 owing to assumed homogene-
ity.
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E. Diagrammatic reduction of Iq

The interaction term in (13) has the explicit representation

I2 g F(1)C2(2,3) = g g f d3G~, F(p, ) C2(2, 3) .
P(1,2, 3) q =1 P(1,2, 3) ~Pq

We may represent the terms in this sum by diagrams. With ~~represented interaction and =

tion and o representing the integration variable (3), we have
= representing correla-

P(1,2, 3)
I2 g F(1)C2(2,3)= ~ +

1

The property that the integral of an isotropic vector field vanishes serves to remove the separable terms

leaving four terms in the sum (19);
The constraint condition (12) corresponds to the diagram

I i C2(1,2) = ~

This identification serves to remove two related terms in (19) leaving

I2 g F(1)C2(2,3)=
P(1,2, 3)

a
F(pq)F(p2) f d3G ~h3(2, 3)F(p )3+ F(p&)F(pz) f d3G23h(3, 1)F(p3) .

BP1 BP2
(2O)

It should be noted that the preceding diagrams primari-
ly describe coordinate integration. Concentrating for the
moment on this component of integration we write

G3] G]3 + Q(X(3)
C) X1

Ia f dx3G31(X31)h(x23ip23) ~

Ib —— dX3G23 X23 h X31pP31

With the aid of the triangle equality

X 13+X21+ X32= 0

(21a) may be written

I.= f dx»G»(lxi2 —x3. I)h( —x32, —p32),

I = f dp G3$( I
x —p I

)h( —p, —p) .

In like manner we find

(21a)

(21b)

(22)

(23a)

u(l x„+x2, I)
BX1

8
u(l x —p I),

BX

&(
I x12+x31l )

Bx2

=+ u(
I x+p

I
) .

()X

Equation (23) may then be rewritten

f dp~(
I
x —p I

)h( —p, —p),
BX

f dp u(
I x+p

I
)h(p, p) .

BX

(24)

Ib f dx31G23(
I
x12+ x3l I

)h( x31~P31) ~

Ib= f dS G»(
I
x+p

I
)h(c»p)

(23b)
Changing variables in I, as p —+p '= —p and assuming
that h is a symmetric function of p, we find

(25)

Now note that The remaining momentum integrals are



31 GENERALIZED BOGOLIUBOV HYPOTHESIS FOR DENSE FLUIDS 1887

J = f dP3 "(P32)F(P3)

~b= f dp3h(P3$)F(P3)

Our last assumption states that sufficiently near equilibri-
um, the single-particle distribution has the Maxwellian
property

which may be rewritten

~a = f d P32h(P32)F( P32+ P2)

= f dP h(P)F(P+P2) ~

~b= f dph(p)F(p+pi)
(26)

F(p ) = —p F(p ) (i =1,2)
pr'

so that

OFF = —pFF

and (28) reduces to

(31)

(32)

Thus in general, (25) cannot be extended to the momen-
turn component of I2. Furthermore, the isolated p& and

p2 dependencies in W, and Wb appear to violate our hy-
pothesis concerning the arguments of h. However, at
equilibrium, h(x, p)=h(x) and W, =Wb. Thus, suffi-
ciently close to equilibrium, in the spirit of (ll), we as-
sume

~,=~b+e A,b, (27)

where h, b=O(1), and within the present approximation
we write

~, =~b = f dp F(p)h(p) . (28)

Note in particular that this assumption renders I h

independent of p. Expressions for I h for typical inter-
molecular force laws are tabulated in Appendix A.

III. KINETIC EQUATION
FOR h(x, p, t) and g(x, p, t)

A. Equation of motion

Substituting the preceding results into (20) gives
T

I 2 g F(1)C2(2,3)= — FF FF ~ I h, —
P(1,2, 3) ~Pi ~P2

(29)

T

8 8+p. +aG. 2 —p h+ p I'h =ap 6 .
ax ap 4~

(33)

p I g(x, p, t)=0.
4m

(34)

Thus with the stated assumptions we have obtained a
closed space-time-momentum equation for the radial dis-
tribution function which is seen to corroborate our conjec-
ture concerning the arguments of h, or equivalently, g.

Here is a brief recapitulation of assumptions leading to
(34).

(a) g ( x, p, t ) is symmetric in p.
(b) W, =Wb (fluid is near equilibrium).
(c) BF/Bp= —pF.
(d) Time dependence of F2 contained primarily in C2.
(e) Terms of O(e) kept in expansion of F3. (Fluid is

moderately dense. )

Note in particular that the interaction term in (34) satis-
fies the invariance

The transformation (15) converts (33) to the homogene-
ous equation

8 () ()+p +aG. 2 —p g(x, p, t)
Bx 9p

where I g= I (g+&), (35)

I h= f f dpdpF(p)G( I p+x I
)"(p p)

With reference to (24) we may also write

(29')

1 h= Ah= f f dpdpF(p)u( I p+x I )h(p, p) .
Bx Bx

where 3 is a constant. This invariance is a consequence
of the radial property of the interparticle force G, as well

as the thermodynamic limit. (See Appendix A.)

Returning for the moment to dimensional notation, (34)
assumes the explicit form

Introducing the operator
(29") 8 ~ 8 G 2C2 8

C2
—v g

0—=
~P& ~P2

and combining preceding results gives

Bh + p h +aG(x ).OFF
ax

+aFFG(x) Oh+aG hOFF+ 0 FFI h =0..
4m

(30)

+ v. f dv'dpF(v')u(
I
p+x I )g(p, v', t) .

X
(34')

All variables in this equation are dimensional. Further-
more, we have set p =m v.

B. Equilibrium limit

In Appendix 8 an argument is presented which rests in
part on the boundary condition g —+1, x~oo, and con-
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eludes that (34) implies Bg/Op=0 in equilibrium. With
this conclusion at hand (34) reduces to

r

G(x) = x 5(x)—
X

(41)

p. —~a+" r g=o.
4m.

Since p is an arbitrary vector we may conclude

Setting

=x, G=xG, I g=xI
BX

and dotting x into the preceding equation, we find
r

8 du 7Jg+ " rg=o.
Bx Bx 4m.

(36)

where 5(x) is a limiting form of the Dirac 5 function, de-
fined in (A9), and which represents a point repulsion. The
x term represents Newtonian attraction.

Substitution of (41) into (36) gives

cx X

BX
l5(x) —1]g+ I dS p'lg(V) —1]=o

x

(42)

The unit term under the integral stems from the invari-
ance property (35). (See Appendix A. ) Note in particular
that this unit term serves to maintain a finite value of the
integral in the canonical limit g —+1, x~~.

Multiplying (42) through by x and differentiating
gives

(eaug)Veauyg
ax

=
4~

(37)

Integrating from x to ao (where we take u =0 and g= 1)
gives the linear integral equation

(1—e "k)g=e (3&)

(It is established in Appendix A that for central forces,
I'g is in the x direction. )

Introducing an integrating factor permits (36) to be
written

g"+ —+, g'+q'(g —1)=o (43)

y ='QX

permits (43) to be rewritten

relevant to the domain 0~0+ (x. We seek a solution to
this equatian which gives g(0) =0. This value is compati-
ble with the structure of (42) and is physically consistent
with the point repulsion at x =0.

Changing variables to

Here we have set

C —= ~ dx'e "' 'r
4~ x

2 kg"+ —+, g'+g = &,
y y

k=—ag .

(44)

g(x)=e
In dimensional units this expression returns the canoni-

cal result'

—u(x)/k& Tg(x)=e (40)

which for rigid repulsion at the x =0 gives the correct
boundary condition g(0)=0. Furthermore, for no in-
teractions, u =const, and (39) again gives the correct re-
sult, g(x) = 1. Thus we find that (36), relevant to
moderately dense fluids in equilibrium, returns correct
limiting farms for g(x) both in the ideal and weakly cou-
pled limits.

The solution to (38) may be written in the operational
orm

g(x) =(1—e "4) 'e
(39)

g(x)=[1+e "N+(e "4) + . . ]e

To lowest order in the coupling parameter g we find

The structure of the general solution to this equation is
derived in Appendix C.

D. Oscillatory and exponential behavior

Introducing the transformation'

g(y) =—e "~'~U(y)+ 1

in (44) gives the Schrodinger-like equation

(k/2)'U" + U=O. (45)

We may conclude that for y &k/2, g(y) is oscillatory
whereas for y &k/2, g(y) is exponential. In the domain
y &&k/2, (45) gives

U =3 cosy+8 siny

C. Application to a Newtonian fluid

We consider a fluid whose molecules interact under the
force

which corresponds to
k/2y

g ~(y)= (A siny+8 cosy)+1 .
y

In the domain y « k/2, (45) reduces to

(46)
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(k /2)

which has the solution

U(y ) y(A k/2y+B —k/2y)

Converting to g(y) we find

g ~(y) =Ae "/~+B+. 1 . (47)

Setting 3=0, 8= —1 gives the correct starting value
g(0) =0.

F. Nature of solution

The discarded first term in (47) exhibits the well-known
singularity of g(y) near the origin relevant to Newtonian
fluids. ' ' In the present study however, the point repul-
sion at the origin included in (41) imposes the boundary
condition stated beneath (43), viz. , g(0) =0, which leads to
the nonsingular starting structure of g(y) given by (52).

For large y, on the other hand, the asymptotic value
given by (46), g(y)-1, when taken with the potential
u ——r ' leads to divergent thermodynamic properties
[see (53) below].

g(y) =A'e "~~f(y, —k)+B'f(y, k)+1 . (48)

Furthermore we note that both solutions to (44) are irreg-
ular at the origin. ' However, an asymptotic expansion
of the solution may be constructed in this domain and is
given by

3
g

4
1g(y)=1+ho 1

3k
+ p +

b y b y"
3k g2 bp „

(49)

For n & 3, b„coefficients obey the divergent recurrence
relation

—nb„k =b„3+n(n —1)b„ (49')

Setting b p
———1 returns the correct starting value

g(0)=0. [Note also that in (49) we have set A'=0 and
B'= 1.]

For sufficiently small y, any finite sum of starting
terms in (49) is an approximate solution to (44). The error
of a solution containing terms up to y is O(y ).

Note also that for y )0, (49) gives

2 4 3

g'(y)= —,+
which gives the correct behavior

E. General solution and asymptotic expansions

A general property of the solution to (44) is as follows.
Let f(y, k) be one solution to the equation. Then the gen-
eral solution is (see Appendix C)

IV. OVERVIEW OF THE THREE STAGES

jV

%kg T

=1— f u'(r)g(r)4+r dr .
P 1

nk~ T 6nkg T

f u(r)g(r)4~r dr,
2 2k' T

(53a)

(53b)

Thus it is conjectured that in the hydrodynamic stage of a
dense fluid, higher-order distributions are functionals of
the kinetic moments (n, u, T) and correlation integrals
(E,P).

These conjectured dependencies of F, of a dense fluid
in the three fundamental intervals are summarized below.

To complete our extension of Bogoliubov's description
of the equilibration of a fluid, we return to the initial and
hydrodynamic stages mentioned previously in the intro-
duction. With C taken as a measure of the mean speed of
molecules, the initial stage occurs in the interval
0 & t & ro/C, subsequent to perturbation of the fluid away
from equilibrium. Together with Bogoliubov, in this in-
terval we assume that in general the state of a fluid is
described by no less than the fu11 X-body distribution.

In the final hydrodynamic stage, the Bogoliubov
description stipulates that al1 s-particle distributions
(s &Ã are functionals of the first five moments of F&,
i.e., n, u, T, where u is macroscopic fluid velocity. For a
dense fluid, interparticle potential influences the state of
the fluid and the two-body distribution comes into play.
This is the underlying reason why the Bogoliubov descrip-
tion of both the kinetic and hydrodynamic stages must be
generalized for dense fluids. The role of the interaction
potential in dense fluids is evident in the fundamental en-

ergy and pressure relations' '

g'(0+) )0 . (50) Epoch Description
A brief recapitulation of these findings relevant to the in-
terparticle force (41) is as follows.

For large y (y »k/2), the solution is given by (46):
k/2y

g(y) — (A siny+B cosy)+1,
(51)

g(y)-1 .

Initial
Kinetic
Hydrodynamic

F~(1, . . . , X)
Q(Q Q )

F, =F,(n, u, T,E,P)

V. CONCLUSIONS

For small y (y « k/2), the solution is given by (49):

g(y)-0 .
(52)

In the present work a proposed extension of
Bogoliubov s kinetic-theory formulation was given for
dense fluids. Primary attention was devoted to the kinetic
interval and the extended principle was employed in
derivation of a closed kinetic equation for the radial dis-
tribution function of a moderately dense fluid which is
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close to equilibrium. In equilibrium this equation was
found to reduce to an integro-differential equation for
g(x). An operational solution to this equation returned
correct boundary conditions for g(x).

Apart from introducing this generalization of
Bogoliubov's description, the main thrust of this analysis
was to obtain a kinetic equation for g(x, p, t). The equili-
brium component of this study was undertaken primarily
to support the validity of the derived kinetic equation (34).
Nevertheless, some additional worth of this equilibrium
analysis occurs from the linearity of the derived equation
(36) and the fact that. this result stems from first princi-
ples, i.e., the Liouville equation. Such derivations which
obtain valid equilibrium distributions are of note because
starting equations do not imply a preferred direction in
time. '

Equations for the structure of fluids derived in equili-
brium statistical mechanics' ' (e.g. , Born-Green-Yvon,
hypernetted chain, Percus-Yevick) all incorporate the a
priori canonical distribution. The nonlinearity of these
equations stems from higher-order correlations and are
therefore more appropriate to dense fluids than linear re-
sults obtained in the present work.

Finally, our equilibrium results were applied to a fluid
whose particles interact under point repulsion and
Newtonian attraction. A differential equation was ob-
tained for the radial distribution function. Asymptotic
expressions in domains of large and small values of inter-
particle displacement gave oscillatory decay to unity and
vanishing decay to zero, respectively, consistent with pre-
viously described behavior of this distribution.
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Ag= dpi' x+p g p (A3)

With x taken as the polar axis and g assumed isotropic in
x we write

Ag = f 2n dp p g(p) V(p, x ),
1

V(p x)= J dpu(
i x+p i ),

(A4)

where cos 'p is the angle between x and p. Substituting
(A2) in (A4) gives

V~(p, x )

(x'+p'+2xpp)" '
For %= 1 and 2,

1
Vi/Ki —— (

i x+p i

—
i
x —p i ),

Xp

Vye = '1 ~ +P~
xp Ix —pl

For N) 2,

(A5)

(A6)

1 1
V~/K~ ——

(X 2)xp—
I
p+x I" '

(A7)

1 00

y n( (a)(x)
(1—2px+x') (A8)

Note, in particular, that for a= —,', C„' ' reduce to Legen-
dre polynomials relevant to the Coulomb potential.

2. Point repulsion

A point repulsion may be represented by the force

An alternative approach which may prove convenient to
the p integration in (A4) stems from the defining relation
for Gegenbauer polynomials ' C„' '(x),

APPENDIX A: EVALUATION
OF INTERACTION INTEGRALS

G= lim x5(x+e) = x5(x ), (A9)

1. Potentials x

E~u(x)= x~

Thus e examine

N)M . (A 1)

In this appendix we list various forms of the interaction
terms I g and Ag appropriate to typical intermolecular
force laws. Potentials corresponding to these forces are
commonly of the form

where 5(x) is the Dirac delta function. We wish to show
that

rg=a
for this interaction. First note that

I & = f dP G(
I x+P

I
)&(P)= J d P G(P)g( I P —x

I
)

(A10)

and for 5(x) in spherical coordinates we write

E~
u~(x) =

X
(A2) 5(x)~ 5(x)

and look specifically at the space-dependent component of
Ag,

Evaluating the Cartesian coordinates of I g with x taken
as the polar axis we find
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I g= lim f f f dgdcosOdpp (cosO, sinOsing, sinOcostI)) g[(p +x —2px cosO)'~ ]
2 &(p+ e')

@~0 (p+e)'

= lim x2m f dcosOcosOg[(e +x +ex cosO)' ]e~o
].=x Z~g(x) dcosOcosO = 0 .—1

(Al 1)

(A12)

3. Invariance property of I

We consider the invariance property (35)

ra=o, (A13)

relevant to radial intermolecular forces. Working in the
representation of (Al 1) gives

rg= f f f dcosOdydp

where A is a constant. This invariance may be obtained
from (Alo), setting g=A. Observing that G is isotropic
and that the thermodynamic limit is obeyed permits us to
write

I A=A f dpG(p)=0 . (A14)

The significance of the thermodynamic limit in this argu-
ment is that an infinite configuration volume precludes
surface effects from altering the isotropy of G.

Again stemming from (Alo), and recalling (24), we
write

rW=W f dpu(p)=O. (A15)

The infinite volume in this case renders new limits of in-
tegration in (Alo) independent of x thereby returning
(A 13).

4. The vector quality of I

APPENDIX B: EQUILIBRIUM PROPERTY
OF g{x,p)

We wish to argue that in equilibrium, (34) implies that
Bg/Bp=0. We consider the extreme of a gas containing
only two particles, or equivalently, a fluid in the weak-
coupling limit g =0. In equilibrium (34) then reduces to

-. a
P

Bx
BQ

Bx Qp
(81)

Xp (cosO, sinO sing, sinO cosP)

XG(p)g[(p +x —2px cosO)' ] .

Integrating over P removes the "transverse" com-

ponents of I g and returns (A16). The preceding results
are listed in Table I.

Finally, we wish to establish the relation

I g=xI g

Substituting the product form

g—:X(x ) I'(p)
(A16)

into (81) gives

(82)

TABLE I. Properties of interaction integral;

I g =(3/Bx)Ag,
Ag =2m dpp g(p) V~(p, x),
V~/E~ = dp(x +p +2xpp)

Interaction potential: u (x)=K&/x

Yp. X—a X. 2 —p Y=O .8 Bu 8
Bx Bx Bp

Multiplying through by exp(au ) permits the first and last
terms of the last equation to be combined. There results

6= x8(x)
(point repulsion)

g=A
(A const)

1 (Ix+s
I

—Ix —s I)
Xp

I
x+s

I

xp Ix —pI

1 1 1

Is —x I" '
I
p+x I

l g=0

I 2=0

Yp (Xe ")+2X e " I'=0au

Bx Bx Qp

We assume that Y is isotropic in p so that

Recalling the property

=X
Bx

then permits (83) to be written

x p Yp Xeo'u+2X e~u Y =O
Bx Bx Bp

This equation implies

(83)

(84)
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au
ax'

=E,
pY

(85)

APPENDIX C: PROPERTIES OF GENERALIZED
EQUATION OF MOTION

In this appendix we examine properties of a generaliza-
tion of (44)

where E is a constant. The right-hand equality gives

8 F= —pLF
Bp

which gives

y —Kp ~/2

The left-hand equality of (85) gives

eAQ 0

(86)

h" + —+ 2
h'+gh =0 .2 k

, 3 y

Here we have set

h=g —1

and Q is an arbitrary function of y.
First note that

(Cl)

(C2)

X'+au '(1 2' )X—=0, is an integrating factor of (Cl) which permits it to be
rewritten

which gives

—a(1 —2K)uX=Xoe

Combining (86) and (87) we obtain

(h'N)'+hgC =0 .

In particular,

h=@ ', h=Ce

(C3)

(C4)

e
—a(1 —2K)ue —Kp2/2

Passing to the limit x~ ao, u —&0, we find

(88) gives (h@)'=0. This property suggests a trial solution of
the form

—K 2/2—Kp /2

Recalling the boundary condition g=1 at x= ac, gives
E=0, which concludes the argument.

Note in particular that in equilibrium,

+2(1 2) Fl(s'1)F1(p2)g(x)

With I'~ as Maxwellian and g(x) given by (88) and %=0
we find, apart from normalization constants,

h=hf .

Substitution into (Cl) gives

f"+ ——,f'+Qf=o.2 k
3' y

%'e may conclude that if

h(y)=f(y, k)

(C5)

(C6)

F2(1,2) =exp[ H(1,2)/kit T—],
where H is the two-particle Hamiltonian,

2 2
p&+p2 +u(

I
xi —»I)

- 2YtZ

and all variables are dimensional.
In the context of this derivation we note that it has been

previously established that factorization of the
particle distribution function into momentum and coordi-
nate products, together with a summational property of
kinetic energy, are sufficient to obtain the canonical dis-
tribution from the X-body Liouville equation.

is a solution to (Cl), then

h (y) =Ce "/sf (y, —k ) (C7)

is also a solution. Thus we find that the general solution
to (Cl) is given by

h(y)=B'f(y, k)+/I'e /Pf(y, —k) .

With Q regular at the origin, rules established by Ence '

indicate that, at most, (Cl) has one regular solution at the
origin. [This is evident from (C8).] However, Taylor-
series substitution into (Cl) gives the divergent series (49).
We may conclude that both solutions of (Cl) are irregular
at the origin.
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