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We analyze convection in a rectangular box where two "substances, " such as temperature and a
solute, are diffusing. The solutions of the Boussinesq theory depend on the thermal and solute Ray-
leigh numbers RT and R„respectively, in addition to other geometrical and fluid parameters. As
R~ is increased, the conduction state becomes linearly unstable with respect to steady (periodic) con-
vection states if R, &R, ( &R, ). The critical value R, is characterized by the frequency m=0 ap-
pearing as a root of algebraic multiplicity two and geometrical multiplicity one of the linearized sta-
bility theory. Asymptotic approximations of the solutions of the nonlinear theory are obtained for
R, near R, by the Poincare-Lindstedt method. It is found that a periodic (steady-state) solution bi-
furcates supercritically (subcritically) from the conduction state at RT ——R~ (RT), where R~&RT.
The periodic branch joins the steady-state branch with an "infinite-period bifurcation" at RT ——Rb,
where R, & Rb & RT. The shape of the resulting bifurcation diagram suggests the term, A. bifurca-
tion. The infinite-period bifurcation corresponds to a heteroclinic orbit in the appropriate
amplitude-phase plane. The stabilities of the bifurcation states are determined by solving the con-
vection initial-value problem using the multiscale method.

I. INTRODUCTION

Double-diffusive convection differs from ordinary
thermal convection because of the presence of a dissolved
solute, such as salt, in the convecting fluid. The resulting
solute diffusion may alter the stability characteristics of
the fluid motion. For example, the transition from the
conduction to the convection states may be delayed by
this diffusion. More general double-diffusive convection,
such as occurs in binary fluids, involves the diffusion of
two general scalar fields.

The precise qualitative features of the transition from
the conduction to the convection states as the thermal
Rayleigh number RT increases, depends on the magnitude
of the solute Rayleigh number R, . For R, &0 (negative
solute gradient) some of the features of the transitions to
two-dimensional convection in an infinite layer with the
Rayleigh boundary conditions, as known from analytical
and numerical studies, ' are summarized in Figs. 1 and
2. The quantity R, in these figures can be further charac-
terized as the value of R, at which the convection states
which branch from the conduction state at the lowest crit-
ical value of RT change from steady to periodic. Exten-
sive numerical studies' suggest more complex responses
at larger amplitude motions.

In this paper we study double-diffusive convection in a
rectangular box. We employ the Boussinesq theory and
assume the Rayleigh or "slippery" conditions on the walls
of the box. The side wa11s of the box are insulated from
heat and solute flux. The temperature and solute concen-
trations are specified on the horizontal walls. The prob-
lem is formulated in dimensionless variables in Sec. II.
The solutions depend on the six parameters R~, R„o., D,
a, and b, where o. and D are the Prandtl and Schmidt
numbers, respectively, and a and b are the aspect ratios of

the convection box.
The linearized theory for the stability of the conduction

state is summarized in Sec. III and Figs. 1 and 2. We
consider values of the aspect ratios a and b for which the
convection states branching from the critical value of RT
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FIG. 1. Bifurcation diagrams for steady-state solution
branches, where R,' is defined in (4.5) and R, is defined in
(3.12). Small parameter e, is an amplitude of the steady convec-
tion states. Branches bifurcate, supercritically ih (a) (as in ordi-
nary therm. al convection), and subcritically in (b) (which does
not occur in ordinary thermal convection), from the conduction
branch (e, =0) at RT ——R,' ~ Thus the critical value R,' separates
supercritical from subcritical steady-state bifurcation. Dashed
lines indicate the linearly unstable solution branches.

31 1841 1985 The American Physical Society



1842 JERRY F. MACiNAN AND ED%'ARD L. REISS 31

2
Cp

A

Rs Rs — Rs+ e2

R RT RcP R,' RT

2
Cp

Rs Rs

(b)

FICi. 3. Bifurcation diagram for R, slightly greater than R, .
Amplitudes of the periodic (steady-state) branches are 2= +30
(=++a/P). Periodic (steady-state) branch bifurcates supercrit-
ically (subcritically) at RT ——R~ (=RT) from the conduction
branch (A =0). At RT ——Rb the periodic and steady states are
'joined" by an infinite-period bifurcation. Dashed lines indicate

the linearly unstable solution branches. The periodic branch is
orbitally stable as we have discussed in Sec. VIII.
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FICx. 2. Bifurcation diagrams for periodic solution branches,
where R, is a critical value of R, that is defined in Sec. V. It
separates supercritical from subcritical bifurcation of periodic
solutions. Small parameter ez is an amplitude of the periodic
convection states. Bifurcation of periodic solutions from the
conduction state, which is a Hopf bifurcation, is not possible in
ordinary thermal convection. Dashed lines indicate linearly un-

stable solution branches. Thus for R, ~ R, the critical bifurca-
tion point is a Hopf bifurcation point and it corresponds to un-

stable periodic solutions branching from the conduction state.

are spatially two dimensional. The critical thermal Ray-
leigh number R, is the smallest bifurcation point of the
conduction state. We denote this critical value by R~~ (R,')
if the corresponding convection state is periodic (steady).
For R, &R, (&R,) we have R, =R~ (R,') such that
R, ~R,' as R,~R» i.e., the value R, corresponds to a
coalescence point of a steady and a periodic bifurcation
point. In addition, there are no periodic bifurcation
points of the conduction state for R, &R, . In Sec. IV and
V and Figs. 1 and 2 we summarize the nonlinear perturba-
tion analysis of the convection states that branch from R~
and R,'. %"e find a singularity in the frequency of the
periodic solutions that branch from R~ as R, ~R, . Thus,
the perturbation method (Poincare-Lindstedt) is invalid as
R, —+R, . -In addition, the frequency co=0 is a double
eigenvalue of the linearized theory for R, =R, . The non-
linear interaction of a periodic and a steady-state mode
near a double-zero eigenvalue was discussed in Ref. 7 for
ordinary differential equations and the possible bifurca-
tions were classified.

In Secs. VI and VII we analyze the convection states
branching from the conduction state for R, near R, by a
systematic perturbation method. The response is summa-
rized in the bifurcation diagram in Fig. 3, where A is the
square of an amplitude of the fluid motion. We refer to
this response as A, bifurcation because of the shape of the
figure. A periodic solution branches supercritically from
R~ and a steady-state solution branches subcritically from
RT, where R, &RT. The periodic branch terminates at
RT ——Rb, as shown. The period of the solution varies with

Rz-. For RT near R, the period is "large. " However, as
RT~R~ the period becomes infinite, so that the solutions
on the periodic branch as Rz ~Rb approach a heteroclin-
ic orbit, see Fig. 4. Thus, Rb is not a secondary bifurca-
tion point, in the usual sense, of the steady states branch-
ing from RT. The linearized stability of these solutions to
three-dimensional disturbances is analyzed in Sec. VIII by
solving the convection initial-value problem by a multi-
time method. It is found that the periodic states have
asymptotic orbital stability for Rf &R &Rb, in the sense
discussed in Sec. VIII. The steady states are unstable for
RT &RT.

The perturbation analysis in Secs. VI and VII, which is
essentially the Poincare-Lindstedt method in the small pa-
rameter e, defined by e =R, —R„contains a novel
feature. It is found that the amplitude A satisfies a Duff-
ing equation, which has a one-parameter family of period-
ic solutions, as shown in Fig. 4. This is unusual because
the Duffing equation corresponds to a conservative sys-
tem and the convection problem is a dissipative system.
However, the initial conditions and the coefficients in the

FICi. 4. Phase plane diagram for the Duffing equation (6.11a)
for a particular value of r& in the interval r&(0) (r2 (r2{1). For
each rz in this interval only one of the closed orbits in the fig-
ure, i.e., the one which satisfies (7.3b) and (7.6), is a periodic
solution of the convection problem.
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Duffing equation depend on Rr. This dependence is
determined by analyzing higher-order terms in the
Poincare-Lindstedt expansion. Thus, our analysis deter-
mines the amplitude as a unique function of Rz, or
equivalently selects for each R~ a unique member of the
one-parameter family of periodic solutions. This suggests
another mathematical mechanism to determine isolated
periodic solutions, other than the conventional limit cy-
cles.

Double-diffusive convection is an infinite layer with R,
near R, has been analyzed previously using different
methods. Approximate solutions of the Boussinesq theory
were obtained in Ref. 8 by an amplitude expansion in
terms of specified spatial modes. Then by considering a
five-mode truncation of this system the time-dependent
amplitudes of these modes were found to satisfy a system
of first-order, ordinary differential equations which de-

pend on the parameter e. These equations, which were
originally derived in Ref. 2 (see also Refs. 3 and 9), are
then reduced in Ref. 8 by an iteration procedure to a sin-

gle third-order equation representing a singular perturba-
tion problem. An approximation is then made by setting
@=0 in this equation which eliminates the third derivative
term. A Duffing equation is thus obtained for the ampli-
tude which is related to the Duffing equation obtained in
the present work. The evolution equation for the first
constant of integration in the solution of the Duffing
equation is then obtained by an averaging procedure on
the third-order equation. From this equation the bifurca-
tion diagram and its stabilities with respect to special
two-dimensional disturbances are obtained. The second
integration constant is omitted, however, since its slow
time dependence is not considered in Ref. 8. Although
the analysis in Ref. 8 is somewhat nonuniform (some of
these nonuniformities are discussed in Ref. 8), some of the
main qualitative features are correctly obtained, as we
shall show. We demonstrate in this paper that a direct
application of the standard Poincare-Lindstedt method to
the partial differential equation Boussinesq problem sys-
tematically yields asymptotic approximations of the solu-
tions. Furthermore, our multitime analysis establishes
stability with respect to three-dimensional disturbances
and suggests a possible mechanism for "irregular"
response in the solution of the nonlinear initial-value
problem, as we discuss in Sec. VIII.

Mode amplitude equations similar to the ones employed
in Ref. 8 were derived in Ref. 9 from a simplified physical
model of convection. They were analyzed in Refs. 9 and
10 by an asymptotic method, but A, bifurcation was not
obtained. More recently, the method of normal forms was
employed" to obtain approximate solutions of the initial-
value problem for the Boussinesq theory with a restricted
class of initial data. Other convection systems, such as
rotating, magnetic, and binary convection' ' can exhibit
A, bifurcation. They were analyzed in Refs. 14, 8, and 15
by using different methods. Energy methods were used in
Ref. 16 to determine the global stability of thermohaline
convection. These give a maximum value of Rz Rz (R,)——
below which all disturbances of the conduction state de-
cay. This result supplements the local stability analyses
mentioned above.

II. FORMULATION

In dimensionless variables, the Boussinesq theory for
double-diffusive convection in a rectangular box is to
solve the differential equations

u, +(u.V)u=o[ —Vp+(RrT R,—S)k+Eu ],
V.u=O,

(2.1a)

T, +(u VT) —u k=AT,

S, +(u VS) —u k=DbS,

for the velocity u=(u, u, w), the pressure p, the reduced
temperature, and the reduced solute concentrations T and
S, respectively, subject to the Rayleigh boundary condi-
tions,

u =U =w~=T~=S~=O, for x =O, m.a (2.1b)

u =U =w = T~ =S» =0, for y =O, orb (2.1c)

u, =U, =m =T =S =0, for z =O, m. . (2.1d)

V Ks
&0, D—: &0,

(2.2)

gf3(Si —Su )d'
R, =— &0,

VKZ-

where K, is the thermometric and solute "conductivity, " v
is the kinematic viscosity of the fluid, g is the gravitation-
al constant, TI, T„, S~, and S„are the specified values of
the temperature and solute concentration on the lower and
upper surfaces of the box, and, finally, a and f3 are the ex-
pansion coefficients in the equation of state of the fluid,

p =po(1 aT+PS)— (2.3)

for the density p.
In deriving (2.1) we have assumed that the Dufour and

Sorret effects are negligible. That is, we have assumed
that the heat and mass fluxes are proportional to the tem-
perature and solute gradients, respectively. The quantities
T and S are the deviations of the temperature and solute
concentration from their values for the conduction state.
Thus, the conduction state is given by

u=0 and T=S=O, p =0 . (2.4)

In (2.1), 6 is the three-dimensional Laplacian with respect
to the dimensionless variables x = (x,y,z), k is the unit
vector in the z (vertical) direction, and a and b are the as-
pect ratios of the box. The spatial coordinates are scaled
by the height d of the box, and time by d /vz, where xr
is the thermometric conductivity of the fluid. The param-
eters cr, D, Rr, and R, are defined by
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It is a solution of (2.1) for all values of the parameters
(2.2). The aspect ratios a and b are the ratios of the x and

y lengths of the box with respect to its vertical height.
The boundary conditions (2.lb) and (2.1c) imply that

the vertical sides of the box are impervious to heat and
solute flux. In addition, (2.1c)—(2.1d) imply that the side
walls of the box are rigid with respect to fluid motions
normal to the wall, but they are slippery with respect to
tangential fluid motions. These fluid conditions, which
are called the Rayleigh boundary conditions, are usually
unrealistic for laboratory experiments performed in rigid
boxes. Realistically, the fluid sticks to the walls of the
box and the proper fluid boundary conditions are u =0 on
the walls. However, the Rayleigh conditions may be
reasonable for convection occuring in natural cir-
cumstances such as in the ocean and in the atmosphere.
The principal mathematical virtue of the Rayleigh condi-
tions is that the linearized convection theory can be solved
explicitly, as we show in Sec. III, whereas explicit solu-
tions for a box with sticky wall boundary conditions have
not been obtained.

To study solutions of (2.1) which are periodic in t with
period 2'/co, the formulation (2.1) is modified by adding
the periodicity conditions

u(x, t +2'/co) = u(x, t),
T(x, t+2n/co)=T(x, t),
S( x, t +2m/co)=S(x, t),

(2.5)

for all t. Thus the periodic problem, which we denote as
problem H, consists of solving (2.1) subject to the periodi-
city conditions (2.5). We wish to study the solutions of
problem H and their variations with the Rayleigh num-
ber Rz- for fixed values of the remaining parameters.
Thus, we refer to a, b, o., D, and 8, as the system pararn-
eters.

For two-dimensional convection we have U=—0 and the

solutions of (2.1) are independent of y. Then, by defining
a stream function g by

& =4z~ to= 0x ~

problem H can be reduced to solving

bg, —o b, f+o(RrT„—R,S„)=J(P,AQ),

T, bT+—Q„=J(g, T ),
S, DbS—+Q„=J(P,S),

(2.6)

(2.7a)

on the rectangle 0&x &na, 0&z(m. and subject to the
boundary and periodicity conditions

T„=S„=O on x =O, n-a

=T=S=O onz=O, ~

P(x, z, t+2~/co)=g(x, z, t),
T(x, z, t+2~/to)=T(x, z, t),
S(x, z, t+2m/to)=S. (x,z, t) .

(2.7b)

(2.7c)

In (2.7), b, and b, are the two-dimensional Laplacian and
biharmonic operators, respectively. In addition, the non-
linear operator J(f,g) is defined for any two smooth func-
tions f and g by

Pi(xo»o 0)=0 (2.9)

for some appropriate choice of xo and zo. For example,
we can choose xp and zp to correspond to a local spatial
maximum or minimum of 1(.

(2.8)

The solutions of (2.7) are translationally invariant in
time. Hence, periodic solutions can be determined only
within an arbitrary phase shift. To fix this shift we im-
pose the following normalization condition:

III. THE LINEAR STABILITY THEORY

The linear theory of convection is obtained by linearizing (2.1) about the conduction state (2.4). The solutions of the
resulting problem are given by

(tt U tU T s p) erat( Q QSCC Q QCSC Q QCCS Q QCCS Q QCCS Q QC C)C (3.1)

where the functions p"', etc. , are defined by

sin(mx/a)cos(n—y /b)cos(sz), etc. ,

m, n, s =1,2, . . . (3.2)

where Q~~ is defined, for m, n, s=1,2, . . . , by

2 12
P 2 P Pl

Qmns =—Qmn+s ~ Qmn
=— +a b

(3.4)

and the amplitudes AJ satisfy a linear system of homo-
geneous, algebraic equations. The matrix of this system is
a function of the exponential factor q in (3.1), the indices
m, n, and s, and the system parameters. From the condi-
tion that the determinant of this matrix must vanish, we
obtain, for each fixed triple (m, n, s), a quartic equation for
q. One root is

q'"= —oQ &0, (3 3)

q +a~q +a2q+a3 —0 . (3.5)

The coefficients in (3.5) are defined by

Since q"'&0, the solution (3.1) corresponding to this root
decays exponentially in t. The remaining three roots of
the quartic are the roots of
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a
&
=—(1+cr+D)Q

0cQ ~ pa2= (R —Rr), (3.6)

a3 =nDQmn(R f.—Rz. ) .

The quantities R, Rr, and RIr in (3.6) are defined by

p cr+D (1+cr) 3 pR:—Rs+ hymns ~ hymns —=Qmns /Qmna

R,
r = + mns

R -=D+ R "+D" +D)~
T )+ s mns

(3.7)

(3.8)

R,'Rc=' pRc

for R, &R,
for R, &R,

(3.9)

where R,' and Rs~ are defined by

Rs
~ Rq D+cr (1+D)(cr+D) ~

(3.10)

It follows from (3.5), (3.6), and the Routh-Hurwitz cri-
teria that the conduction state is stable if Rr & R„and it
is unstable if Rr &R, . Here, the critical thermal Ray-
leigh number R, is the minimum of Rfand R. f over all

the positive integers m, n, and s. Since Rr and Rf are
linear functions of R, and A,m~, it follows from the defi-

nition of A, in (3.7) that

R, & R, ( & R, ). At R, =R, the steady and periodic bifur-
cation points coincide and q=icpp ——0 is a double root of
(3.5) and thus a double eigenvalue of the linearized theory.
This leads to A, bifurcation for R, near R„as we demon-
strate in Sec. VI.

The precise values of M and X in (3.11) depend on the
aspect ratios a and b only and not on the other system pa-
rameters. The critical Rayleigh number R, may corre-
spond to either a simple or a multiple eigenvalue of the
linearized theory, depending on the values of a and b. In
addition, the eigenfunctions (3.1) for Rr ——R, may be ei-
ther two dimensional with M&0, N =0 (y rolls), or
M=O, %+0 (x rolls), or three dimensional with M&0,
%&0, depending on the values of a and b. In the analysis
in Secs. IV and V, we assume that a and b are in a range
such that R, is a simple eigenvalue of the linearized
theory with a two-dimensional eigenfunction. Thus, we
analyze the bifurcation of two-dimensional convection
states which are independent of y, using the formulation
(2.7) of problem H.

IV. BIFURCATION OF STEADY CONVECTION
SOLUTIONS (R, ~R, )

We obtain asymptotic expansions of steady two-
dimensional solutions of (2.7a) and (2.7b) that bifurcate
from the conduction state at Rz =R,' using the modified
perturbation method. The small amplitude parameter e,
is defined by

e, :—f f (b.g) dxdz . (4.1)

Since the analysis is standard, we omit all details. The re-
sults are

and the minimum value A, is defined by

A, —:min A,m~ = min iLmn ~
——A,M~, . (3.11)

T

BD
&&2

sin sinz Es+O(es),
(QP)1/2

m, n, s m, n

Here, M and N are the values of m and n for which the
minimum is achieved. Thus R,' and Rs~ occur for the
same values of m, n, and s, and hence of A, . In addi-
tion, the critical solute Rayleigh number R„determined
from the condition that R,'=Rs~, is given by

D 1+cr
(1 D)o— (3.12)

It follows from (3.5) that at Rz. ——R,' for R, &R, two
roots have negative real parts and one root vanishes. This
suggests that Rz ——R,' is a bifurcation point of steady con-
vection states, as we demonstrate in Sec. IV. Similarly,
Rz ——R, for R, &R, is a bifurcation point of periodic
convection states (see Sec. V) because two roots of (3.5)
are complex with negative (positive) real parts for
Rr &R, (&R,), and they are imaginary at Rr R, giv-——
ing the frequency

T= BD cos
Mx

S11lz Es
a

+2A
D sin(2z) e, +O(e, ),

Mx8 COS
' SlnZ Es

a

+2A
sin(2z) e, +O(e, ),

where we have employed the notation

Q =QMp,
—(M/'a)'+ 1

Rr R,'+ B (D R——,' R, )&, +O(&, ), —
8D

(4.2)

(4.3)

(4.4)

2 2DQ„i
cop az(R~) = (——R, —R, ) .

Rs
(3.13)

Consequently, instability of the conduction state occurs by
the bifurcation of steady (periodic) convection states for

Q =QMp ——(M/a), B=+p p 2 2(M/a)
m.a '~ DQ

From (4.3) we deduce that the bifurcation is supercritical
(subcritical) if R, &R,' (&R,') where R,' &R, is defined

by
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Rs = D A,

1 —D
(4.5)

B——
z cosr sin(Mx /a )si nz,

V. BIFURCATION OF PERIODIC
CONVECTION SOLUTIONS ( 8, )R, )

The periodic convection states that bifurcate from the
conduction state at Rz ——R~ for R, &R, are obtained by
emp1oying the Poincare-Lindstedt method. Thus, we de-
fine a scaled time ~ by

r=—cot, (5.1)

where the frequency co of the periodic motion is to be
determined, and a new small amplitude parameter ez is
defined by

~,'= f f f (~q)'dxdzdr. (5.2)

We have used the definition of R,' in (3.10) in deriving
(4.5). If R, =R,', it is necessary to obtain additional terms
in the expansions (4.2) and (4.3) to determine the direction
of bifurcation.

From a linear stability analysis of the steady convection
states (4.2) and (4.3), which we do not present, it can be
shown that the supercritical (subcritical) states are stable
(unstable). Furthermore, we observe from (4.2)—(4.4) that
as the Schmidt number D~O, the solute concentration 5
and the critical thermal Rayleigh number R,' become un-

bounded. Thus, the perturbation analysis is valid only for
D bounded away from zero. The bifurcation diagram and

its stability are shown in Fig. 1. If D=1 and R, =0 then
the results of this section also describe the bifurcation of
steady solutions in ordinary Benard convection.

Mx
cos( r p1—)cos slnz

a
(5.5)

S(1) B (D2g2+ 2) —1

P

Mx
)c, cos(r —p 2 )cos slnz

a

where cop is given by (3.13) and the amplitude B~ and
phases p1 and p2 are defined by

B,=—2(~'ag2)-'",

t»p) =cop/g =D[(R, —R, )/R, ]'~2,

tanp2 =cop/Dg = [(R, R, )/R, )'—~2 .

(5.6)

=0.

The state described by (5.5) corresponds to a standing
wave that oscillates with a frequency of one on the ~ scale
and hence a frequency of cop+0(e~ ) on the t scale. In ad-
dition, the fluid velocity, temperature, and salinity are
phase shifted. We observe from (3.13) and (5.6) that the
frequency and the phase shifts vanish as R, ~R, The
fact that D ~ 1, and hence the solute phase shift exceeds
the thermal phase shift, explains some of the effects of
double-diffusive convection.

The solvability conditions for the O(e~) problem imply
that 01 and p1 satisfy a system of two homogeneous,
linear algebraic equations defined by

01Z (5.7)

We then seek asymptotic expansions of the solutions (2.7)
in the form

R =R~+ g p, e~, ~=top+ g &,e~,

(5.3)

f f f (bP~ ') dxdz dr= 1,
(5.4)

B7 & =xo,z =zo, &=0

that are obtained from (5.2) and (2.9), respectively Thu. s,
we find

where f is the vector with components (Q, T,S). Because
of (5.1), the solutions g are periodic in r of period 2m. .
The coefficients in these expansions are determined in the
usual way by substituting (5.1)—(5.3) into (2.7)—(2.9).
This leads to systems of linear equations for these coeffi-
cients. The lowest-order system [O(ez)] corresponds to
the linearized convection theory at R =R~ with the nor-
malization conditions

The elements of the matrix Z are listed in Appendix A.
Since detZ&0 if R, & R„(5.7) implies that Q) ——p1

——0 for
R, ~ R, . If R, =R, then detZ =0 and it follows from
(5.7) that p1 ——0, but 01 is arbitrary. Similarly, the solva-
bility conditions for the O(ez ) problem give

2Z (5.8)
p2 g2

where the quantities g1 and g2 are defined in Appendix
A. The solution 1tj

' ' of the O(ez) problem is also given
in Appendix A since it is used in obtaining (5.8). Since
detZ&0 for R, &R„we can solve (5.8) uniquely for 02
and p2 when R, exceeds R, . Furthermore, Q2 becomes
unbounded as R,~R, because detZ= 0 for R, =R, . This
implies that the Poincare-Lindstedt method and hence the
expansions (5.3) are not uniformly valid in R, as R, ~R, .
Other methods, which have been applied to the thermoha-
line' and binary fluid' convection problems, have pro-
duced results which also break down at the coalescence
point of the steady and periodic solutions. In Sec. V we
study the solutions of (2.7) at and near the singularity
R, =R, by modifying the Poincare-Lindstedt method.

Graphs of the variation of Q2 and p2 with R, are shown
in Ref. 1 for typical values of the system parameters.
Furthermore, we observe from our own graphs of these
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VI. A, BIFURCATION

The asymptotic expansions (5.3) for the bifurcating
periodic convection states of (2.7) are not uniformly valid
as R, —+R„as we have described in Sec. VI. To analyze
the solutions of (2.7) that bifurcate from the conduction
state for R, near R„we first define a new small parame-
ter e by

R, =R, +e (6.1)
I

functions that p2 is a monotonic function of R, . Howev-
er, Q2 may be either monotonic or have a positive max- .

imum, depending on the value of the system parameters.
Moreover, we find that Q2~ —oo and p2 attains a con-
stant, positive value as R,~R, . In addition, p2(R, ) and
Q2(R, ) have the unique zeros R, =R,* and R, =R,+,
respectively. Thus, for R, &R,* (&R,*), p2&0 (&0) and
hence the period convection states bifurcate supercritically
(subcritically) from R~. Since 02&0 (&0) for R, &R,+

(&R,+), the system responds as a "soft spring" ("hard
spring") for R, &R,+ (&R,+). Thus, there is a smooth
transition from the conduction state to the periodic con-
vection states for R, & R, & R,* since the bifurcation is su-
percritical, and, as can be demonstrated, these convection
states are stable. Since the periodic convection states bi-
furcate subcritically for R, & R,* and the subcritical states
are unstable, there must be a jump transition as Rz- in-
creases past R~. This transition from the conduction state
to a resulting large-amplitude state of the system cannot
be described by the present local analysis. The bifurcation
diagram and its stability are shown in Fig. 2. We observe
from (5.3), (5.5), (5.8), and (A3) that as D~O, the pertur-
bation analysis remains valid. Thus, when D=O and
R, & 0 the resulting convection state is periodic.

R, =R,'(R, ) =R~~(R, )= A, .
o(1 D)— (6.3)

We have assumed in the expansion (6.2) that co—+0 as
R, ~R„because of expression (3.13) for the frequency
COO.

The coefficients in (6.2) are determined by inserting
(5.1) and (6.1)—(6.3) into (2.7). This leads to a sequence of
linear problems, the first four of which are given below:

g2q(J')+R, T„'J' R,S(J'

gT(g)+ g(J)

—DaS(J)+ ~„'J'

G (j)

ltd(J) =g'J' =T (J)=S(J)=0 for z =0,~
ltp

J =P J = T ~ =S J =0 for x =O, ma() () () ()

g '1'(x, z, v+ 2m) = P 'J'(x, z, r),
g~~ (xo yo 0)=0 for j=1,2, . . . .

(6.4)

The column vectors G' ', which have the components
g 1~', G2, and 63, are given for j= 1,2, 3,4 by

Then we introduce the time scale r from (5.1) and seek
asymptotic expansions of the solutions of (2.7) in the form

00

g(x,z, r, e)= g g (J)(x,z, r)e~,
j=1

(62)

R2 R&+ g rJE i c!3 g Qj'e'
j=1 j=1

In (6.2), f'~' is the vector (f'J', T' ',S' ') and R, is the
critical thermal Rayleigh number at R, =R„i.e.,

G

G

G

o'co)Af,'" —r 1 T„'"+o 'J(—lt)'" bg"')
T(1)+J(f(1) T(1))

~ S(l) ~J(q(1) S(l))

g )((o 5@( )+~ kf(1 ) —r T )+S( )+g 1[J(@(1)gq(2)) +J(@(2) gltj(1) )]
( T(2) + T(1))+J(g(1) T(2))+J(y(2) T(1))

(~ S(2) +~ S(1)) +J(y( 1) S(2))+J(q(2) S(1))

o'(cold/, ' '—+co2bf,' '+ o33bg,"') r2T„' ' r3T"'— —
+S(2)+o—1[J(y(1) gy(3))+ J(q(2) gy(2))+ J(y(3) gy(l))]

(~ T(3) +o1 T(2) +~ T(1))+J(y(l) T(3))+J(y(2) T(2))+J(q(3) T(1))

(~ S(3)+~ S(2) +~ S(1)) +J(y(1) S(3)) +J(y(2) S(2))+J(y(3) S(1))

(6.5a)

(6.5b)

(6.5c)

(6.5d)

L

Problem (6.4) with j=1 is the linearized two-dimensional stability theory at R, =R„R=R, with co=0. The solution
of this problem, which must be periodic and satisfy the translational invariance normalization condition, is given by

—D [Q/(Q )'~ ]sin(Mx/a)
=A(~)go=A(r) Dcos(Mx/a) SIIlZ

cos(Mx /a )
(6.6a)

I

where the amplitude A (r) is a periodic function of period
2m to be determined, and

A'(0) =0 . (6.6b)

In (6.6b) the prime denotes differentiation with respect to
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Since the homogeneous problems corresponding to
(6.4) with j& 1 have nontrivial solutions, the inhomogene-
ous terms O'J' must satisfy the solvability conditions

(G'J', y ~) —= f f f (G'J'g *)dxdzdr =0,
0 0 0

j=2~3~. . . (6.7)
~(j)

where G f * is the usual dot product of two vectors,
and g ~ is the eigenvector of the adjoint linear problem.
It is given by

D [Q/(Q )'~ ]sin(Mx/a)

P *—:R, DR, cos(Mx/a)

—R,cos(Mx /a )

S1IlZ (6.8)

r] ——0. (6.9)

Then by substituting (6.9) into (6.4) with j =2 and solving
the resulting problem for P ' ' we obtain

By employing (6.5b) and (6.6a), the solvability condition
(6.7) with j=2 yields

Since a and P are functions of rz and co& and since we

are studying the variation of the solution with RT, or
equivalently with r2, we need only determine how co&

varies with rz to evaluate the amplitude A(r). The fre-
quency co&(rz) is deduced from the solvability condition
(6.7) with j=4. To apply this condition, we require the
solution of (6.4) with j=3. By employing the results

(6.6), (6.9), and (6.10) to evaluate G ' ', we obtain, finally,

=C(r) gp+ b ~ cos(Mx /a)sinz
C)

0 azsin(Mx/a)
+ b3 sin(2z)+ bzcos(Mx /a) sin(3z)

C3 c,cos(Mx /a )

(6.12)

where C(r) is a periodic function of period 2n. to be deter-
mined and the coefficients aj bj and cj are defined by

b, —:— coi[DB—'+(1—D)Q 'A "]1

—[co~/(Q )' ]sin(Mx/a)

(1 D)coi-y'"=B(r)y, +A (r) cos(Mx /a ) S111Z
1

C( =
D

3

cozDA — —Q A
8

(co(B +c—ozA ) — A
DQ'

8

ng2
D sin(2z),

8
(6.10)

A "+aA —PA =0,
where a and P are defined by

(M/a) o(1 rzD) Dzg3—
(1+o+D)Qco )

. 8'�)

(6.11a)

In addition, A satisfies the initial and periodicity condi-
tions,

A'(0) =0, A (x+2m') =A(r) for all T . (6.11c)

where B(r) is a periodic function of period 2' to be deter-
mined. The solvability condition (6.7) with j=3 then
gives the following equation for A (r):

2 f15
az—= — H (Q —P )

8 (M/a)
Dz 2

[D +HQ'(Q' —P') -']A '
8P
2

cz= [1+HDQ (Q —P ) ']A3,
8P

(6.13a)

1 Db3= — (2+Q) Dc@)AA' DQ—AB—
c3 = [ —,(Q 2)coiAA' D—QAB], —1

where P and H are defined by

P=(M/a)'+9, H= (1+o+D)/o . —. (6.13b)

The solvability condition with j =4 gives a linear, nonho-
mogeneous Hill's equation for the amplitude B(r) in
(6.10) and (6.12):

The coefficients corresponding to a and p of the Duffing
equation obtained in Ref. 8 are the same as the expres-
sions (6.11), modulo the different scales used in Ref. 8.

B"+(a —3pA )8 =F(A,co„rz,r3),

where F is defined by

(6.14a)

I

coi(R, DR,)—D (1—D)Qr, A'+ R ~ A"'+D'Qz~, r, A
2 D (1—D)—

DQ z

2
1+—(D R, —R, )+ , (R, DR, ) A A' . —— (6.14b)
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In addition, B(r) satisfies the periodicity and initial con-
ditions

B(v+2m) =B(r) for all r
(6.14c)

3B'(0)=— ( —aAp+PAp) .
D

The coefficient co~ will be obtained in Sec. VII by applying
a solvability condition to the nonhomogeneous problem
(6.14).

the homogeneous equation is the variational equation for
(6.11). There are no other 2n.-periodic solutions of the
homogeneous problem for B as we can demonstrate.
Thus the nonhomogeneous term I' must satisfy the solva-
bility condition that it is orthogonal to A':

f I'A'dr=0 . (7.5)

When this condition is satisfied it guarantees that B is
periodic. After some tedious calculations this yields the
following equation relating rq and k:

VII. THE AMPLITUDE PROBLEMS

It follows from (6.11) and (6.14) that

A =B=O (7.1)

g(X—g3 Y
rq ——rz(k) —=

(g)X (3Y—)D +$2Z

Here,

(7.6)

are solutions of the amplitude problems for all values of
r2 Thi.s implies that P"'=g' '—=0 so that (7.1) corre-
sponds to the conduction state. If a &0 (rz &D '), then
(7.1) is the only steady solution of the amplitude prob-
lems. However, if a&0 (r2&D '), then there are addi-
tional steady solutions that are given by

' 1/2

A=+ B—=0. (7.2)

Since a~O as rz~D ', the solutions (7.2) correspond to
a branch of steady convection states that bifurcate subcrit-
ically from Rz. ——R, + e /D+ O(e ), as we illustrate in
Fig. 3. The phase plane diagram for (6.11a) is sketched in
Fig. 4. Thus, the steady convection states are unstable
since they correspond to a saddle point.

It is easy to demonstrate, e.g., from a phase plane
analysis, that there are no periodic solutions of amplitude
problem (6.11) for a &0 (rz &D '). Periodic solutions of
(6.11) exist for a&0 (r2&D ') but only for sufficiently
small values of Ap= A(0), i.e., for an initial point within
the separatrix in the phase plane. The periodic solutions
are given by

oD (1—D)R, (M/a)
5(1+o.+D)Q
8o(M/a)

5D(1+o+D)Q'

$2=D (1—D)Q,

1+—(D R, —R, )+ ~(R, DR, )—

X(k)=—( —7k'+22k' —7)E(k)

+ (11k'—18k'+ 7)K (k),
Y( k) =—2(k —k + 1)E(k)

+(—k'+ 3k' —2)K(k),

Z(k) —=(1+k2)[(1+k2)E(k)+(k2 1)K(k)], —

(7.7)

and E(k) is the complete elliptic integral of the second
kind. Then (7.3b), (7.4), and (7.6) express Ap(k), co&(k),
and r2(k) in terms of the parameter k. Specifically, we
deduce from these equations the following limiting values:

rp(0) = Ap(0) =0o.+D
o.+1

(7.8a)

A(r):—Apsn r+K(k)2K (k)

where Ap is defined by

(7.3a)
o(1 D) (M/a)—
(o+1) Q

r2(1)=(D+p)
(7.8b)

k
A p

—=2(a/P)
1+k

(7.3b)

K(k) is the complete elliptic integral of the first kind
with modulus k, and r2, co&, and k satisfy

2
CO) = 7r (M/a) o' (1 r2D)

4(1+a+D)Q (1+k')[K(k)]2
(7A)

In (7.3a), sn(y) is the Jacobian elliptic function. It is a
periodic function of period 4K and is defined for k in the
interval 0&k & 1. Since a/P is independent of co~, (7.3b)
expresses Ap as a function of r2 and k. Equation (7.4)
expresses co& as a function of r2 and k. The required third
relation between these quantities is obtained from an
analysis of the amplitude problem (6.14) for B(r).

If F:0 then the homogeneous pr—oblem (6.14) for B has
a 2m.-periodic solution that is proportional to A (r) since

8o (M/a) p,

(1+o+D)D'Q" D+p
where p is defined by

22
4k' —4 (7.9)

Notice that co~(0)e is just the linearized frequency given
by (3.13). In addition, we obtain the limiting slopes

dA0 dA0
lim & 0, lim (7.10)
k 0 dI'2 k 1 df'2

For each fixed k in the interval 0& k & 1, (7.6) gives a
unique value of r2, and (7.3b) and (7.4) then give unique
values for A0 and co~. Because of the complicated tran-
scendental expression (7.6) for r2 it is difficult to deduce
analytically the qualitative features of the dependence of
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A p and co ] on r2. Thus, we have numerically evaluated
these equations for typical values of the system parame-
ters. . This yields response curves such as the one sketched
in Fig. 3. The periodic solutions branch from the conduc-
tion state Ap=—0 at the bifurcation point, which corre-
sponds to k =0 and rz ——rz(0). The period at this point,
in the t scale, is given by

T(0)= +O(1),
co )(0)e

(7.1 1)

where co&(0) is given in (7.8a). Thus, the response curve
branches with positive slope as indicated in (7.10). The
numerical evaluations suggest that this curve is monoton-
ic. It terminates at k= 1 with the values given in (7.8b)
and with an infinite slope, as indicated in (7.10). We ob-
serve that Ap(1) is equal to the value of the steady solu-
tion (7.2) evaluated at rz ——rz(1). Furthermore, since
cp&(1)=0, the period is infinite. Thus, when k =1, (7.3)
corresponds to the two steady states on the heteroclinic
orbit in the phase plane. The periodic solution (7.3) con-
nects to the stationary solution (7.2) at an infinite-period
bifurcation. Therefore, , in this generalized sense
rz(1),Ap(1) is a "secondary bifurcation" point of both the
steady convection state that bifurcates from RT and of
the periodic convection state that bifurcates from A~. We
refer to this type of one-sided branching of states as A, bi-
furcation.

Stable (unstable) solution branches are indicated in Fig.
3 by solid (dashed) curves. The stability analysis is out-
lined in Sec. VIII. The results suggest the following se-
quence of events as rz, or equivalently as RT increases,
for R, near R, . For small rz the fluid is in the stable
conduction state. At rz ——rz(0), i.e., at R TR„ the con-
duction state destabilizes and the fluid commences a state
of periodic convection as given to lowest order by
1( =A (r) pp+ O(E ). The amplitude of this motion in-
creases as rz increases and the period increases to infinity
as rz approaches rz(1), i.e., as Rz approaches Rb. When
rz exceeds rz(1) the solutions must jump since there are
no nearby stable convection states. The solutions might
jump to another periodic or steady convection state or to
some other, possibly aperiodic convection state. The final
state after the jump cannot be determined by our pertur-
bation analysis. Thus, careful numerical and/or physical
experiments are required to determine the ultimate fate of
the system as rz exceeds rz(1). Of course, imperfections
which are always present in physical systems, and which
have appropriate frequency content, may substantially
alter the qualitative features of the solution for rz near
rz(1).

Since A(r) has zeros at w=r„=(2n+1)m/2,
n =0, 1, . . . , the leading-order approximations 1( '"e of
the solutions vanish at v.=~„, and hence they are small
near v„. Therefore, the approximation 1(=1t'"e is not
uniformly valid in r; see the discussion in Ref. 19. To ob-
tain a uniformly valid first approximation we must retain
the next term in the asymptotic expansion (6.2) to get the
leading-order asymptotic approximation as

P = P "'e+ g ' 'e /2+ O(e') . (7.12)

We solve the amplitude equation (6.14) to determine the

uniform expansion (7.12). The solution for B that satis-
fies the condition 1t,' '(xp, zp, O) =0 is

B(r)=A'(r) — + f I dr ds
DQ p [A '(s) ]

(7.13)

where the integral represents the particular solution of
(6.14). It is possible to explicitly evaluate the integral in
(7.13) in terms of elliptic functions and integrals and the 8
function. However, because of its excessive length we do
not present this result here.

We observe that, for D~0, both the steady and period-
ic solutions of the A, bifurcation become unbounded.
Thus, the perturbation analysis is valid only for D bound-
ed away from zero. The problem has to be rescaled to
consider the case of D~0.

VIII. STABILITY

—+(j)4(x, t,e)= g 4 (x, t, r), rz)EJ,
j=1

R, =R, + g rJEJ .
j=1

(8.3)

Here, 4 is the vector with components (u, v, w, T,S,p) and
we assume that the expansion coefficients N 'J' are bound-
ed functions of each of their arguments.

The coefficients in (8.3) are determined by inserting
(6.1), (8.2), and (8.3) into (2.1) and (8.1). This leads to a
sequence of linear initial-value problems for j=1,2, . . .
given by

To determine the stability of the two-dimensional con-
vection states that were derived in Secs. VI and VII, we
solve the initial-value problem for the three-dimensional
Boussinesq theory. Thus, we consider (2.1) and impose
the small-amplitude initial conditions

u(x, O)=e u (x), T(x,O)=e T (x),
(8.1)

S(x,O) =e S (x),
where u (x), T (x), and S (x) are prescribed initial data,
and e is the small parameter defined in (6.1). Specifically,
we analyze this initial-value problem for R, and R, near
R, and R„respectively. Then, to test the stability of the
periodic convection states we choose initial data in (8.1)
which are "close" to these convection states. %'e show
that the solution of the resulting linearized initial-value
problem decays to the periodic orbit as t~ m.

The multitime method is employed in the analysis. To
apply this method, we first define two slow times r& and
~2 by

dT]
=Q(rz)e, ~z=e t . (8.2)

dt
The time ~& corresponds to the oscillation time since
cp=O(e) for (R, —R, ) =O(e ) and rz is the decay time to
the periodic states as is suggested by (3.5) with
Rz —R, =O(e ). Then we seek an asymptotic expansion
of the solution of (2.1) and (8.1) in the form
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L4

0 Lp

0 0

0 0

Lp 0

0 0 —1Lp
0 0 —1 0

a. a„a, 0

0 By

0 a ~(j) —+=H(j),

Lp 0

0 0

1L, =—a, —a;
0

Lp 0 0 0 0 Bx

(8.4a)

all the eigenvectors corresponding to the negative roots,
and the eigenvector P and generalized eigenvector
tP+$0 corresponding to the double-zero root, form a
complete set. The solution of (8.4) with j=1 can then be
written concisely as
~(1)

=W(r~)&2)p+%(r))72)(tp+go)+NEDy . (8.5)

Here, M and A are functions of the slow times to be
determined so that N "' satisfies the initial conditions
(8.4c) with j =1, WED~ is the notation for the sum of all
the exponentially decaying terms, and the expressions for
the vectors P and P o are given in Appendix B. By as-
sumption 4'" is a bounded function of t and hence we
deduce from (8.5) that

(8.4b) %(v),r2) =—0 . (8.6)
u,"=U,'~'=~'J'= T'J'=S'J'=0 for z =O, n. ;

u (x,0,0,0)=T'J'(x, 0,0,0)

=S'J'( x,0,0,0)=0, j&2
(2) p

u (x,0,0,0)=u (x),
T' i(x,0,0,0)=T (x),
S' '(x,0,0,0)=S (x) .

(8.4c)

(j) ~(i)
The nonhomogeneous vector H depends on N and r;
for i &j and contains derivatives with respect to ~~ and r2.
Since these expressions are lengthy, we do not present
them here.

Since H'"=0, problem (8.4) with j=1 is the linear-
ized, three-dimensional stability theory at R~ ——R, and
R, =R, (see Sec. III). The solutions of the linearized
theory are determined for each m, n, and s by the root
(3.3) and the three roots q =q ~, I =1,2, 3, of. the cubic
(3.5). For the critical values of m, n, and s (M, 0, 1) we
have a2 ——a3 ——0 in (3.5), as we can show from (3.6) and
(3.7). This implies that (3.5) has the double root q =0.
However, there is only one linearly independent eigenvec-
tor P corresponding to this root. Thus q =0 is a root of
algebraic multiplicity two and geometric multiplicity one.
This is an important feature of the underlying mathemati-
cal structure of the present problem which is shared by
other bifurcation problems. To obtain a complete set of
eigenvectors, we must add the generalized eigenvector cor-
responding to the double root. The roots (3.3) and the
roots of (3.5) for ( m, n, )s&( M0, 1) are negative and corre-
spond to exponentially decaying modes. We assume that

I

This condition is formally obtained from (8.8) with j =2.
By substituting (8.5) into the initial conditions we get

W(0, 0)=0 . (8.7)

We have assumed that P and the eigenvectors correspond-
ing to the negative roots form an orthogonal set of func-
tions.

In order to have bounded solutions of (8.4) the nonho-
mogeneous vectors H'1' in (8.4) must satisfy the following
conditions for every vector P * that spans the null space
of the adjoint linear problems:

Z n- n.b ma (j)
lim —f f f f (H .4 ~)dx dy dzdt =0

p p p p

for j=2,3, . . . . (8.8)

In Appendix 8 we list the adjoint eigenvectors corre-
sponding to P and tP+$0. All other adjoint eigenvec-
tors are exponentially decaying in t and do not contribute
to the conditions (8.8).

The solvability condition (8.8) with j=2 and N*=p*
yields

r~ ——0.
We obtain the bounded solution

4&' '=M' '(r), r2)P —W, ,P()+W P)+WEDg

(8.9)

(8.10a)

by substituting (8.9) into (8 4) with j=2 and solving the
resulting problem. In (8.10a) M' ' is to be determined,
and the vector P ~ is defined by

D2 D2 2

0, 0, 0 — sin(2z), ——sin(2z), cos
8

'
8

' 4ag'
2Mx

'

p+(Q —Q )cos(2z)
a

(8.10b)

By inserting (8.10) into the initial conditions for j =2 in
(8.4c) we find that

,(0,0)=a*, (8.11)

where a~ is a linear functional of the initial data u, T,
and S which, because of its length, we do not present
here. The initial conditions for the amplitude M are
given by (8.7) and (8.11).

We substitute (8.5), (8.6), (8.9), and (8.10) in the solva-
bility condition (8.8) with j=3 and deduce that M(r~, v2)
satisfies a Duffing equation given by

M..., +aW —PW =0 . (8.12)

where a = co&a/0, P=co~P/0 . This equation corre-
sponds to (6.11a). Thus the variation of M with the slow
time v& is determined by the initial-value problem (8.12),
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(8.7), and (8.11). The problem of determining the bound-
ed solutions of this initial value problem is referred to as
problem M.

The steady states of (8.12), given by

for r2 &DA (8.13)

(a*) &a /(2P) . (8.14)

If a* satisfies (8.14) and rz &D ' then the solution of
problem M, periodic in z&, is given by

W(r~ rz) =Mo(rz)sn[y(rz)r& +8(rz)) (8.15a)

where the slower time-dependent amplitude Mo(rz), and
"frequency" y(rz) are given in terms of the function k(rz)
by

correspond to saddle points in the phase plane and there-
fore are unstable to two-dimensional disturbances. It is
easily verified from the first integral of (8.12) or from a
phase plane analysis of problem M that bounded solutions
in r& exist for rz &D only if the initial data is confined
within the separatrix. Then (8.7) and (8.11) imply that a*
satisfies

k (0) P(a*)z
[1+k (0)]z 2az

(8.16b)

where the sign of Wo(0) is arbitrary. We omit the details
of obtaining (8.16).

The bounded solution of the initial-value problem (8.4)
with j=3 is

(3)(r), rz) P

(8.17)

mined. Thus, if 8(rz) and k(rz) are obtained, the
leading-order term in the asymptotic expansion of the
solution of the three-dimensional Boussinesq initial-value
problem is evaluated. The values of 8(0) and k(0), which
are determined from (8.15a), the initial conditions (8.7)
and (8.11), and the first integral of (8.12) are given by

0 if a*MO(0) )0
""='2X f.*~,(0)&0 (8.16a)

2(a/P)k (rz)
Wo(rz) =

1+kz(rz)

(1z)=Ex/[I+A (1z)] (8.15b)

The known vector J is not listed explicitly because it is a
lengthy function of the indicated arguments.

Finally, the solvability condition (8.8) with j=4 yields
the following Hill's equation for the amplitude
W"'(r„r,):

The second "constant" of integration 8(rz) and the
modulus of the elliptic function k(rz) are to be deter-

I

W',
,,', +[a—3PW (r(, rz)]M' '= I (W, rz, r3,0), (8.18a)

where I is defined by

n-'
I =—

R, —D R,
Dz 1 D—2(R, DR, )M, , +—D (1—D)QrzM„+Q R,M. .. 0 'D Q r3W

DQz
2

1+—(D R, —R, )+ , (R, DR, )—— (8.18b)

I T
lim — I"M d~) ——0 .

T
L

This condition implies that

(8.19a)

This equation corresponds to (6.14). The values of
M' '(0,0) and M,' '(0,0) are obtained by employing the in-

itial conditions (8.4c), but we do not list them here. We
observe that W' ~=M is a solution of the homogeneous1

equation corresponding to (8.18a). Therefore, a necessary
condition for the existence of a bounded solution of (8.18)
on the r& time scale is

r

(k(rz) ) =Z(k('Tz), rz ) (8.21)

Here the nonlinear functions H and B are defined by

K(k(rz) )
[[1+kz(rz)]E(k(rz) )1+kz(r, )

+ [k (rz) —1]IC(k(rz) )}, (8.22a)

By employing (8.14), (8.15), and (8.18b), we obtain from
(8.20), after a lengthy calculation, the following nonlinear
differential equation for k(rz):

y 4nK/y
lim I W dc~ ——0,

n ~ 4nE j (8.19b)
IC(k(rz))

[—gi(a/P)X(k(rz) )[1+k (rz)] R, DR, —
where n is an integer and 4E/y=2~ is the period of
W(r~, ~z) in the time r~. Since W and W are periodic
functions of r~, (8.19b) can be replaced by the equivalent
solvability condition

rm, d~, =o. (8.20)

+gz(~/P) &(k(rz) )

+k"Z«(rz))], (8.22b)

where X, I; and Z are defined in (7.7) and g~, gz, and g3
are defined by
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g( —~D~(1 D—}Q R, , gz D——(1—D)Q,
(8.22c)

kz= ~
DQ' 1+—(D R, —R, )+-,'-(R, D—R, )

k =W(ko)k, (8.23)

The initial condition k(0) for (8.21) is obtained from
(8.16b) with a satisfying (8.14). When this initial-value
problem is solved for k(rz), the quantities Wo(rz) and
y(rz) are given by (8.15b) and consequently M(r~, ~z) is
determined within a phase shift 0(rz) by (8.15a).

To test the stability of the periodic solutions obtained in
Secs. VI and VII, we first observe that rz ——rz(k) given by
(7.6) is a steady solution of (8.21), i.e., it satis f'ies

Z(k, rz)=0. Denoting the inverse of this function by
k =ko(rz ), we then linearize (8.21) about ko to obtain

phase-modulated amplitude W(r~, rz) which suggests a
more complicated solution of the initial-value problem.
However, the evolution equation for 0 may imply that
0~const as 'T2~ ao, which would suggest that the period-
ic solutions found in Secs. VI and VII are in fact linearly
and asymptotically stable.
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where W(ko) is a lengthy transcendental expression which
we do not present here. However, we can show that it has
the following properties:

A(0) =A(1)=0 and P'(ko) &0 for 0 & ko & 1 .

(8.24)

APPENDIX A

The matrix Z which appears in (5.7) and (5.8) is given

r

Z] Z3

Thus (8.23) and (8.24) imply that if k is initially close to
ko it decays exponentially to ko. Therefore, according to
(8.15), (7.3), and (7.4), the amplitude Mo and frequency y
decay, respectively, to the amplitude Ao and to the fre-
quency (2K/m)co~ of the periodic solutions obtained in
Sec. VII. Consequently, for fixed rz in the interval
(o +D) /(o' +1) &rz & (D+p), if the initial data (8.1) is
sufficiently close to the periodic orbit determined asymp-
totically in Secs. VI and VII, the asymptotic approxima-
tion of the solution of the initial-value problem obtained
in this section converges as ~2~ ec to this orbit modulo a
phase shift depending on the slow time rz. Thus the
periodic solutions of Secs. VI and VII are asymptotically
(rz~ oo ), orbitally stable in the sense we have just
described, provided that 0 & ko & 1. This stability interval
for ko is, from (7.6) and (8.3), equivalent to Rz. in the in-
terval

Z2 Z4

Z3 ——

DR,
(DzQz+ z)2(Qz+~z)z

M
(~o—Q )

a

(Q'+~o)'
2

(
z Dzgz)

a

(DzQz+ z)2
R ——

S 0

2(Q +coo)

(Ala)

(A lb)

(A 1c)

R~(RT (Rg, (8.25)

as shown in Fig. 3.
To completely determine M(1 y, 7 z}, and hence the lead-

ing term in the asymptotic expansion (8.3) of the solution
of the initial-value problem, we must find 8(rz). An ap-
propriate equation for this quantity can be deduced. Al-

though we have not obtained this equation because of the
unwieldy calculations involved, its solution could yield a

Z4 =—

2T

M
COO

a

(Q'+~o)
(Ale)

The quantities g~ and gz which appear in (5.8), are given
by

2
M
a

32Q
Q (2Q —~o} ~o(Q+ 2}

I (Q +~o) ~o+4 ~o+42 z 2 Q 2 z

R, DQ(2D Q —coo)
z z zz DQ'+

(D Q +coo) a)o+4D

Deco(Q+2)

co()+4D
(A2a)
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M
a Rc Q (Q +2) 2Q —~0

(Q +coo) coo+4 coo+42 22 Q+ 2 + 2

2D Q co—o

coo+4D

where the phases p3 and p4 are defined by

coo(2+ Q)
tan@3 =

2 7

2Q —coo

Dcoo(2+ Q)
tanp4=-

2D Q —coo

D'Q(Q+2)
(D'Q +coo) coo+4D'zz~zQ+z2+ 0

W2) 2The solution P~ of the O(ez) problem is given by

(2)=0,
T~ '= —SB~Q—[(Q +coo)(4+coo)] '[ ,' Q(—4+coo)+cos(2~ p3—)]si n(2z),

S~ '= —, B„Q f—(D Q +coq)(4D +coo)] '[ ,
' Q(4D —+coo)+cos(2& p4)—]si n(2z),

(A2b)

(A3a)

(A3b)

(A3c)

(A4a)

(A4b)

APPENDIX 8

(B2)

and

The vectors P and Po and the corresponding adjoint vectors P and Pz which appear in Sec. VIII are given by the fol-
lowing expressions:

tI) =—[ DQ(a/M—)P",O, DQctp", DP",P",—(DQ /Q )P"], (B1)

P *=IDQ(a/M)P", 0, (DQ/R, )P",(DRr/R, )P", P",[DQ /(Q —R, )]P"I,
40=—I («m)4" o 0" [—(D —I)/Q]0'* o [(I+D~ ')Q/Q']0" I, (&3)

cb (') = I [a/(MR, )]@",0, —(1/R, )P",[RT(D —1)/(R, Q)]P",0, —[(1+cr 'D)Q/(Q R, )]cP"I,
where the trigonometric functions P", etc., are defined by P"—=sin[(M/a)x]cosz, etc.
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