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Fractal dimension function for energy levels
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To characterize fractals, a function is introduced which is a natural extension of the fractal di-
mension. This fractal dimension function is easily evaluated numerically and is amenable to a
theoretical description. In particular, an intimate connection between fractal dimension and statis-
tics is uncovered. As illustrative examples the concept is applied to sequences of random numbers
and to the energy levels of coupled harmonic oscillators.

In recent years much attention has been paid to fractals.
The investigations of fractal properties cover by now a
long list of different subjects ranging from simple geogra-
phy to the study of intricate mathematical models. A few
examples are landscapes, ' critical fluctuations in phase
transitions, percolation on fractal lattices, states of
quasiperiodic potentials, turbulence, and strange attrac-
tors.

Dimension is perhaps the most basic property of a frac-
tal. The notion of dimension is not unique and there are
several relevant definitions of dimension available in the
literature (see, e.g., Refs. 1 and 6). Here, we concentrate
on metric properties of the fractal and, hence, the relevant
quantity is the fractal dimension. ' The fractal is viewed
as a set which is a bounded subset of a d-dimensional Eu-
clidean space and its fractal dimension D,derives from'

N(5)-5
as 5~0. The quantity N(5) is the minimum number of
d-dimensional cubes of side 5 needed to cover the fractal.
In many examples of interest the validity of relation (1)
persists for a large range of values of 5. This fact simpli-
fies the numerical search for D and may explain why it is
useful to retain the concept of a fractal dimension also for
sets with an inner cutoff, ' i.e., a length scale below which
the fractal behavior subsides. Clearly, 5 should not be
chosen smaller than the inner cutoff.

Gf course, the validity of relation (1) is at best approxi-
mate for finite 5 and the fractal dimension obtained from
it will depend on the choice of 5, i.e., D=D(5). As will
become clear below, this behavior is rather an advantage
than a disadvantage. It is one goal of this contribution to
illustrate that the function D(5) is characteristic of the
specific fractal under consideration and that its knowledge
provides us with additional information on the system.
To be more general, we consider a set with n elements. n

can be either the true number of elements of a "fractal"
with an inner cutoff or an intermediate number of ele-
ments obtained after some step in the construction of a
fractal. An example for the latter is the we11-known clas-
sic example of a Cantor set obtained by the limiting pro-
cess of deleting middle thirds (as illustrated, for instance,
in Fig. 80 of Ref. 1). After p steps in the construction of
this set, we have n =2~.

To proceed we introduce coarse graining of length 5

into the description of the set. For the sake of illustration
let us consider a set of n points in the interval [0,1].
Each point is covered by a bar of length 5 with 5/2 on
each side of the point. Once 6 exceeds the smallest dis-
tance between two points, the bars begin to overlap and
the coarse graining is done by the union of the overlap-
ping bars being now of lengths I;, i =1, . . . , rn. For the
number of bars, m, we obviously have m (n, and when 5
reaches the size of the largest distance between two points
the whole set is covered by a single bar, i.e., m =1. This
concept of coarse-graining allows for a useful and unam-
biguous definition of a fractal dimension function
D =D(n, 5) which is obtained from the equation

(2)

where, for a given set, m and the I; solely depend on 6.
Current evidence' supports the conjecture that for
n~ao and small enough 5, D(n, 5) takes on the same
value as the fractal dimension defined by relation (1). For
finite n and 5, definition (2) is superior to definition (1)
both from the conceptual and practical points of view.
For finite n and 5 the proportionality constant in (1) also
depends on n and 5 and, consequently, D(n, 5) is ill de-
fined. If —dlnN(5) jdln(5) is taken to be the approxi-
mate dimension, a smoothing of N(5) is required, since
N(5) is a staircase function. Moreover, computation of
N(5) in general requires optimization of cube positions,
whereas the evaluation of D from Eq. (2) is very simple.
The determination of the l; is straightforward and D is
obtained by searching the zeros of the function
I (D):g l; —1 using stand—ard methods.

The definition (2) of a fractal dimension function defi-
nitively has the advantage of being amenable to a theoreti-
cal description. We again consider a set of n points on
the real axis. Let P(S) be the distribution of the next-
neighbor spacings S in our set of points. Two auxiliary
functions I (5), v=0, 1, are introduced

I„(5)=I S"P(S)dS

which fulfill the normalization conditions Io(0)=n and
I&(0)=nS, where S is the mean next-neighbor distance.
Io(5) gives the mean number of next-neighbor spacings
larger than 5 and hence the number X of bars available.

31 1869 1985 The American Physical Society



1870 L. S. CEDERBAUM, E. HALLER, AND P. PFEIFER 31

The mean next-neighbor gap g between bars is deduced
from g =II(5)/Io(5) —5. Now, the identity nS=N(g+I)
for the total size of the original interval comprising the
set of points determines the mean length I of the bars.
Putting [see Eq. (2)]

N(l /nS ) = 1,
we obtain our final result for the fractal dimension func-
tion

1nIO(5)
D(n, 5)=

lnIO(5) —in[I I (0) I~
(5—) +5IO(5)]+lnI

~ (0)

The denominator in Eq. (5) vanishes at some irrelevantly
large value of 5 at which the mean length of bars equals
the total length of the interval, i.e., I=nS, for which D
cannot be determined from Eq. (4).

To elucidate Eq. (5) we discuss an example. We consid-
er a set of n random points in some bounded interval on-

the real axis. Using a standard procedure to generate uni-
formly distributed random numbers, the fractal dimension
function has been calculated via Eq. (2) for n =1000,
5000, and 10000. The results of this very simple compu-
tation are shown as circles in Fig. (1). To compare with
the theoretical prediction of Eq. (5) we make use of the
fact that the distribution of the next-neighbor spacings in
a set of random numbers is the well-known Poisson distri-
bution'

P(S)=(n /S)exp( —S/S) .

growing n the random points gradually cover the corre-
sponding interval which is fully covered for n.~ oo lead-
ing to a fractal dimension D= 1. Indeed, D(n, 5) in Eq.
(6) monotonously approaches 1 as n is increased at fixed
5. For fixed n the function D(n, 5) is closer to 1 the
larger the values of 6 are, reflecting the higher degree of
coarse graining introduced into the set.

It has been demonstrated above that fractal and statisti-
cal properties of sets are closely related to each other.
Statistical methods have been extensively used to discuss
the behavior of nuclear energy levels" and more recently
also of atomic' and molecular levels. ' As an important
result of these investigations it has emerged that once the
energy levels correspond to "complicated" states, they are
amenable to statistical analysis using random matrix
methods. In particular, the distribution of the next-
neighbor spacings of these energy levels closely resembles
the Wigner distribution'

P( S)=(~nS /2S )exp( —~S /4S ) . (7a)

On the other hand, this distribution leads, via Eq. (5), to
the following fractal dimension function

D(n, 5)= 1+in F/[ln(n) —m5 /(4S ) —ln Y], (7b)

where F=C(Vrr5/2S) and @ is the error function. ' In
analogy to our first example, we have computed the frac-
tal dimension function using definition (2) and sequences
of 1000, 5000, and 10000 random numbers obeying the
constraint of a signer distribution. These numerical re-
sults, shown as crosses in Fig. 1, are again in good agree-
ment with the theoretical results [Eq. (7b)] drawn as solid

The fractal dimension function which now reads

D(n, 5) = 1+lnX/[in(n) —5/S —lnX], (6b)

where X= 1 —exp( —5/S), is also shown in Fig. 1 and
compares enjoyably well with the numerical result. %'ith
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FIG. 1. Fractal dimension functions for sets of random num-
bers: n =1000, 5000, and 10000. The circles and crosses denote
numerically obtained results for uniformly distributed and
Wigner-type random numbers, respectively. The corresponding
theoretical results, Eqs. (6) and (7), respectively, are shown as
solid curves.

FIG. 2. Fractal dimension functions for the energy levels of
the system of coupled oscillators (see the text). Each series of
crosses has been computed using a piece of the spectrum with
200 energy levels. The "curves" move upwards with growing
energy. The limiting functions D(200, 6) of purely regular and
irregular sequences given by Eqs. (6) and (7), respectively, are
shown as solid curves.
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lines in the same figure. D(n, 5) behaves differently for
the two types of sets, the "Wigner set" and "Poisson set,"
as a function of 5 as well as of n although the fractal di-
mension D is equal in both cases (D= 1). This underlines
the usefulness of the concept of a fractal dimension func-
tion for the characterization of fractals with or without an
inner cutoff.

Classical nonintegrable systems may exhibit a transition
from quasiperiodic to chaotic motion (see, e.g., Refs. 15
and 16 for a review). In the case of quantum systems it
seems more appropriate to adopt the terms "regular" and
"irregular" motion' which have been subject to many in-
vestigations (see, e.g., Refs. 18 and 19). The distribution
of nearest-neighbor spacings is used as a tool to distin-
guish between regular and irregular spectral sequences.
Interestingly, the Poisson and Wigner distributions dis-
cussed above are the appropriate distributions associated
with regular and irregular spectral sequences, respective-

18,20

The classical model system of two harmonic oscillators
with equal frequencies coupled by a quartic term -q iqz,
where q~ and q2 are the coordinates of the oscillators,
shows a transition from quasiperiodicity to chaoticity. '

Recently it has been shown that the analogous quantum

system exhibits a transition from regularity to irregulari-
ty. The fractal dimension function may be used to
demonstrate and characterize this transition. Starting at
some energy, the spectrum of the system is cut into
pieces of 200 levels each. For each piece the fractal di-
mension function has been computed via Eq. (2) and de-
picted in Fig. 2. With growing energy the fractal dimen-
sion function withdraws from the one associated with the
Poisson set and smoothly approaches the function associ-
ated with the Wigner set, thereby uncovering a transition
from regularity to irregularity.

In conclusion we may say that the concept of a fractal
dimension function leads to a powerful method to analyze
fractals. This function provides additional information
on the system, is easily evaluated numerically, and interre-
lates the notion of fractal dimension to statistics. The ap-
plications to subsets of one-dimensional Euclidean space
have been chosen because of simplicity. Extensions to
more general fractals should be straightforward.
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In statistical investigations care must be taken that all levels
considered are of the same symmetry. We have taken the to-
tally symmetric levels. Care must also be taken not to include
the first levels of a system of coupled harmonic oscillators,
since they exhibit an anomalous behavior {Refs. 19 and 22).


