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The extraction of the Kolmogorov (metric) entropy from an experimental time signal is discussed.
Theoretically we stress the concept of generators and that the existence of an expansive constant
guarantees that a finite-time series would be sufficient for the calculation of the metric entropy. On
the basis of the theory we attempt to propose optimal algorithms which are tested on a number of
examples. The approach is applicable to both dissipative and conservative dynamical systems.

I. INTRODUCTION

The experimental investigation of the transition to
chaos and its development in physical systems entails
probing the time dependence of a variable that can be
easily measured in the laboratory. Taking fluid systems
as an example, some investigators prefer to measure velo-
city fields, whereas others choose temperature or tempera-
ture gradients. Evidently, any macroscopic system can be
studied by probing a variety of variables. It becomes ap-
parent, therefore, that in order to have a valid description
and characterization of the dynamical aspects of physical
systems it is mandatory to use quantities that are invari-
ant to the choice of the measured variable. ' This is one
of the reasons for the intense recent interest in the mea-
surement of the (fractal) dimensions of strange attractors
that arise in chaotic dissipative systems. These dimen-
sions are invariant to a smooth change of coordinates and
therefore serve usefully to characterize the chaotic
motion. The subject of this paper is another set of invari-
ants, i.e., the entropies, and in particular the Kolmogorov
(or metric) entropy K. ' The extraction of the Kolmo-
gorov entropy from an experimental signal is of particular
interest since this quantity quantifies "how chaotic" a sig-
nal is. A regular trajectory has E=O. A purely random
signal has E = oo . A deterministic chaotic signal is
characterized by a finite K, and K is related to the "pre-
dictability time" T by E-T where T is the average
time into the future for which knowledge of the state of
the system can be used to predict its evolution. ' Another
relation of interest of E is to the sum of positive
Lyapunov exponents"' (which measure the instability of
nearby trajectories).

Intuitively speaking, the entropies arise when one con-
siders measurements of finite accuracy. Suppose that one
can measure the state of the system (i.e., position in phase
space) with accuracy e and time with accuracy r. Then a
"trajectory" is given as a time sequence of boxes
I i &,i2, . . . ,

i'd]

which means that the system is in the box
i

~ (of size e where F is the number of degrees of free-
dom) at time r, in box i2 at time 2r, etc. Since the state
of the system is given only to finite accuracy, there is a
finite probability of finding the system in various boxes i 2

at time 2~, various boxes i3 at time 3~, etc. Considering
the joint probability P (i &, i2, . . . , id ) we suggested previ-
ously to consider the q-order entropies'

1 1E = —lim lim lim
&~O e~O d~m dT q —1

&(I „gP~(i(, . . . , id)op2
g)p ~ ~ y ld

and argued that limq oEq yields the so-called topological
entropy, whereas lim, +Eq is the metric or Kolmo-

q —+1+
gorov entropy E,

I = —lim lim lim g P(i&, . . . , id)
r~O e~O d~ao d7 l), . . . , ld

)& logzP(t&, . . . , t~) .

(A more precise definition, which entails a supremum
over all partitions, not necessarily uniform as considered
here, is given in Sec. II.) Since one can show that
Eq )Eq for any q') q, we proposed in previous work al-
gorithms for the estimate of IC by the quantity E2. ' In
this paper algorithms for the extraction of E itself from a
time signal will be proposed and tested on model systems,
both dissipative and 'conservative.

The development of optimal algorithms calls for a re-
view of the theoretical background of the Kolmogorov en-
tropy. Such a review is offered in Sec. II were emphasis is
put on the concept of a generator, which is a partition of
phase space whose entropy with respect to the dynamical
system equals the metric entropy and whose further re-
finement does not increase the computed value of the en-
tropy. The importance of the location of generators is
clear. In any experimental application the number of
points in a time series is limited (and often quite modest).
The finer the needed partition is, the longer is the se-
quence that has to be used for the estimate of K. There-
fore, the existence of a generator guarantees that a good
estimate of K can be obtained with a finite sequence.
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From the theoretical point of view we stress that the ex-
istence of generators is guaranteed by the existence of an
"expansive constant" for the dynamics. From the practi-
cal point of view we propose how to locate generators via
the application of the algorithm.

In Sec. III we present examples, both conservative and
dissipative, with the aim of clarifying the usefulness and
pitfalls of the proposed algorithms. Readers who are
mostly interested in the application might wish to skip the
theoretical background and go directly to Sec. III where a
summary of the procedure is given. Section IV offers
concluding remarks.

II. THE THEORETICAL BACKGROUND

A. Entropy and generators

In the following we consider discrete dynamical sys-
tems. In the case of flows we refer to their Poincare or
one-time maps. Thus we assume having a map f, operat-
ing on a manifold M, equipped with an invariant proba-
bility measure p. A partition of M is a collection of
measurable disjoint sets whose union is M. Cxiven two
finite partitions

found in Ref. 14. Intuitively speaking, a finite partition
II is a generator if the partition

K[f,ll]=K[fj . (2.7)

That is, the entropy of the generator with respect to f is
equal to the metric entropy.

Any refinement of a generator is also a generator.
Since in many cases it seems more than plausible that a
generator can be refined into a uniform partition with e
small enough we may expect intuitively the existence of a
uniform partition which is a generator.

The idea can be made more exact in the following way:
define the map f to be expansiue if there exists a 5 such
that if X~Y'then

d(f"(X),f"(&))& 5 (2.8)

n

V f-[II~i= —n

becomes infinitely fine as n ~ ao.
It can be shown that finite generators exist in most in-

teresting cases. ' The importance of a generator lies in
the fact that'

@=Idi . . 4'

we denote by C Q4' the partition

~4. l ~

The entropy of the partition N is

«c') = —y P(0;)»gZIP(4;) l .

(2.1)

(2.2)

(2.3)

for some integer n, where d (, ) is a distance between two
points defined with some convenient norm. The quantity
5 is said to be an expansive constant for f. We observe
that expansiveness includes contractions. Axiom-A sys-
tems are examples of expansive maps. ' For an expansive
homeomorphism defined on a compact space we have the
following theorem. '

K(f,@)= lim —K V f '(@)1

n ~ n i=a

is called the entropy of @with respect to f.
The metric entropy off is ' '

(2.5)

For experimental applications p, (P;) can be estimated in
principle by measuring a long-time series of N points and
counting the number of points Ni which fall in P;. Then

p(P; ) =N; /N. In practice such "box-counting" algo-
rithms are not efficient and the algorithms discussed
below circumvent this step. Consider now the partitions
that arise by operating the map f ' on P and the se-

quence

n —1

—'K V f-'(e) (2.4)
II i =0

It can be shown' that this sequence is decreasing and
converges to a limit. The limit

n —1

Theorem. If 5 is an expansive constant for f any parti-
tion with a diameter less than 5 is a generator.

Intuitively speaking, if we have such a partition, two tra-
jectories emanating from distinct points must ultimately
separate, ending up in different boxes. Therefore, this
partition reflects the divergence properties of f.

The numerical extraction of K from either an experi-
mental or computer-generated sequence can be crucially
facilitated by the knowledge of the quantity 5. The ex-
istence of reasonably large 5 guarantees that a realistic
number of points in a time series is all that is needed for
an accurate estimate of K. To further clarify this point
we offer in Appendix A an example of the calculation of
an expansive constant 5 for the baker transformation.
Later numerical tests (Sec. III) corroborate the assertion
that uniform partitions with @&5 yield K as their entro-

py

K(f) = sup K(f,&), (2.6) B. Convergence rates

Given are two finite partitions of M:
clearly, this definition which entails a supremum on all
partitions seems discouraging for experimental applica-
tions. It becomes therefore essential to be able to elim-
inate this requirement of considering all partitions. One
can do so with the help of the concept of generators.

A precise mathematical definition of a generator can be

+= [A Ik = i .

If every element of @ is a subset of an element of 4' then
@ is a refinement of 4 and we write
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The conditional entropy of 4& giuen qj is defined as

M i (q„ny,) s (y, ny, )
K(@/4)= —g p(pk) g log2

P k

(2.9)

F
p(X, F)= max

~
X;—F;

~i=1
(2.14)

Given a point Z on the attractor, we define the individual
correlation function of Z by

whereas the quantities k„aredefined by

n —1

Nz(e)
Cz(e) = (2.15)

k„(f,4)=K V f '(@)
i=0

(2.10)

1
n —1

k„(f,C)=K(@)+ g K @ V f-'(4)
i=1 k=1

(2.11)

It can be shown by induction, using the properties listed
in Appendix B, that

where Nz(e) is the number of points in the generating se-
quence whose square distance from Z is less than e.

To calculate the partition entropy of 4 we recall from
Sec. II A that if p; is the invariant probability measure as-
sociated with box i then P;=N;!N provided N is large
enough. Hence

Let us define now the quantities:
K (4)=—g log2

i=1
(2.16)

5„(f,@)=k„(f,4)—k„)(f,4')
n —1

=K e V f-'(e), n )2.
i=1

(2.12)

The quantity 5„canbe assigned the following physical in-
terpretation. k„is the information obtained by perform-
ing n consecutive experiments associated with the parti-
tion 0&. Therefore, 5„is the information gain of the nth
experiment given the results of the first n —1 experi-
ments.

Adding 5& ——K(4&) to the sequence 5„,n&2 one can
show that 51)52 and that for m, n )2 we have 5 )5„
for any m & n. The consequence of these observations is
that the sequence 5„is a positive nonincreasing sequence
and hence converges to a limit I..

Consider now the sequence

B„=k„ln. (2.13)

C. Computation of the entropy of a uniform partition

Suppose now that our m-dimensional phase space is
partitioned to a uniform partition of boxes of size e, and
that we are given N points in a time sequence IX„J„
Let N~ denote the number of points of the sequence fal-
ling within box i. The points X„arerelabeled by X;
where i is the index of the box to which X„belongs and
1 & k &N; is the index of X„in the box. Given two points
X, F in R we recall that the square metric p is given by

One notices that since B„=n ' g,".
, 5;, B„is the Cesaro

sequence of the sequence 5„.Therefore B„converges to
the same limit I.. In Appendix B we show that B„is also
a nonincreasing sequence, The main statement proved
there, however, is that the sequence 5„conuerges to L, more
quickly than the sequence B„.

Thus although the definition of the entropy of 4 with
respect to f was given in Eq. (2.5) as
K(f,@)=lim„B„,we conclude that the numerical
computations of the partition entropy with respect to f
should be based on the calculation of 5„dueto its superi-
or convergence rate. It will be shown below, however,
that the sequence 8„,which converges more slowly, will
prove to be useful for the location of generators.

As is well known, ' direct determination of NI (box
counting) is impractical in general. To bypass this diffi-
culty we note that if Z; denotes the center of box i then

r

e=C (2.17)
2

we make the assumption

S

og2 C~k 2
= ogz z,.

i k=1
(2.18)

This means that the individual correlation function of the
center of the box is the geometric mean of the individual
correlation functions of all the points of the sequence that
fall within box i. This assumption is analogous to a
mean-value theorem (but not a consequence of such). For
a smoothly varying probability density it seems plausible
that the values of properties at the center of the ith box
will be close to their average over the box.

Using Eqs. (2.16)—(2.18) we get

I N
K (@)=—g log,X

Hence

I
Nt log2 Cz.

i=1

g +log, C„—
i=1 k=1 ' 2

N

log2 CzN n=l n 2
(2.19)

K(@)=—(log~ C —
j

.
2 (2.20)

we obtain the result that the partition entropy is minus
the average log2 of individual correlation functions over
all the points of the generating sequence.
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D. Computing the partition entropy
and the location of generators

In this section we continue the discussion of the previ-
ous one. Given a point Xz of the generating sequence we
define the d-order individual correlation function:

N» (e)
C ge)=

where N» (e) is the number of points X, of the generating
P

sequence satisfying

(2.21)

V f '(4) =—(loil2i=0 (2.23)

From (2.12) and (2.23) it follows that the sequence 5„is
given by

5~—log& Cd —I

2
—log2 C (2.24)

Hence the partition entropy with respect to f is given by

r

Eif, W= lim (log& C~
cf —+ 00

log 2
C" (2.25)

The sequence B~ is given by

f

Bg ——log 2 C (2.26)

We note in passing that the information dimension ' can
be calculated by

D ) —11m
e~O

( log2[C (e)] )
log 2E'

(2.27)

We thus see that we can get both the 6~ and the B~ se-
quences. The idea is now that by plotting B~ versus d for
various e we get a family of monotone decreasing curves
with the higher curves belonging to the smaller values of
e. If there exists a curve such that all the curves above it
converge to it from above we call the corresponding parti-
tion a relative generator. The entropy of the relative gen-
erator with respect to f is our best estimate for the metric
entropy.

p[(Xq,Xp+), . . . , Xq+g )),(X„,X,+), . . . , X„+~ ))]
(2.22)

In analogy with Sec. III C we get

III. EXAMPLES

In this section the methods discussed in Sec. II are ap-
plied to a number of examples. Sections IIIA and IIIB
are devoted to dissipative systems which are more suitable
as test models since the contraction in phase space reduces
statistical problems.

As a first example we chose the baker transformation.
Since the baker transformation is locally linear or the
composition of a linear map and a translation it is amen-
able to a theoretical analysis and analytical formulas for
the metric entropy and information dimension can be de-
rived. ' ' Thus we could compare the results of the
computation with the theoretical values. The second dis-
sipative system is the Henon map. Although no analyti-
cal formulas are available this map has been subject to an
extensive numerical study and numerical quantities are
available for comparison.

In conservative dynamical systems we find two impor-
tant groups.

(a) Axiom-A systems.
(b) Systems satisfying the conditions of the KAM

theorem. These are not axiom-A systems since they have
elliptic periodic points.

As an example of the first kind we picked the Arnold
cat map. Like the baker transformation this map has a
simple form, being locally linear. Therefore one can
derive analytic formulas for the desired quantities and use
them to check the results of the computation. As a model
of a Kolmogorov-Arnold-Moser (KAM) system we pick
the Froeschle map. ' This map has a phase portrait
which contains the essential features of a Poincare map of
a Hamiltonian system. In particular, there are both regu-
lar and irregular regions in phase space.

Before presenting the results we reiterate the steps taken
in all cases, and which are the practical conclusions of
Sec. II. These are as follows.

(1) We start with a point in the basin of attraction and
iterate it a couple of thousand times to obtain a point Xo
which virtually lies on the attractor.

(2) We iterate the map f on Xo a large number of itera-
tions X to create the generating sequence.

(3) The individual correlation function of order d of a
given point is calculated using the same algorithm em-
ployed in Ref. 22. Appendix A.

(4) We average the individual correlation function. The
averaging is not carried over all points of the generating
sequence but over a smaller number of points chosen ran-
domly. This number is determined by starting with a
small number of points and increasing it until no signifi-
cant change in the average value is observed.

(5) The information dimension is obtained by plotting
( log2[C (e)] ) versus log2e and computing the slope of the
curve at low values of e (This is done for various values of
d).

(6) The partition entropies with respect to f are calcu-
lated by plotting 5~ [calculated from formula (2.24)]
versus d.

(7) The relative generator is located as described in Sec.
II D. All logarithms in the numerical work are calculated
to base 2.
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A. Baker transformation

The baker transformation is

A,aX„, Y„(a
—, +A,bX„, Y„&o;

(3.1)

C3
IV

O

„4.

-8)

1—Y
Pf &

CX

Y„&o,' -l2-

Yn+i =
(F„—a), I'„)a

1 —u

where

0&X„,Y„&1,0&i, , jb & —, 0&a&1 .

-l6 &

-l2

Di ——1+

where

H(a)
1 1a log2 +(1—a) logq
a b

(3.2)

1 1H(a) =alog2 —+ (1—a) log2
CX 1 —cx

(3.3)

The maximum Lyapunov exponent is given by A, ~

——H(a).
For the map under investigation we obtain

D i
——1.406

and assuming E'(f) =A, ~,

(3.4)

We study the case k, =A,b ——o.'= —,. Owing to the local-

ly simple form of the transformation, analytic formulas
for the information dimension and Lyapunov exponents
can be derived. ' ' The information dimension is given
by

FIG. l. (log2C (e}) vs log2e for the baker transformation for
embedding dimensions d =1—15. (d=l is the upper most
curve. ) Average slope is 1.41. For a discussion of this figure see
the text.

of the curve should shift to higher values of e.
(3) Linearity should break down for e large enough due

to saturation.
(4) If we increase the number of iterates of the generat-

ing sequence, the linear portion of the curves should ex-
tend to smaller e.

Figure 1 confirms all these expectations save the last
one, which we confirmed independently. We calculated
the slopes of the curves by linear regression using points
which fall within the linear parts of Fig. 1. The slopes
have the same value up to the experimental error. The
average value W,

„

is

K(f)=0.811. (3.5) W,„=1.41+0.01 . (3.6)

In the numerical computations we used 100000 itera-
tions and carried the averaging over 500 points. The re-
sults were stable up to 0.01 (in the information dimension)
upon increasing the number of iterations up to 400000
and the averaging number to 1000. The results could be
reproduced with 50000 iterations but with more statistical
fIuctuations. In general, results were found to be more
sensitive to the number of. iterations than to the averaging
number. We used the initial conditions x=0.5, y=0.5,
and 5000 iterations to converge on the attractor.

Figure 1 shows plots of (log2C (e)) versus log2e for
d = 1—15. We expect the following.

(i) The curves should attain a constant slope (the same
for all curves) as E~O

(ii) The slope should be equal to the information dimen-
sion.

As the size of the partition e decreases, more iterations
are needed to yield the invariant measure of the boxes of
the partition. Therefore we further expect the following.

(1) The constancy of the slopes will break down for e
smaller than some value e, .

(2) As we increase the embedding dimension the dis-
tances between points increase. Therefore e, should in-
crease with the embedding dimension and linear portion

The error has been estimated by checking the variations in
results under change of parameters (see above) and should
be treated with caution. It is seen that W,

„

is equal to
theoretical value of the information dimension and the
linear fit is good.

To avoid statistical problems in the computation of the
metric entropy we chose partitions that fall within the
linear part of the curves of Fig. 1 for all embedding
dimensions used. Figure 2 shows a plot of
—,
'

[(log2C (e)) —(log2C + (e))] versus d for e=22,2,2 . This quantity settles down to a constant
value already at the low dimensions confirming the prop-
erty of quick convergence which was argued in Sec. II C.
The constant value is roughly the same for all partitions
with e& 4 suggesting that these are generators. This
agrees also with the theoretical result of Appendix A that
4 is an expansive constant for f. For low embedding di-

mensions the plotted quantities decrease with dimension
as can be predicted theoretically (see Appendix B) but for
higher dimensions this- tendency is disrupted indicating
that statistical problems set in.

Following the above we pick the minimum values of
the curves corresponding to e & 4 as our estimate of the
entropy. We get
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0.550 -;

0.500 ~
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2-1 2.50-:

FIG. 2. 3 [(1og2Cd(e)) —(log&Cd+ (e)) j vs d for the baker

transformation for e =2 ',2,2 ', 2 . The convergence for
supports the theoretica1 result that partitions with e& 4

are generators.

o 2.00-:
O

+D

H(f)=0.81 . (3.7)
I.oo-:

This value is the same as the theoretical value but we can-
not give an estimate of the numerical error.

Figure 3 shows plots of —d '(logzC"(e)) versus d for
@=2 ', . . . , 2 ' . The curves decrease with d. The
smaller the radius of the partition the higher the curve.
All the curves of e~ —,

'
appear to converge together, far

removed from the lower curve, supporting the surmise
that they belong to generators.

B. Henon map

The Henon map is given by

X„+) ——1 —aX„+Y„

Y„+g
——bX„.

(3.8)

We picked the frequently used values a=1.40, b=0.3.
We tested the above procedure for this map both on the
basis of the original phase points and with phase points
reconstructed from the X coordinate. The results are
similar and we therefore display here the results based on
the original phase points, which are marginally better.
We again used 100000 iterations and carried the averag-
ing over 500 points. The results were stable up to 0.01 (in
the information dimension) upon increasing the number
of iterations up to 400000 and the averaging number to
1000. The results could be again reproduced with 50000
iterations but with more statistical fluctuations. In gen-
eral, results were found to be more sensitive to the number
of iterations than to averaging number. We used the ini-
tial conditions x=0.639, y=0.189, and 5000 iterations to
converge on the attractor.

Figure 4 shows plots of (log2C (e)) versus log2Efor'
d =1—15. The curves display the same features as those
of the baker transformation (Fig. 1) and the same remarks
apply here. The slopes are the same for all embedding di-

o.so-:

0-.
1

O

-12
j

-i4-:

-18-',.

-l4 -l2 O 2 4 6

FIG. 4. Same as Fig. 1 but for the Henon map. Average
slope is 1.26.

FIG. 3. —d '(1ogzC (e)) vs d for the baker transformation
for e=2 ', . . . , 2 ' . A11 curves with e & 4 appear to converge

together, but with much slower convergence rate as argued
theoretically.
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mensions. The linear fit as attested by the correlation
coefficients is good. The average slope is

W„=1.26+0.01 . (3.9)

The same value has been obtained previously by various
methods. "

Figure 5 shows plots of —,
' [(logzC"(e) )

—(logzC" + (e))] versus d for e=2,2 ',2,2,2
2 . These quantities settle down to a roughly constant
value at low dimensions. The curves are decreasing as we
expect, the exception being partitions of small radius at
high embedding dimension. This is ascribed to the statist-
ical problems that arise if the number of iterates used is
not large enough to produce a sufficient number of pairs
with small distances. From the figure it is seen that the
curves corresponding e=2 and 2 coincide (up to the
precision with which we could hope to extract the metric
entropy) and we conjecture that the corresponding parti-
tions are generators. As our estimate of the entropy we
take the lowest point on the curve corresponding to
@=2 . We have

5.0-

.0I

I 0-

0.0 '
I f 'V ' ll 7

2 4 6 8 to

FIG. 6. Same as Fig. 3 but for the Henon map with parti-
tions @=2,. . . , 2 ". The convergence is again slower than in
Fig. 5, but supports the surmise that the partition with @=2 is
a generator.

H(f)=0.61 . (3.10)

This value is in accordance with the value obtained in
Ref. 19.

Figure 6 shows plots of —d '(logzC (e)) for parti-
tions with @=2,. . . , d ". The curves corresponding to
smaller e are higher and the curves are decreasing as ex-
pected. The convergence is slow as compared to Fig. 5.
Figure 6 lends some support to our assumption that the
partition corresponding to a=2 is a generator. The
curves above it appear to converge to it at least up to the
accuracy that we could hope to achieve in such numerical
experiments.

C. Cat map

Let M be the torus

a b x
C

(mod 1) (3.11)

M = ( (x,y)
~

(x,y)(mod 1)] .

Let p be the ordinary Lebesgue measure. We study the
map

+

IV

O
I

C3

O
t

0.64 ]

0.56-;
I

052~

2-5

2

2-I

(mod 1) . (3.12)

Hence

where a, b, c,d are integers satisfying ad —bc=1. This
map is an axiom-3 system and its attractor consists of the
whole torus M. For the immediate purpose of this section
we cite the following result.

Theorem. The metric entropy of f is given by
H(f)= logz

~

A,
~ ~

where X& is the proper value whose
modulus is greater than 1 of the matrix (,' d). En this
work we examine the map

r

1 1 x

048j H(f)= logz =1.3gg .
2

(3.13)

044-'

2.0 3.0 40 5.0 6.0 7.0
20

8,0

Since f is axiom A it possesses a unique invariant measure
with respect to which it is ergodic on M. Since f is con-
servative and mixing this must be the Lebesgue measure.
Hence the information dimension of the attractor M is

Di(M) =2 . (3.14)

FIG. 5. Same as Fig. 2 but for the Henon map, and for
6=2,2 ',2, . . . , 2 . The rise for large d in the curves with
a~2 is ascribed to statistical uncertainties. %'ithin the nu-
merical uncertainties it appears that partitions with e &2 are
generators.

We found numerically that because f is conservative, a
very large number of iterations is required to obtain the
invariant probability measure for partitions of radius
much smaller than 1. This fact introduces great difficul-
ties in the implementation of our algorithm.
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K(f) 1.38 . (3.15)

The theoretical value is 1.39 but again we have no ap-
parent way to estimate the error in the numerical value.

Figure 9 shows plots of —d '(logzC (e)) for parti-
tions with @=2 ', . . . , 2 ' . The curves corresponding
to smaller e are higher and the curves are decreasing as
expected. The convergence is slow as compared to Fig. 8.
Figure 9 lends some support to our assumption that parti-
tions corresponding to e & 2 are generators. Conver-
gence, however, is far from complete and no conclusive
statements can be made.

To get reasonable results for the cat map 1500000
iterations were required. There was no sensitivity, howev-
er, to the number of points used in the averaging and we
reduce the number to 200 to cut computation time. We
used reconstructed phase points for the calculations, since
this procedure has advantages when statistical problems
prevail.

Figure 7 shows plots of (logzC"(e)) versus log&@ for
d =2—10. The curves display the same features as those
of the baker transformation (Fig. 1) but the range of
linearity is considerably smaller and linearity is destroyed
much faster as we increase the embedding dimension.
This forewarns us that less dimensions will be available
for the metric entropy computation. The average slope is
2, but it is difficult to estimate the error.

Figure 8 shows plots of —,
' [(log2C"(e) )

—(logzC" + (e))] versus d for @=2 ',2,2,2,2
These quantities settle down to a roughly constant value
at low dimensions. For @&2 all the curves are very
close. This suggests that all these curves belong to genera-
tors. These curves should be decreasing and the fact that
they begin to rise in high dimensions is a further evidence
for statistical troubles there. The metric entropy is ex-
tracted from the minima of the curves. We get
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FIG. 8. Same as Fig. 2 for the cat map with
a=2 ', 2 ', . . . , 2 . The convergence suggests that all parti-
tions with e & 2 are generators.

D. Froeschle map

Our last example is the map '

X„+&

——X„+A sin Y„(mod 2m )

Y„+~——X„+Y„+Asin Y„(mod2m.)
(3.16)

with 2=1.3. This is a conservative system which unlike
the cat map displays some of the characteristics of Poin-
care maps of Hamiltonian systems. The fixed points of
the map are given by

X=0,
(3.17)

A fixed point of the map is elliptic if cos Y= —1 and hy-
perbolic if cos Y= l. The phase portrait of the map con-
sists of a lattice of islands of invariant curves surrounding

Oq
20-.'

0
O
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l6

1

12-'.
a I

1—l~
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log E'

l
V

0- T r

27 3.9 5.1 63 7.5

FICx. 7. Same as Fig. 1 for the cat map for d =2—10. Aver-
age slope is 2.

FICz. 9. Same as Fig. 3 for the cat map for partitions with
E'=2, . . . , 2 . The convergence is again slower than in Fig.
8 but supports the assertion about generators.
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FIG. 10. Same as Fig. 1 but for the Froeschle map starting
from initial conditions that lead to regular behavior. Shown are
curves for embedding in d =2—19. All the curves converge be-

cause K=O. Average slope is 1.

log eI

FIG. 12. Same as Fig. 10 but with initial conditions that lead
to chaotic behavior. Average slope is 2.

elliptic fixed points, embedded in a connected region of
stochasticity. '

Results. Here we confined our attention to the distinc-
tion between regular and irregular trajectories. We used
800000 iterations and the averaging was carried over 200
points. For the regular zone we chose x=0, y=2.5. For
the irregular zone we chose x=2, y=0.

Regular zone Figure . 10 shows plots of (logzC"(e))
versus log~e for d =2—19. The curves merge together
with slope 1.

Figure 11 shows plots of —,[(log~C"(e)
—(logqC"+ (e) )] versus d for partitions with various ra-
dii. . There is a sharp decrease to very small values.

Irregular zone. Figure 12 shows plots of (logzC (e))
logze for d =2—19. The picture is similar to that ob-
tained for the dissipative systems. The slope is constant
and is equal to 2. We observe that the situation here is
better than in the case of the cat map although less itera-
tions were used.

Figure 13 shows plots of —,
' [(logzC (e) )

—(logzC"+ (e) ) ] versus d for partitions with various ra-
dii. There is a clear difference between this case and the
regular case. Although more iterations are probably need-
ed to obtain exact values of the metric entropy, there is no
sharp decrease to very small values.

IV. CONCLUDINCx REMARKS

We presented methods for extracting the Kolmogorov
entropy from the time signal with some emphasis on the
details of the theory and the proposed algorithms. Gen-
erally speaking it seems that the proposed algorithms
yield reliable values in all cases, but that dissipative sys-
tems are easier to deal with than conservative ones. It
seems that the algorithms are applicable to experimental
signals in the same way that the algorithms for computing
dimensions have proved useful. We hope that in the near
future experimental values of Kolmogorov entropy will
begin to appear.
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FIG. 11. Same as Fig. 3 for the Froeschle map, with initial
conditions that lead to regular behavior. The sharp decrease to
very small values indicates that K=O.

FIG. 13. Same as Fig. 11 but with initial conditions that lead
to chaotic behavior. Curves saturate at a finite value indicating
positive K entropy.
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APPENDIX A: MAXIMAL EXPANSIVE CONSTANT
FOR THE BAKER TRANSFORMATION

1 1

4&n Yn( 4

In+1 1 1 1
—, + 4X„, Yn) 4

(Al)

As an example of the calculation of an expansive con-
stant we pick the map f defined by

place, say, the kth place. Iterating f k times we end up
with x coordinates differing in the first place in their
symbolic sequences. Therefore the x coordinates differ by
at least 4. If the y coordinates are the same then the x
coordinates must differ in some place in their symbolic se-
quence say the kth place. Iterating f ' k —1 times we
obtain x coordinates differing in their first place. Again
this implies a difference of at least 4. Thus —,

' is an ex-
pansive constant.

Yn+1=
4Yn Yn& 4

(A2)

APPENDIX B; CONVERGENCE RATES
OF SERIES OF THE METRIC ENTROPY

f is defined on the unit square M. We shall establish that
f has an attracting set A, and that the restriction of f to
A is expansive with a maximal expansive constant 4 .

Given a point (x,y) in M one can write

00 QJ

k=1
(A3)

where ak can assume the values 0, 1,2,3. The sequence
a&,aq, . . . , a„,. . . is the symbolic sequence of X. The
action of f on X is most conveniently expressed in
terms of its action on the symbolic sequence:
f(ai, a2, . . . , a„,. . . )=T(y),a&,a2, . . . where here T(y)
is the function

The arguments given here follow the presentation of
Ref. 14. Given two partitions where one is a refinement
of the other, we define the conditional entropy as in Eq.
(2.9). We list here a few basic properties of partitions and
entropies' (it is assumed that P, P, and 8 are finite parti-
tions of M).

(1) K (Pl/) )0.
(2) K(P h P) =K(f)+K(P/P)
(3) K(P) &K(P/g).
(4) f & P implies K ( g) &K (P ).
(5) f&P implies K(8/g))K(8/$).
(6) K(f '(P)lf (P)) =K(P/g)
(7) f "(Phf)=f "(P)Rf "(f).
(g) K(f '(P))=K(P).

Using properties (2), (7), and (8) it can be shown' that

0, y(4
T(y) = '

2, y ) 4
(A4)

n —1
n —1

K V f-'(y) =H(y)+ y K yi=0 i=1

i

f—k($)

Define A to be the set of points of M with X coordinates
whose symbolic sequences satisfy

aI, ——0 or ak ——2 for all k

(81)

From properties (1), (3), and (5) it can be seen that the se-
quence

ol

ak ——0 or ak ——2, k (n (A5)

A;=K(P),
r

n —1 n —2

(82)

and

ak —3, k)n
V f-'(y) —K V f-'(y) (83)

where n ) l. A is a compact attracting set whose domain
of attraction is M. The restriction of f to A, f, is inverti-
ble. The action of f ' on the symbolic sequence of the X
coordinate is K(f,g)= lim B„, (84)

is non-negative and nonincreasing and hence converges to
a limit L. The entropy of f with respect to P is defined as

c —1Iia1,a2, . . . , an j=a2,a3, . . . , a„
while its action on Yis given by

(A6)
where

1
—,Y, a, =O

f '(Y)= ',
4 Y, a1 ——2.

n —1

B„=—K V f-'(y)1

n i=0

The existence is proved by noting that

(85)

We can now show that 4 is an expansive constant for
f. We note that given two distinct points with different y
coordinates their symbolic sequences must differ at some

1B„=—g Ak
n k

(86)
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and hence follows. Since A„is nonincreasing A„&I.. Furthermore,

lim 8„=lim A„=l.
(B8)

For computations it is observed that the sequence A„con-
verges Inore quickly to the limit I.. This can be seen as

Hence

(B9)
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