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A discrete-ordinate method [J. Comput. Phys. SS, 313 (1984)] based on nonclassical polynomials
is applied to the solution of a large class of Fokker-Planck equations with nonlinear coefficients.
These Fokker-Planck equations arise in the description of nonequilibrium processes in reactive sys-
tems, laser systems, and model systems with bistable potentials. This subject has received consider-
able attention in recent years in connection with stochastic processes in physics, cooperative phe-
nomena, and synergetics. The present approach is based on an eigenfunction expansion of the time-
dependent probability density function. A discrete-ordinate method is employed in a numerical cal-
culation of the eigenvalues and corresponding eigenfunctions of the Fokker-Planck operator. A gen-
eral procedure for determining the eigenvalue spectrum of such Fokker-Planck operators with the
discrete-ordinate method based on nonclassical polynomials, constructed so as to give rapid conver-
gence of the eigenvalues, is described. The method is applied to several systems which include a
model problem for which an analytic solution is known, a model with a triple-well potential in the
Schrodinger equation equivalent to the Fokker-Planck equation, and to a model for the the trans-
gauche isomerization of n-butane in carbon tetrachloride. The present methods for studying eigen-
value and boundary-value problems should be applicable to a wide variety of problems in addition to
those presented here.

I. INTRODUCTION

The Fokker-Planck equation (FPE) with nonlinear drift
and diffusion terms is often employed to describe the time
evolution of nonequilibrium systems in physics, chemis-
try, biology, and the applied sciences. ' 3 Some of the
physical problems considered include model systems for
Brownian motion and diffusion, " chemically reactive
systems, ' ' laser systems, ' ' and many other applica-
tions. Much of the attention devoted to such problems in
recent years is due to the relationship of such models to
the study of nonequilibrium phenomena, cooperative phe-
nomena, and synergetics. '

A study based on the (one-dimensional) FPE concerns
itself with the probability density function (PDF) P(x, t),
which gives the probability that a macroscopic property
will take on a specific value x at time t. The purpose of
the present paper is to apply a recently developed
discrete-ordinate method to the solution of the FPE of the
form

BP(x, t) 8[A(x)P(x, t)] t) [B(x)P(x,t)]
Q~ 2

where, A (x) and 8(x) are generally referred to as the drift
and diffusion coefficients, respectively. The explicit
forms of A (x) and 8 (x) vary considerably and depend on
the particular application considered. It is useful to note
that Eq. (1) is a linear differential equation with coeffi-
cients A(x) and B(x) which may be linear or nonlinear
functions of x.

For certain choices of these coefficients, there are spe-
cial solutions worthy of mention. For example, with

g (x)=x 3~2 and 8(x)=x, the FPE is an approximation
to the Boltzmann equation of kinetic theory for the relax-
ation of an ensemble of infinitely heavy particles dilutely
dispersed in a heat bath of light particles (the Rayleigh
problem), interacting via hard-sphere collisions. o ' The
equilibrium state is a Maxwellian (Gaussian) distribution,
and the PDF P(x, t) is known analytically for an initial 5
function distribution and for an initial Gaussian distribu-
tion. For an initial Gaussian distribution, P(x, t) remains
Ciaussian with a time-dependent variance or temperature.

For the analogous relaxation of infinitely light particles
in a heat bath of heavy particles (the Lorentz problem),
A(x)=(x —2)x' and 8(x)=x ~ . ' ' In this case, a
simple analytic solution comparable to the Rayleigh prob-
lem is not known. This situation has the physically im-
portant application to the study of the thermalization of
electrons in gaseous systems, which has been discussed
elsewhere. ' A variety of special soluble Fokker-Planck
equations have been discussed by other authors.

The present work focuses on problems for which A (x)
and 8(x) are nonlinear such that the equilibrium solution
may possess two states; that is, P(x, oc) is bimodal. For
such systems, there is the possibility for the time-
dependent solution to exhibit a bifurcation and the solu-
tion will in general depend on the initial condition. As
mentioned previously, Fokker-Planck equations of the
general form given by Eq. (1) are employed to model the
behavior of such systems. It is important to note that an
analysis based on the FPE is one of many methods em-

ployed in the study of such systems and, for some cases, it
may, not be the appropriate description.

In the present paper, three different problems with dif-
ferent choices A (x) and 8(x) are chosen to demonstrate
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the applicability of the discrete-ordinate method to the
solution of Fokker-Planck equations of this type. The
first is a model considered by Wehner and Wolfer, de-
fined by the following drift and diffusion coefficients:

A(x)= —,tanh(x)[1 —2sech (x)],
B(x)=sech (x) .

(2a)

(2b)

An analytic solution of this FPE can be obtained with an
appropriate change of variable as discussed in Sec. III A.
The numerical solution will be compared with the exact
solution and thus this study provides a useful check of the
numerical methods employed.

The second FPE considered is one that has received
considerable attention in the literature. It is defined
with the coefficients

A(x) =gx —ax,
B(x)=e .

(3a)

(3b)

This FPE has been considered by many authors in a study
of the role of fluctuations in systems far from equilibrium
and the subsequent evolution of such systems. The main
interest in this paper is to obtain numerical solutions for
this system for a wide range of values of the parameters in
Eq. (3). It is useful to note that in these studies, I/e is
identified as the system size parameter and e is then a
measure of the fluctuations in the system. "' ' If e=O, a
nonequilibrium state will relax deterministically to its
equilibrium state, that is, if macroscopic variables initially
have a fixed value, then at any subsequent time they will
have fixed values. As e becomes larger, the Auctuations
tend to dominate and the variance of the PDF P(x, t) be-
comes large.

Several workers have sought numerical and semianalyt-
ical solutions to Eq. (1) with A(x) and B(x) defined by
Eq. (3). Among the methods used are scaling theory, 3

which is based on a nonlinear transformation of the FPE
and is valid for e~O. Gaussian decoupling is another
method that applies in this limit and employs a Gaussian
approximation of the solution at each time. Recently, In-
dira et al. have employed a finite-element method and a
Monte Carlo simulation to solve this FPE. They com-
pared their essentially exact results with these approxi-
mate methods and suggest that the scaling theory is the
most accurate method in the e~O limit.

The third example is an application to chemical reac-
tion kinetics for a system with two stable states. The par-
ticular application is the trans-gauche isomerization of
n-butane in carbon tetrachloride considered by Marechal
and Moreau" and by Montgomery et ah. ' This system
can be studied in an approximate fashion with the FPE
and the coefficients

All these systems defined by the coefficients in Eqs.
(2)—(4) have bimodal steady states. The method of solu-
tion of Eq. (1) employed in this paper is based on an
eigenfunction expansion of P(x, t) as discussed by several
authors 4'. ' ' ' ' The eigenfunctions and eigenvalues
are determined with the numerical discrete-ordinate
method (DO) and associated nonclassical polynomials.
The DQ method of solution is based on the representation
of the derivative operator d/dx and hence differential
operators such as the operator defined by the right-hand
side (rhs) of Eq. (1), in a discrete basis defined by a set of
quadrature points. In a previous paper, the method of
representing the derivative and differential operators in a
DO representation was discussed at length. A new quad-
rature procedure is introduced in this paper that reflects
the bimodal nature of the equilibrium PDF that charac-
terizes these bistable systems. The convergence of the
eigenvalues and eigenfunctions is rapid with this method.

Although there exist other methods of solution, the
eigenfunction expansion has the advantage of yielding
eigenvalues which often have a useful physical interpreta-
tion. The reciprocal of the eigenvalues gives the funda-
mental relaxation times of the system and for these bi-
stable systems the smallest f'inite eigenvalue can be related
to the long-time rate coefficient' ' or the switching time
in bimodel laser systems. ' ' Also, for some systems, the
FPE can be transformed to a Schrodinger equation '

and the eigenvalues can be interpreted as the bound states
in a potential derived from the coefficients in the FPE.
The present results for the eigenvalues of the Fokker-
Planck equations considered in this paper are superior to
the results obtained to date by other workers. Many of
these other calculations have been based on variational,
WKB, and finite-element methods, and for the mast part
only a very restricted portion of the eigenval'ue spectrum
is obtained, and generally for a smaH range of the parame-
ters in the coefficients. The DO method of solution of the
FPE is outlined in Sec. II. Section III presents the results
of the application of the DO method to several systems.

II. SOLUTION OF THE FOKKER-PLANCK
EQUATION

We begin our development with the standard eigenfunc-
tion expansion of P(x, t) '' In Sec. I. II B, we develop a
technique to determine numerically these eigenfunctions
and corresponding eigenvalues. In particular, Fokker-
Planck (FP) equations with bimodal stationary solutions
are considered, although the present method is by no
means limited to such equations. %'e seek solutions to
Eq. (1) which satisfy the boundary condition P(x, t)~O as
x~+ ao, for all of the models considered in this paper.
Equation (1) may be rewritten as

1 dU(x)
vm dx

B(x)=D,

(4a)

(4b)

BP(x, t) LP( )
Bt

where L, is the FP operator. The stationary solution of
Eq. (1) is assumed to exist and is given by

where v is the collision frequency, D is a diffusion coeffi-
cient, and U(x) is a double-well potential.

Po(x)=&exp —J, dx' —ln[B(x)]
" A(x')

B(x')
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where X is a normalization constant such that
00

Pp(x)dx = 1. Pp(x) plays an important role in the
standard eigenfunction expansion since the eigenfunctions
are orthonormal with respect to Pp '(x). The formal
solution of Eq. (5) is given by

P(x, t)=e 'P(x, O) . (7)

LP„(x)= A.„P„(x)—,
we have the expansion

(8)

P(x,O)= g a„P„(x),
n=0

where the expansion coefficients a„are given by

a„= f P„(x)P(x,O)dx .

The functions P„ in Eq. (10) are related to P„by
P„(x)

P„(x)=
Pp(x)

and with Eqs. (8)—(11) we get from Eq. (7) the eigenfunc-
tion expansion

P( x, t) = g a„exp( A,„t)P„(x) .—
n=0

(12)

Equation (12) is the standard eigenfunction expansion
as discussed often in the literature. It is a useful descrip-
tion in that the reciprocals of the eigenvalues are the
fundamental relaxation times of the system and the nature
of the eigenvalue spectrum governs the approach of the
system to equilibrium. It is useful to note that since
1,„)0, n )0, and Ap ——0, then P(x, t)~Pp(x) as t~ oo. '

The task, then, is to find the eigenfunctions and corre-
sponding eigenvalues of Eq. (8). It is convenient to con-
sider the transform of L of the form S '(x)LS(x) where
S(x) is some positive-definite function. The eigenfunc-
tions of the transformed operator are P„(x)IS(x). Two
of these transformations have been widely used. The first
is defined by S=Po, giving the operator defined by

A. Eigenfunction expansion

The formal solution, Eq. (7), may be evaluated by ex-
panding the initial distribution function in eigenfunctions
of L and then applying e ' term by term. Thus if P„(x)
are the eigenfunctions of L, defined by

standpoint, it is more convenient to consider Eq. (14) than
Eq. (8) since P„(x) are more slowly varying than P„(x)
and more easily evaluated [compare Pp= 1 and Pp(x), Eq.
(6)]. In addition, it is easier to obtain a symmetric repre-
sentation of L than L, since in the former case a basis set
orthonormal over Pp(x) is required while in the latter case
a set of functions orthonormal over Po ' is needed, which
is much more difficult to generate.

The second widely used transformation is defined by

P —1/2LP 1/2 (15)

This form of the operator is self-adjoint with the scalar
product defined with unit weight function. In particular,
for systems for which B( x)= e, the eigenvalue problem
may be cast into the form of a Schrodinger equation. The
eigenfunctions P„satisfy

eP „"(x)—[ V(x) —A,„]P„(x)=0, (16)

where the potential V(x) is given by

1 [A(x)] dA(x)
2 2Edx' (17)

This is especially useful, since many techniques have been
developed in quantum mechanics to find the eigenvalues
and eigenfunctions of Eq. (16). Conversely, the tech-
niques developed in this paper may be applied to problems
of the form Eq. (16).

These are not the only transformations of the operator
which are useful. In Sec. II B it will be shown how to find
a transformation S(x) for which a self-adjoint operator is
defined with respect to an arbitrary weight function.
With such a transformation, the DO method developed in
Sec. III B becomes very flexible.

B. The discrete-ordinate method

The discrete-ordinate method, introduced by the au-
thors in a previous paper, is employed in the present pa-
per to determine the eigenfunctions and eigenvalues of the
Fokker-Planck operator. This method consists of
representing functions, in particular the eigenfunctions
and distribution functions, as column vectors f whose N
elements are f; wf(x; ). The po=ints [x; I are the
quadrature points, and [w; ] are the corresponding quad-
rature weights of some integration rule. This quadrature
rule is defined by

N —1

L =Po 'LPo (13)
w(x)f(x)dx= g w;f(x;),

i=0
(18)

The eigenfunctions of L, P„(x), are given by Eq. (11) and
the eigenvalue equation LP„=—A,„P„ is given explicitly
by

dP„(x) d P„(x)—A (x) +B(x) = —A.„P„(x),
dx dx

(14)

where Eq. (13) has been used. With the definition Eq.
(13), or the explicit form Eq. (14), it is clear that the
operator L is self-adjoint with the scalar product defined
with Pp(x) as the weight function. From a computational

w(x)R„(x)R~(x)dx =5„~ .

where f(x) is some function defined on the interval
( —oo, oo ), and w (x) is a suitable weight function. Iff(x)
is a polynomial of degree 2N —1 or less, then Eq. (18) is
exact. The points [x;] are the zeros of the Nth order po--
lynomial, R~(x), of the set of polynomials orthonormal
with respect to the weight function w (x); that is,

(19)

It was also shown, provided that f (x) is a polynomial of
degree less than N, that the representation of the function
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f=T'P,
where the elements of the matrix T are

(21)

T~~ =R„(xj)wj~ (22)

The basis of the DO method is the representation of the
derivative operator d/dx, in the discrete space defined by
the points in the quadrature rule, Eq. (18). This is easily
done by using the transformation T to transform the
derivative operator from the polynomial basis to the DO
basis, thus

D=T'D T, (23)

where IY is the polynomial representation of the deriva-
tive operator and D is the DO representation of this
operator. The operator D so constructed satisfies

f=D.f,
which represents a high-order algorithm for numerical
differentiation based on quadrature weights and points.
The matrix representative of differential operators can be
written in a simp1e fashion by replacing derivatives with
D, and functions with their values at the set of points,
[x;J. Although one can proceed in this way with the
solution of the eigenvalue problem, Eq. (14), it is useful to
introduce a second set of functions, defined by

' 1/2

R„(x), (25)
Pp(x)

Q„(x)=

which are orthonormal with respect to I'0', that is,

f Pa(x)Q„(x)Q (x)dx =5„. (26)

The matrix elements of the operator L in the basis

I Q„(x)] are given by

(I.i')„= f P0(x)Q„(x)LQ~(x)dx . (27)

With an integration by parts, Eq. (27) becomes

(L~)„=—f P, (x)B(x)Q„'(x)Q~(x)dx . (28)

It is clear that I ~ is symmetric in this representation and
the superscript p denotes a representation in the polyno-
mial basis I R„(x)I. In terms of the polynomial set
IR„(x)[ and the weight function w(x), upon which the
quadrature rule is based, we have, substituting Eq. (25)
into Eq. (28), that

(I-~)„
PD (x)
2P0(x)

BxNx '+
dx 2w (x)

f(x) described above is equivalent to representing it as the
vector of its expansion coefficients P in the polynomial
basis IR„(x)J. The N components of P are defined by

(P)„=f w(x)R„(x)f(x)dx . (20)

The equivalence of these representations is given by uni-
tary transformation between the two bases, that is,

It is important to note that-Eq. (29) is not the representa-
tion of the operator L in the polynomial basis, IR„(x)I
defined by Eq. (13), which would be nonsymmetric, but
rather it is the representation of the operator
[PD(x)w(x)] ' L[P0(x)w(x)]'~ . This operator is sym-
metric in the polynomial basis IR„(x)I. The relation Eq.
(29) is a general relation independent of choice of basis
and equilibrium weight, and has a form which is clearly
appropriate for the quadrature rule, Eq. (18); thus,

N —1

(I').~=—g B«k)wk[Rm(xk)+g(xk»m(xk)]
Ic =0

X [R„' (xk )+g(xk )R„(xk)], (30)

where

w'(x)()=() Po(x)
2P, (x)

(31)

The derivative of R„(x) may be evaluated with Eq. (24)
and we have that

N —1

(Li')„=—g wj' R (xj )
j=O

N —1

X gw R„(x;)
i =0

N —1

X X B«k)[Dk;+g(xk +'k]

III. NUMERICAL APPLICATIONS

X [Dkj+g «k)~,k], (32)

where the Kronecker 6 function has been introduced and
the summations have been rearranged. The representation
of the operator L in the DO basis may be written down by
noting that the transformation between the two basis sets
is given by

(33)

With Eq. (32) and the unitarity condition, T'T=I, the
unit matrix, we have that

N —1

L;,=—g B(xk)[Dk;+g(xk»kl[Dk, +g(xk@jk] (34)
k=0

The great advantage of the DO method is that the ma-
trix representation of the FP operator is easily written
down and evaluated for arbitrary coefficients A (x) and
B(x). Although any convenient set of polynomials,
IR„(x)I, could be employed, it is expected that the con-
vergence of Eq. (12) would be rapid for w (x) =Pa(x). For
this case g (x) =0, and L;~, given by Eq. (34), is simplified.
However, the polynomial basis set for this choice of
weight function may be difficult to construct; hence alter-
nate choices of basis sets need to be made, and Eq. (34)
provides a symmetric DO representation for such basis
sets.

d w'(x) Po (x)
dx 2w(x) 2PD(x)

) (29)
The numerical method developed in Sec. II will be ap-

plied to three Fp equations discussed in Sec. I. Currently
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A. Analytic example

In order to demonstrate the applicability of the present
method, the FP equation defined by

1

Bt
' 4 Bx

P (x,t)=—
I tanh(x )[1+2 sech (x )]P(x, t ) I

a2
+ [sech (x)P(x, t)] (36)

Bx

is considered. This corresponds to the definitions of 2 (x)
and B(x) given in Eq. (2). This equation was also con-
sidered by other authors. ' The simple change of vari-
able y = —,sinh(x) linearizes the drift coefficient of Eq.
(36); thus, we find that

BP(y, t) 1 dyP(y, t) 1 8 (y, t)
Bt 4 By 2 gy2

(37)

there has been a great deal of interest in systems which
have bistable steady states. Consequently, we have chosen
to apply the DO method to this class of problems, al-
though the DQ method is applicable to a much wider
class of problems. Since the equilibrium solutions are bi-
modal, it is desirable that the weight function w(x) also
be bimodal.

There are no standard polynomial sets orthonormal
over such weight functions, therefore we have generated
sets of polynomials, I R„(x), n =0, 1,. . . I, orthonormal
with respect to the weight functions defined by

w(a, y;x)=¹ r" + " (35)

where % is a normalization constant and a and y are two
parameters. The weight function w(a, y;x) is the equili-
brium distribution of the FP equation with the coeffi-
cients defined by Eq. (3) discussed at length in Sec. III B.
The corresponding polynomials were generated specifical-
ly for the solution of this problem, although they are more
widely applicable. This weight function is bimodal if
both e and y are positive. The peaks are found at
+(a/y) and the width of the peaks are inversely related
to the size of y. In the Appendix, we discuss the calcula-
tion of these polynomials, the calculation of the points
and weights of the corresponding quadrature rule, and the
construction of the derivative operator defined by Eq.
(24). The three problems outlined in the introduction are
solved with use of the sets of polynomials and correspond-
ing weight functions described above.

Equation (37) has the form of the standard "linear" FP
equation and, with a 5-function initial condition at yo, has
the solution

1
P(y, t) = exp

[m.(1—z )]'i
(y —zyo)'

1 —z 2 (3&)

where z=e ' ". Substituting the definition of y into Eq.
(38) and making use of dy = —,

' cosh(x)dx we have

[sinh(x) —sinh(xo)z]

4(1 —z )

cosh(x)P(x t)= z, exp
[477(1—z )]'i

(39)
which is the desired result.

The first X eigenfunctions of the corresponding FP
operator, L, of Eq. (37) may be determined exactly by us-
ing the method developed in Sec. II with X Hermite
quadrature points and weights. This is a consequence of
the fact that the adjoint of the operator on the rhs of Eq.
(37) is precisely the Hermite differential operator divided
by 8. The exact eigenvalues are

g„=n/4, n =0, 1,. . . . (40)

As a test of our method, the DO representation of the
operator defined by Eq. (36), that is without the change of
variable, was obtained with Eq. (34) in the DO basis, de-
fined by the points and weights function w(2, 2;x). This
matrix representation of the FP operator was diagonalized
to give approximate eigenvalues and eigenfunctions.
Table I shows the numerical convergence of 4i,„and as
can be seen from the results in the table, 15 eigenvalues
are converged to no less than four significant figures with
70 points.

The time-dependent PDF P(x, t) was determined for an
initial 5(x —xp) distribution function with xo ———1.254,
taken to coincide with one of the quadrature points. Al-
though this gives an exact representation of the initial dis-
tribution function; it is clear that with a finite number of
points the numerical solution will deviate from the exact
result at sufficiently small times. However, the graph of
the numerical P(x, t) shown in Fig. 1 for several times is
indistinguishable from the analytic result. A total of 60
quadrature points were used in this calculation. Wehner
and Wolfer recently studied this model as a test of their
numerical path-integral technique. Their method involves
a propagation of the initial distribution in time, and the
final calculated Po(x) is within a few percent of the ana-
lytic result. Since the present method is based on an
eigenfunction expansion and the lowest-order eigenfunc-

TABLE I. Convergence of eigenvalues. Example A.

10
20
30
40
50
60
70

4Ao

0.0273
0.001 03
0.000 0104
0.000 000 04
0.000 000 00
0.000000 00

1.0277
1.000 617
1.000 003 76
1.000 000 00
1.000 000 00
1.000 000 00

4A, 2

2.941
2.0900
2.003 11
2.000 024 6
2.000 000 04
2.000 000 00
2.000 000 00

4i, s

8.998
5.679
5.0541
5.000 709
4.999998 6
5.000 00000
5.000 000 00

4A, io

23.3
14.72
11.33
10.171
10.003 08
10.000 003 44

4~is

51.86
28.65
20.08
16.40
15.0934
14.996 59
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2n:

cL 0.6-

0.2-

(45a)

~nm I(Pm +2Pm + 1 )
1/2

L„=n(p„+2p„+1)', n =I —21/2

L nm O~ otherwise

where the relation

(45b)

(45c)

(45d)

I.„=—f ew(1/2e, 1/2~;x)R„'(x)R' (x)dx, (44)

are given explicitly by

en 1I nm + PnPn —1Pn —2
n

X

FIG. 1. Time variation of the probability density function for
example 2 (see text); t is equal to, for curve a, 0.6; b, 2.0; c, 4.0;
d, 10.0. ———equilibrium distribution, Po(x).

tions are determined most accurately, the numerical result
approaches more closely the true solution as t increases.

dP(x, t) B[(gx' ax)P(—x, t)] d'P(x, t)
at ax Bx

(41)

B. Diffusion in a bistable potential

A model FP equation that has received considerable at-
tention recently is

R„' (x )=,~2 R„1(x)+—(p„p„1p„2)'~ R„3(x),

(46)

(47)

derived in the Appendix, and the orthonormality of the
polynomials have been used. The approximate eigenfunc-
tions Pn(x) and eigenvalues, in the basis, IRn(x)] are
found by diagonalizing I. given by Eq. (45). Since Eq.
(45) defines a pentadiagonal matrix, the convergence of
the eigenvalues and eigenfunctions is expected to be very
rapid. If the differential operator on the right-hand side
of this Eq. (43) is transformed to the Schrodinger form,
Eq. (16), then the potential equation (17) is

X —X
V(x) = ——,(3x —1) .

4e

Van Kampen ' and Dekker and van Kampen, have
determined a few eigenvalues of this FPE. Suzuki has
employed this model in an application of scaling theory.
A preliminary study, based on the DO method, was also
carried out by the present authors for the special case
g=a =a=1. Recently Indira et al. have obtained nu-
merical solutions based on a finite-element method as well
as with a Monte Carlo simulation. Brand et a/. ' have
applied variational methods in the calculation of upper
and lower bounds to the lowest two eigenvalues. The
equilibrium solution is given by

CL 2- b

(a)

Po(x) =w(a/2F, g/2e;x), (42)

and coincides with the weight function Eq. (35) with
a=a/2e and y=g/2e. An immediate consequence of
this is that the DO representation of the FP operator de-
fined by Eq. (34) and the polynomial representation de-
fined by Eq. (29) are equivalent. It is, however, more con-
venient to work in the polynomial basis since these matrix
elements are simply related to the recurrence coefficients
Pn that define the polynomials as discussed in the Appen-
dix. If a and g are restricted to take on positive values,
one can set a =g =1 since aH that is required is a redefi-
nition of t, x, and e. Thus the FP equation may be writ-
ten as

8-
(b)

aP(x, t) a[(x' —x)P(x, t)] a'P(x, t)+6'
at Bx 3x

(43)

where e is the only parameter and remains as a measure of
either the system size or temperature. ' The matrix ele-
ments of the operator I., Eq. (28),

I

0. 0
1 I I I

—0. 8 -0.0 0 0, 8
X

FIG. 2. (a) Potential in the Schrodinger equation, Eq. (47); e
is equal to, for curve a, 0.005; b, 0.025; c, 0.05; d, 0.1. (b)
Equilibrium distribution function, Eq. (42); e is equal to, for
curve a, 0.005; b, 0.025; c, 0.05; d, 0.1.
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TABLE II. Convergence of eigenvalues. Quartic potential (@=0.1, a =g =1). Numbers in parentheses signify powers of 10; i.e.,
3.5016(—2) means 3.5016X 10

3
5
8

10
15
20
30
40
50
60

1.15(—1)
5.15(—2)
3.5016(—2)
3.3962(—2)
3.357 430 2(—2)
3.354 569 9{—2)
3.354 5300(—2)
3.354 5300(—2)

1.64
1.196
1.031
0.9647
0.928 412
0.927 440
0.927 372
0.927 372

A3

2.83
1.863
1.7509
1.688 28
1.680430
1.680 264
1.680 264

5.05
4.34
3.8442
3.738 081
3.733 990
3.733 985
3.733 985

14.83
12.671
11.7001
11.687 463
11.687 442
11.687 442

A 15

35.01
23.299
22.647 89
22.639 923
22.639 908

~20

43.33
36.79
36.04413 .

36.031 815

74.83
56.512
51.9850
51.5419

The potential V(x), and the corresponding equilibrium
distribution Po(x) are shown in Fig. 2 for various values
of e'. For sufficiently small values of e, this potential is
characterized by the three minima at

and their corresponding eigenvalues are given by

Ak =2k, k=0, 1,2, . . .

k ——k+1, k =0, 1,2, . . .

(51a)

(5 lb)

x'=0,
x+ =+[-', +( —,'+2.)'"]'".

(48a)

(48b)

The potential barriers between these three minima become
larger as e becomes smaller. In the limit of @~0,approx-
imate eigenvalues may be found by expanding the poten-
tial about the minima, keeping only the quadratic terms
and neglecting terms of order e. The resulting harmonic
potentials given by

+ 2

V—(x)= —1, x=x-(x —x -)
(49a)

V (x)= +—,x=0o x 1

4e 2' (49b)

P k (x) =Hk((x —x +—)l~'~')exp
—(x —x —

)
+ 2

2E'
(50a)

—X
P k(x) =IIk(x/(2e)'~')exp

4e
(50b)

approximate V(x) near x=x — and x=x, respectively.
The eigensolutions of Eq. (16) with the potentials defined
by Eqs. (49) are given by

P„(x)= [P k (x)+P k (x)], n =4k
2

(52a)

P„(x)= [P k (x) —P k (x)], n =4k+1 (52b)
2

P„(x)=P k(x), n =2k+2, k even (52c)

P„(x)=Pk(x), n =2k+1, k odd (52d)

where the set I P„(x)j is obtained by letting k take on in-
teger values in accordance with Eq. (52). This is not the
only possible set of linear combinations that may be used,
although it must be chosen such that P„'s come in even
and odd pairs, since the potential given by Eq. (47) is
even. This analysis is similar to the one given by Larson
and Kostin' for a chemical kinetic model.

where Hk is the kth Hermite polynomial. Thus in the
limit of very small e the eigenvalues approach integer
values. The zero eigenvalue is doubly degenerate and the
remaining even eigenvalues are triply degenerate. In this
limit, where there is no coupling between adjacent wells,
the eigenfunctions [P„(x)I of Eq. (16) with V(x) given by
Eq. (47) are linear combinations of [Pk(x),Pk(x)}. One
such combination is given by

TABLE III. Convergence of eigenvalues. Quartic potentials (@=0.01, a =g =1).

~20 ~25

10
20
30
40
50
60
70
80
90

100
DvK'

3.37(—7)
1.92(—10)
1.05(—11)
6.452( —12)
6.1681(—12)
6.15498(—12)
6.154 649 7(—12)
6.154 649 7(—12)

1.866 176
1.865 756
1.865 745
1.150
0.9831
0.968 47
0.967 877
0.967 865
0.967 86S

0.968

1.867 351
1.865 765
1.865 754
1.865 749
1.865 725
1.865 337
1.864 581
1.864 542
1.864 542

1.862

3.52
3.37
3.307
2.301
1.9222
1.869 33
1.867 016
1.866 975
1.866975

1.867

7.12
S.23
4.47
4.146
3.9797
3.945 756
3.943 S88
3.943 532
3.943 531

13.94
9.41
7.51
6.56
6.114
5.9785
5.961 59
5.960 854
5.960 839

17.53
12.901
10.771
9.543
8.9845
8.814 64
8.79404
8.793 163

29.37
23.03
16.33
14.18
12.986
12.433
12.284
12.2693

'Dekker and van Karnpen (see Ref. 28).
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The numerical convergence of A,„ for e=O. I and 0.01 is
given in Tables II and III, respectively. It is clear from
the tables that the DO method is an efficient and accurate
computational method for determining many excited
states in this triple-well potential. The only other calcula-
tions of the eigenvalue spectrum include estimates of the
lowest eigenvalues with variational methods, ' estimates
based on a finite difference calculation, and asymptotic
%'KB approximations. ' The smallest nonzero eigen-
value, A, I, becomes very small as e decreases and as the
barrier between adjacent wells [Fig. 2(a)] increases. It is
interesting to note, especially for the smaller e, that some
of the smaller eigenvalues converge more slowly than
some larger eigenvalues; see A,2 and A, 3 in Table III. The
comparison of the rates of convergence in these two cases
indicates the general trend that as e is decreased the rate
of convergence of A,„becomes slower. This may be under-
stood in terms of the approximate eigenfunctions dis-
cussed above. The eigenfunctions are approximated by
the square root of the equilibrium weight times a sum of
the polynomials. When e is small some of the eigenfunc-
tions are small in the region where the equilibrium weight
is large and vice versa, consequently many basis functions
are needed to represent those functions.

It is interesting to show the variation of the eigenvalues
and eigenfunctions as a function of E. This is useful be-
cause it gives some indication of the validity of different
approximation schemes. Figure 3 gives a plot of logIOA, I

versus —logIoe, which illustrates the very rapid decrease
of this smallest nonzero eigenvalue with an increase in the
barrier between the minima in the potential. The recipro-
cal of this eigenvalue corresponds to the relaxation time
between the stable states. Figure 4 shows the variation of
the eigenvalues A,„(n=2—17) for many of the excited
states in this potential. The approach of the eigenvalue
spectrum to the form in the e—+0 limit as given by Eq.
(51) is clear from the figure. The asymptotic values of the
eigenvalues to the right of the figure are very close to in-
teger values, particularly for the lower states, and the suc-
cessive singlet-triplet pattern is clearly seen. Figure 5
shows several of the eigenfunctions for @=0.01, which in-
clude some highly excited states. The features that are
clear include the symmetric form of P„ for n even and an-

O

—8

t

1.8
—Iog &

10

FIG. 3. Variation of A, I with e; Fokker-Planck operator de-
fined by Eq. (43).

12-

-(og, ~

FIG. 4. Variation of A,„with e; Fokker-Planck operator de-
fined by Eq. {43)with n =2 {lowest curve) to n =17.

tisymmetric for n odd, and that the number of nodes is
equal to n. It is interesting to note that P„ for the lower
states appear concentrated in the region of the minima of
the potential V(x). For the excited states (n =7 and 10),
P„ is not concentrated near the minima. Figure 6 shows
the variation of a particular eigenfunction $3(x) as a
function of e. The eigenfunctions become more concen-
trated in the region of the minima of the potential with
increasing e. It is interesting to note the dramatic change
in the form of the eigenfunction between e= „', and
Figure 7 provides a comparison of the calculated $2(x)
and the approximate form in terms of Hermite functions
given by Eq. (52), valid for e—+0. This comparison is use-
fu1 since, together with Fig. 4, it suggests that the e~O
limit is qualitatively attained for e(0.01, at least for the
lowest states.

The time-dependent solution of the FPE is corn. pletely
determined once the expansion coefficients of the initial
distribution are determined. For an initial 5-function dis-
tribution 5(x —xo), the PDF is given by

P(x, t)= g P„(x)P„(xo)exp(—A,„t) .
n=0

(53)

Figure 8 shows the time evolution of the distribution
function for an initial 6-function distribution with xo ——0
and @=0.0125. The solid curves are the numerical results
while the dashed curves are obtained with scaling
theory, valid in the limit @~0. As previously men-
tioned in Sec. III A, for an initial 5-function distribution
the numerical result with a finite number of polynomials
will deviate from the actual solution for sufficiently small
t. The numerical results shown in Fig. 8 employed 100
polynomials and are converged to the resolution of the
graph except in the wings of the distribution at the small-
est times; see Fig. 8(a), x )0.6. The computation time for
these calculations is less than the time reported by Indira
et al. with a finite-element method and considerably less
than the time involved with the Monte Carlo simulations.
However, one should note that the value of e used by
these workers is very much less than we could use with
existing algorithms.
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BP(x,t) 1 r)[U'(x)P(x, t) j tl P(x, t)+D 2Q~ 2
(54)

I

&C

CL

where v is the collision frequency, I is the reduced mass
of the diffusing particle, D is the diffusion coefficient,
and U(x) is the intramolecular potential. The equilibri-
um distribution is given by

P ( ) N
—U(s)/kT (55)

where X is a normalization constant. The particular sys-
tem studied corresponds to the trans-gauche isomeriza-
tion of n-butane and has been considered recently by
Marechal and Moreau" and Montgomery et a/. ' The
potential employed in these studies is of the form

—,
' mes, (x+x, ), x & —a

U(x) = V, —, me&)ix—, —a~x&b (56)
O. B

Vb+ , mcnab(x —xb), x ~—b2 2

0.2

Q. S
X

FIG. 8. Time variation of probability density function for
e=0.0125. , present result; ———,scaling-theory result.
t is equal to, for curve a, 0.7; b, 0.8; c, 1.0; d, 1.2; e, 1.4; f, 1.6;
g, 1.8; h, 2.0.

which the solution is dominated by the largest eigen-
values. With an increase in time the lower-order eigen-
values contribute most and if these are close to the har-
monic values then Suzuki's solution will be close to the
true solution. It should be noted, though, that scaling
theory fails during a time regime for which the harmonic
approximation of the eigenvalues is valid.

From the present study it appears that there are really
only two rather than three distinct time domains as de-
fined by 1/A,

&
and the reciprocal of some average eigen-

value I/k„, n & 1. However, it is always possible to define
different time regimes for which a group of eigenvalues
makes a dominate contribution to the solution, but a com-
parable separation as occurs between A.

&
and k2 does not

occur elsewhere in the spectrum.

d oNg (t)
dt

= —k(t)5N„(t),

where

(57)

oN„(t) =N~q Nq (t), — (58)

is the deviation from the equilibrium number of molecules
in one conformation and k(t) is the time-dependent rate
constant. An explicit expression for k(t) may be de-
rived" assuming that the molecules have a Boltzmann
distribution in one well and are absent from the other
well. This expression is given by

k(t)= g A„exp( —A,„t),
n=0

where

(59)

f P„(x)dx (60)

where a= V,x„b=Vbxb, co, = V, co~/(1 —V, ), and

~& = Vbco', /(1 —Vb) with V, =2V, /(m~', x, ) and

Vb =2(V, —Vb)/(mao&xb). The quantities a, b, co„and
cob are chosen such that the potential and first derivative
are continuous. The other parameters used are given in
Table IV and are chosen as in the previous papers. "'
With this potential the equilibrium distribution is bimo-
dal.

The change in the concentration of isomers is given by
a rate law of the form

C. Chemical isomerization as a diffusion process

Chemical reactions can often be modeled as a diffusion
process in configuration space in which reactants pass
from a local potential minimum over a barrier to prod-
ucts. ' ' The reactants and products represent two stable
states of a bimodal potential and the reactive process is
modeled with a FPE for a PDF in position as well as velo-
city. In the low-friction, or high-collision-rate, limit, '

the approximate FPE is

TABLE IV. Potential parameters in n-butane isomerization.

Vb =2.93 kJ mole
V, = 12.34 kJ mole

x =xb = 1.57 A
co& ——1.06& 10" sec
v= 3.0X 10' sec

T=300 K
m =1.85X10 g



DISCRETE-ORDINATE METHOD OF SOLUTION OF FOKKER-PLANCK. . . 1865

0.06-
0.8

0.OZ-

-1.S —1 —O. S 0 G. S 1 1.S
X

FIG. 9. Intramolecular potential for isomerization of n-
butane. U(x) and x in units of mv x,' and x„respectively.

; curve a, harmonic potential Eq. (55); curve b, polynomial
fit of harmonic potential. ~, polynomial fit of the true poten-
tial.

vt

FIG. 10. Variation of the time-dependent coefficient.
curve a, numerical fit of the harmonic potential; curve b, nu-

merical fit of the true potential. , result of Marechal and
Moreau (Ref. 11). ---, result of Montgomery, Chandler, and
Berne (Ref. 12); the value of v used in Ref. 12 is listed as
3&(10' sec

The time-dependent rate coefficient is then calculated
with a knowledge of eigenfunctions P„(x) and eigenvalues
A,n of the Fokker-Planck operator on the right-hand side
of Eq. (54); that is,

d[U'(x)P„(x, t)] d P„(x,t)+D, = —A,„P„(x,t) .
vm dX dX

(61)

In order to implement the present DO method, a fit of
the potential was made with an 11th-order polynomial. In
addition, a similar fit was made of the true potential in

the region of interest. These three forms of the potential
are given in Fig. 9. Approximate eigenvalues and eigen-
functions were obtained by diagonalizing the DO repre-
sentation for this problem, Eq. (34), where Po is given by
Eq. (55) and the weight function is w(2, 2;x ).

The expansion coefficients, Eq. (60), were evaluated ap-
proximately with the quadrature rule, Eq. (18),

X—1

~n =~n g wtPn (xi ) (62)
i =N/2
N even

Table V shows the convergence of the eigenvalues versus

TABLE V. Convergence of eigenvalues: n-butane isomerization (harmonic potential). A, in units of 3)& 10' sec

A3

10
20
30
40
50
60

0.001 383 516
0.000 804 173
0.000 799 649
0.000 799 619
0.000 799 619

0.131059 88
0.126 15340
0.126 15442
0.126 15448
0.126 15448

0.207 803 48
0.211 21901
0.211 321 11
0.211 321 17
0.211 321 17

0.412 955 70
0.397 381 90
0.397 500 87
0.397 500 09
0.397 499 97
0.397 499 97

2.819874 76
0.922 500 19
0.900 81948
0.900 431 09
0.900 429 30
0.900 429 30

TABLE VI. Convergence of expansion coefficients for k(t) [harmonic potential, see Eq. (58)]. A in

units of 3&&10' sec

10
20
30
40
50
60
70
80
90

2.814 97(—4}
1.814 66(—4)
1.782 71(—4)
1.782 33( —4)
1.782 22( —4)
1.782 16( —4)
1.782 12( —4)
1.782 09( —4)
1.782 07( —4)

A2

0.437(—6)
2.348(—6)
1.999(—6)
1.900( —6)
1.856( —6)
1.831(—6)
1.815(—6)
1.804( —6)
1.797{—6)

A3

7.863(—5)
3.737(—5)
3.490( —5)
3.409( —5)
3.369( —5)
3.346( —5)
3.332( —5)
3.322( —5)
3.315(—5)

A5

2.026(—5)
2.117(—5)
1.963( —5)
1.879( —5)
1.837{—5)
1.814( —5)
1.799( —5)
1.789( —5 }
1.782( —5)

5.304(—5)
5.485( —5)
3.818( —5)
3.385( —5)
3.159(—5)
3.035( —5)
2.960( —5)
2.910(—5)
2.875( —5)
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TABLE VII. Comparison of transition times for n-butane isomerization. ~ in units of 10 sec, A
in units of 10 sec

Marechal and Moreau'
+lt

Fitted harmonic
n

Fitted actual
&n

3.7
0.027
0.017

'Reference 11.

0.743
1.95

10.0

4.17
0.0264
0.0157
0.0110
0.0084
0.0066

5.35
0.0539
0.994
1.06
0.0535
1.54

3.86
0.0249
0.0204
0.0149
0.0114
0.0085

5.20
0.0338
0.112
0.975
0.0093
1.64

the number of quadrature points. As can clearly be seen
from the table, the rate of convergence of the eigenvalues
is extremely rapid in contrast to the suggestion of previ-
ous workers. ' As expected, A,

&
is well separated from the

other eigenvalues and corresponds to the rate of diffusion
from one state to the other. The rate of convergence of
the expansion coefficients 3„ in the expression for k (t),
Eq. (59), is shown in Table VI. These converge more
slowly than the eigenvalues primarily due to our use of
the quadrature rule designed for the range ( —oo, oo ) for
the integration in Eq. (60) which is on the range (0,~).
Since we are interested in the long-time behavior of k(t)
for which only the lower-order A„coefficients contribute,
the present results are satisfactory. Also, it is important
to note that A~ ~32 which, together with A,

~ &&A,2, as-
sures a limiting rate law. The present results for the two
different fits of the potential are compared together with
the limited results of Marechal et a/. in Table VII. This
table shows that the present values of the relaxation times
r„=1/A, „agree to within 10% of those by Marechal and
Moreau while the A„differ by factors of the order of 10.

Figure 10 shows a graph of the ratio k(t)/k„, versus
vt, where k„, is the rate obtained from transition-state
theory. The results obtained by Montgomery et al. and
Marechal and Moreau are also shown. The result of
Marechal and Moreau does not agree with the present re-
sult nor with that of Montgomery et al. Their result for
A &, which is the value of k (t) as it approaches a constant
value, is too low. This is probably due to the WKB ap-
proximation used, which is not valid in regions where two
classical turning points are near each other, which is the
case for the present model. An indication of the extent to
which the eigenfunction expansion, Eq. (59), converges is
given by how close to unity is k (0)/k„, . Although up to
90 quadrature points are used for the calculation of A,„ for
the results in Fig. 10, only 14 and 18 terms were retained
for curves a and 6, respectively. The restriction to this
small number of terms is due to the way which the 3„
were calculated with Eq. (62), as discussed previously. It
may be noted that with the present treatment it is impos-
sible to obtain the structure in k (t) found by Montgomery
et al. ' since the present k(t) must be a monotonic de-
creasing function as all the A„are positive. However, the
present result for the plateau value of k (r)/k„, is in very
good agreement with Montgomery et al. ' The asymptot-
ic value for k(t)/k„, , obtained by Marechal and Moreau
of 0.045 is much too low.

IV. SUMMARY

The present paper has demonstrated the application of
the discrete-ordinate method to the solution of a large
class of Fokker-Planck equations. The method is compu-
tationally accurate and efficient for a wide variety of coef-
ficients in the Fokker-Planck equation. The great advan-
tage of the present discrete-ordinate method lies in the
ease with which the symmetric-matrix representation of
the differential operator may be generated, and the flexi-
bility with respect to the choice of basis functions and
quadrature points. Since some Fokker-Planck equations
considered are equivalent to a Schrodinger equation, the
present method is also applicable to quantum-mechanical
problems.

In the application of the discrete-ordinate method to
three Fokker-Planck equations, we have demonstrated the
very rapid convergence of the eigenvalues of the Fokker-
Planck operator with different diffusion and drift coeffi-
cients. The time evolution of the probability density func-
tion has been easily determined, and the bifurcations
which occur in these bistable systems were studied. Work
is in progress toward an extension of the discrete-ordinate
method to other basis sets and to two-dimensional prob-
lems.
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APPENDIX: POLYNOMIAL BASIS
AND DERIVATIVE OPERATOR

In this appendix we develop a recurrence relation for
the recurrence coefficients for a set of polynomials which
are orthonormal over the bimodal weight function given
by Eq. (35). The corresponding quadrature weights and
points, and the derivative operator in the DO basis, are
also calculated. The set of polynomials are defined such
that R„(x) is a polynomial of degree n These polyn. omi-
als may be generated from a three-term recurrence rela-
tion of the form

P„+iR„+i(x)=(x—a„)R„(x)—P„' iR„ i(x) . (Al)

The a„are related to odd moments of w (x) by
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a„= f w(a, y;x)[R„(x)]xdx . (A2)

The relation Eq. (A2) was derived by multiplying Eq. (Al)
by w(x)R„(x) and integrating. The a„must all vanish
since the weight function is an even function and hence
we are left with the simpler recurrence relation,

P„+]R„+](x)=xR„(x)—P„' ]R„](x). (A3)

Finally, with the repeated application of Eq. (A3), the in-
tegral in Eq. (A6) may be evaluated giving, with some
rearrangement,

n+1 a
p„+2—— +— p. +] p.—. —

yp. +]
(A7)

The p„were generated by a method similar to one previ-
ously employed, based on the Cristoffel-Darboux identi-
ty,

n

y [R],(x)]'=P„' ][R„(x)R„' ](x)—R„](x)R„'(x)].
k=0

(A4)

When Eq. (A4) is multiplied by w(a, y;x) and integrated
we obtain

n+ 1=p„'+]f w(a, y;x)R„(x)R„'+](x)dx, (A5)

where the second integral vanishes since R„'(x) is orthogo-
nal to R„(x). The rhs of Eq. (A5) may be integrated by
parts, yielding

n+ 1 =p„'+] f (yx —ax)w(a, y;x)R„(x)R„+](x)dx .

(A6) ' n/2
2' I ( —„'(m+2n+1)) . (A 10)

With Eq. (A10) written out term by term and the use of
the recurrence relation for the gamma function, we have
that

Equation (A7) is the desired result. All the p„may be
found by recurrence if p] is known, since po is equal to ().
It may be determined by setting n =0 in Eq. (A3) and
squaring and integrating. This gives, with some rear-
rangement,

P] ——f w(a, y;x)x dx, (ASa)

e —yx /2+ax

(ASb)—yx 4/2+ ax'd

As in the previous paper, the recurrence relation, Eq.
(A7), for the recurrence coefficients suffers from round-
off error and it is therefore necessary to use high precision
when the p„are calculated. Thus the two integrals

I(m)= f x e r" ~+ "dx, m=Oand2 (A9)

must be evaluated essentially exactly.
These integrals were evaluated in the following manner.

The exp(ax ) factor in the integrand was expanded in a
Taylor-series expansion and the resulting integrals were
evaluated term by term, yielding

(m +1)/4
2I(m) =2
y

(m + 1)/4
2I(m)=2 y.

1/2

I ( —,
'

(m +1))+a — I ( —,(m +3))

oo

+I(—,(m+1)) g
1

2n~

n
2~2 n+ [k+ —,'(m —3)]

k=1

1/2
2 oo

I ( —,
' (m +3)) g

.y. , (2n +1)]

n
2~2 n+ [k+ —,'(m —1)] (A 1 1)

I (a)= f y' 'e «dy+y(a, x) . (A12)

By including enough terms in this expansion the first two
moments could be evaluated to any degree of accuracy.
The gamma function was evaluated by breaking it up into
two pieces,

y(a, x) =
—x&a

X+
1+ + ~ ~ ~

(A13)

The first integral of Eq. (A12) was evaluated by expand-
ing the integrand and integrating term by term. The in-
complete gamma function has a continued-fraction expan-
sion, '

With the use of Eqs. (All) —(A13) the integrals in Eq.
(A9) were evaluated to 115 decimal places and the p„were
then evaluated with the use of Eq. (A7).

We now wish to develop a discrete-ordinate derivative
operator as described previously. To do this we first find
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(Dt')„=(n+1)p„+), m =n +1 . (A15)

the matrix representation of the derivative operator in the
polynomial basis; that is,

(Dt')„= f w(a, y;x)R„(x)R' (x)dx . (A14)

From Eq. (A5) it follows directly that

(Dt')„~ =0, otherwise (i.e. , m&n +2+1) . (A17)

Equations (A15)—(A17) define the polynomial representa-
tion of the derivative operator. The corresponding DO
representation may be found with Eq. (23). The quadra-
ture points and weights were found by diagonalizing the
symmetric tridiagonal Jacobi matrix defined by

The other matrix elements may be evaluated by integrat-
ing Eq. (A14) by parts. With repeated use of the re-
currence relation, Eq. (A3), it may be shown that the only
other nonzero matrix elements are those for which
m =n+3. Thus we have that

X„~=P„, n =m+1
Xn~ =P~, m =n+1
X„=O, otherwise (i.e. ,

~

n —m
~
&1)

(A18a)

(A18b)

(A18c)

and

(Dt')„=2@(p„+(p„+2p„+,)', m =n +3 (A16)
where the quadrature points are the eigenvalues of this
matrix and the weights are the square of the first element
of the eigenvectors.
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