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Privman-Fisher hypothesis on finite systems: Verification in the case of a relativistic
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The Privman-Fisher hypothesis on the singular part of the free-energy density of a finite system,
near the bulk critical point T =T„ is examined in the context of an ideal relativistic Bose gas con-
fined to a cuboidal enclosure (L»(L2&L3) under periodic boundary conditions. Taking into ac-
count the possibility of particle-antiparticle pair production in the system, explicit expressions are
derived for the free energy, the specific heat, and the condensate density at temperatures close to T„
and the special cases of a cube, a square channel and a film are investigated at length. The various
predictions of the Privman-Fisher hypothesis are fully borne out and the scaling functions governing
the critical behavior of the system are found to be universal —irrespective of the severity of the rela-
tivistic effects. The irifluence of the latter enters only through the nonuniversal scale factors, Cl
and C2, which depend on the particle mass m and density p as well.

I. INTRODUCTION

In a recent paper Privman and Fisher' have argued that
the "singular" part of the free-energy density of a finite
hypercubical system (L XL X . XL =L", d being less
than the upper critical dimension d &), near the bulk criti-
cal point T=T„may be expressed in the form

F(s)f"(t,h;L )
—= =L Y(ci tL ', C2hL ), (1)

B

where t and h are the (reduced) temperature and field
variables,

the given finite system. In reality, such an evaluation is
necessary only if one is interested in determining the exact
form of the scaling function Y(x ~,x2); insofar as the scale
factors are concerned, they can by determined from a
study of the corresponding bulk system instead. To see
this, we rewrite (1) in the form

C2hf"(t,h;L)=C" it i

"Z C, tL' '
* Ca~t '

where Z(x„xz ) is some other universal function, and let
I.—+op. We obtain

T—Tt.. p+ffHt= —,h=
kBT

f"(t,h; oo)=C "/ t
i

'W +—
C2h

c'
xt (=C&tL' ") and x2 (=C2hL ) are the appropriate
scaled variables, v and 6 being the familiar bulk indices,
while C~ and C2 are certain nonuni Uersal, system-
dependent scale factors. The function Y(x&,x2) is then a
universal function, common to all systems in the same
universality class as the given system. The more signifi-
cant features of expression (1) are that (i) no nonuniversal
metric factor, Co, appears in front of the function
Y(x&,xz) and (ii) the variable L here denotes the actual
physical dimension of the system (and not one scaled in
terms of any elementary length appropriate to the situa-
tion). As indicated by Privman and Fisher, the above for-
mulation is valid for a cylindrical system (L" 'X Oo) as
well; in our investigation it seems to hold for a film
(L X 00 ') too. Of course, the precise nature of the scal-
ing function Y(x»x2) varies significantly as we move
from one geometry to another; the same is true if we alter
the set of boundary conditions to which the system is sub-
jected.

Of pivotal importance in expression (1) are the scale
factors, C~ and C2, whose determination may seem to re-
quire an explicit evaluation of the function f"( t, h;L ) for

g 1/(2 —a) C g 5/(2 —a)gCC 2~ 1 Z~ (6)

the constants of proportionality being universal. The
scale factors C~ and C2 are, therefore, determinable from
the bulk parameters A~ and A2 of the free-energy func-
tion f"(t,h; ao). In actual practice, however, one need
not invoke the free-energy function for this purpose; any
bulk function, or functions, containing two i'ndependent
bits of information on the singularity of the problem
should do the job.

In the present paper we propose to test the scaling hy-
pothesis (1) in the case of an ideal, relativistic Bose gas
confined to restricted geometries, taking into account the
possibility that particle-antiparticle pairs may be produced
in the system. ' Using methods developed in earlier pa-

where W +—(x2 ) denote the limiting forms of the function
Z(x &,x 2 ) as x

&

—++ Oo. Now, remembering the hyper-
scaling relation dv=2 —o., we readily recover the stan-
dard bulk result

f"(t,h;~)=A, It I' W '(A, hl-gati -),
with the proviso that
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pers, ' hereafter referred to as I and II, explicit expres-
sions are derived for various thermodynamic functions of
the field-free system (x2 ——0) confined to a cuboidal enclo-
sure (L) XL2XL2) under periodic boundary conditions.
The special cases of a cube, a square channel, and a film
are examined in detail, and a comparison is made with the
corresponding results emerging from (1). Quite generally,
the two sets of results are found to be in complete agree-
ment. Additionally, while the scale factors C) and C2,
and certain asymptotic forms of the scaling function
Y(x(,x2) and its derivatives, can be determined from the
appropriate bulk results, ' our analysis of the finite sys-
tem enables us to derive the complete mathematical form
of these functions valid for all values of x). In view of
the fact that these functions are characteristic of the
geometry of the enclosure, finite-size corrections to the
various thermodynamic properties of the system are also
geometry dependent.

In Secs. II and III we carry out a detailed investigation
of hypothesis (1) and establish a set of results relevant to
the subject matter of this paper; this includes the deter-
mination of the scale factors C) and C2 on the basis of
the bulk results for an ideal relativistic Bose gas with pair
production, as obtained earlier by Singh and Pandita.
Predictions for the finite system are thereby laid out.
Next, these predictions are verified against actual, analyti-
cal results derived in Sec. IV; details of the process of ver-
ification are given in Secs. V and VI. Wherever possible,
a comparison is made with the previous analytical results
on this problem, which are generally some special cases of
the ones reported here. In Sec. VII we make a brief refer-
ence to the field-dependent case (x2&0) and describe how
the scale factors l( and l2 typically employed in that case
can be obtained from the scale factors C) and C2 of the
present treatment.

B'~t~" («0)
0 (t &0)

(12a)
(12b)

and

0 (t &0) (13a)

(13b)

where

(14)

a11d

dWE+ ——qd P, m
C

d/(d —2)

with

[2d —)rtdl2I (d/2)] —)

' (4—d)/(d —2)

I (2~77)"[I (d /2) ]"~("

X [I (2 d/2)]2/(d —2)I —1

In the following the specific heat cz' will also pertain to
the field-free situation h =0; in view of this, the variable
x2 may not be displayed explicitly in the subsequent ex-
pressions.

For the determination of C) and C2 for the relativistic
Bose gas we find it convenient to draw on the bulk
behavior of the condensate density po and the specific heat
cp, namely

II. FORMULATION OF THE PROBLEM

In accordance with (1), the singular part of the specific
heat per unit volume of the system will be given by

cp'(t, h;L ) =C)L "Y(()(C)tL ' ', C2hL ")

and that of the order parameter by

and

IVd(p p) —2( + )~ ~ ~ I (d/2)

&(d+))nV&m)
X g sinh(jpp, )

j=1 (jpm )
(18)

"{t,h;L)=C2L ~
( )(CCLL ', C2hL (8) while

where Y()) and Y(2) are appropriate derivatives of the
original function Y(x),x2), while use has been made of
the relationships

dv=2 —a, b, =P+y, a+2P+y=2 .

It will be noted that Eqs. (7) and (8) are consistent with
the standard bulk behavior, viz'.

W—:IVd(p, m) .

Here, d stands for the dimensionality of the system
(2 & d & 4), P for the inverse temperature, p for the chemi-
cal potential, m for the particle mass, and J (z) for the
modified Bessel function, while the critical point 13, is
determined by the condition

( IV~),:—Wd(P„m) =2" 'm" I (d/2)(p/m"), (19)
c"(t,O;~)~

)
t [, (11"(t,O;~)~

f
t f~. (10)

In the case of the Bose system it seems natural to study
the condensate density

p, (t,O;L ) ~ [%"(t,O;L)]'

=C L ~ "[Y(2)(C)tL'i" 0)]

p (—:Q/V) being the "charge" density in the system; note
that the units employed are such that A=c =kz ——I.

To reproduce (12a) from (11), the scaling function

[ Y(2)(x & )] must behave as

~x, ~2t' (x,~—~), (20)

with
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g2
2P 2 ~ (21)

with

—C+x ) (x ( ~+ oo ), (22)

Similarly, to reproduce (13b) from (7), the scaling function
Y( t ) (x t ) must behave as Y+x ) (x ) ~+ oo ),

with the universal coefficient

Y+ F+——/C, (32)

&+ ——&+ /(2 —a)(1 —a) .

At the same time, we conclude that the scaling function
Y(x&) in (1) must behave as

C
jV

+ C2 —a
1

It follows that
1/{2 —a)

+
C1 ——

C+
C+

2 1/2I'

P/{ 2 —a)

(23)

(24) (i) Y(x~)~ Y ~x~ ~

" " (x~~ —oo), (33a)

cf. the corresponding equation (23) for the specific-heat
function cp'.

For t,&0 and I.~ ao, there are two possibilities of in-
terest in the present study.

Substituting from Eqs. (14) and (15), and noting that the
critical indices a and /3 for the system under study are
given by"

u=, P= —,
' (2 &d &4),

2 —8
we obtain

(25)

C1 ——

{d—2)/d
dW
dP

(26)

and

C2 ——

1/2 {d—2)/2d .
+

qd

Ol

p,

1/2

(27)

For simplicity, we may choose the normalization of the
universal function Y such that the coefficients P and
C+ appearing in the asymptotic expressions (20) and (22)
are exactly equal to the numbers pd and qd, respectively;
note that, for d=3, p~ ——I/(2m ) and qq= I/(2m. ). With
this choice, C1 and C2 assume the simplified form

c, =p,'m"-', c,=(m/p, )'",
dP

which is clearly system dependent.
Once C1 and C2 are known, no more nonuniversal am-

plitudes are needed to describe the critical behavior of the
system —regardless of whether it is finite or infinite in ex-
tent; all amplitudes appearing in the expressions for the
various physical properties of the system will be related to
C& and Cz through universal factors alone. Before we
proceed to carry out a detailed evaluation of the various
quantities of interest, we shall examine the most salient
consequences of the Privman-Fisher hypothesis.

III. CONSEQUENCES OF THE
PRIVMAN-FISHER HYPOTHESIS

We start with the free-energy density f"(t;L ), as given
by Eq. (1) or (3) with h =0, and write

so that

f"(t L)=Y C, " "it ~"" "L (34a)

where the index e is as yet undetermined but is expected
to be geometry dependent.

(ii) Y(x, )~Y* (ln
~

x&
~

+const) (xi —+ —oo ),
so that

(33b)

f"(t;L)=Y* inc&+1n
~

t
~
+—lnL+const L

1

(34b)

In each case the coefficient Y or Y* is universal. The
repercussion of this on the specific heat of the system is
that for e~d,

c~"(t;L)~ (t
~

' + 'L ' (t&0, L~~) . (35a)

The special case e~d corresponds to possibility (ii) above,
for which cz'( t;L) is still given by (35a), i.e.,

c,"(t;L )
~

t
~

-'I, -'. (35b)

For E=d, the leading term in f"(t;L ) would be indepen-
dent of t, with the result that no L " term would appear
in the specific heat of the system.

We shall now examine the condensate density po(t;L).
Since, for t &0 and L —+ oo, the total number of particles
in the ground state is expected to be 0(1), we conclude
that, for a hypercube of volume L ", the function
[ Y~2&(x ~ )] in (11) must behave as

P+ x
&

r (x ~ ~+ oo ),
with I'+ universal, so that

p,(t;L)=P+C, 'C2t rL-~ (t~0, L~~-),

(36)

(37)

+"(t;L)=&
~

t
~

~+&"L (38)

as desired; here again, use has been made of relationships
(9) among the various bulk indices.

For t & 0 and L —+ op, we may write on general
grounds '

f '(t;L)=P'+t (t&0, L~~) .

Comparing (29) with (13b), we find that

(29) with the result that

p,(t;L)=8'~ t ~'t'+2' L-' [t ~t'+t'
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In view of the known results, '

/3= —,', v= 1/(d —2),
it follows that

P=(d —3)/(d —2), /3x =(d —4)/2(d —2)

(42)

(2&d &4) . (43)

cf. Eq. (12a) for po(t; oo ). (Here, the superscript && refers
to the surface properties, as usual. ) In view of (39), the
function [I'(2)(x()] must behave as

I' ~x)
~

~+8 ~x,
~

( (x) —ao), (40)

with both I' and I' universal; again, cf. the corre-
sponding bulk Eq. (20). In order that Eqs. (11) and (40)
lead to (39), we require, apart from the relation (21),

2BBx
I' =

~p 2, $ =2/3 v, —/3~ =P—v . (41)

IV. THERMODYNAMICS
OF AN IDEAL RELATIVISTIC

BOSE GAS %'ITH PAIR PRODUCTION

%'e consider an ideal Bose gas composed of X& parti-
cles and Kq antiparticles, each of mass m, confined to a
three-dimensional cuboidal enclosure of sides L, ], 1.2, and
1.3. Since particles and antiparticles are supposed to be
created in pairs, the system is governed by the conserva-
tion of the number Q (=%)—%2), rather than of the
numbers X, and X2 separately; the conserved quantity Q
may be looked upon as a kind of generalized "charge. " In
equilibrium the chemical potentials of the two species will
be equal and opposite: p&

———p2 ——p, say, with the result
that

X = g (e~' "'—1)

(47)

and

U(2)
——p()(0;L )L ~i"C2

(45)

(46)

evaluated at the erstwhile critical point (t=0), which
clearly lies in the core region, must be universal. This
completes the set of predictions, on the basis of the
Privman-Fisher hypothesis, which we propose to test at
length in the sections ahead.

Finally, in the "core" region, where ~x)
~

=O(1) and
hence

~

t
~

=O(L ' ), the functions f '(t, L), cz'(t;L),
and po(t;L), for a fixed value of x), are proportional to
L —", L, and L ~ ", respectively; see Eqs. (1), (7), and
(11). It follows that the quantities

(44)

where P= 1/T and e=(k +m )'~; remember that we are
using units such that A =c=kz ——1. Both e and p here in-
clude the rest energy m of the particle (or the antiparticle)
and, for the mean occupation numbers in the various
states to be positive definite, we must have

~ p ~

& m. As-
suming that, to begin with, p & 0, it readily follows that
X) & %2 and hence Q &0. In view of the conservation of
Q, p then stays positive under all circumstances. Without
loss of generality, we shall assume this to be the case.

Under periodic boundary conditions, the eigenvalues k;
(i = 1,2, 3) of the wave vector k are given by

k; = (2'/L; )n; (n; =0, + 1, +2, . . .);
the pressure H in the grand canonical ensemble may then
be written as

2 + cosh(jP)Lt)

pV, j 71 ),7l2, lf 3
= —oo

' 2 1/2
4 2 3 pg.

exp ~ —j/3m 1+ m2; (49)

K2(j /3m )
X(p, )M) =2 g cosh(j/3)M) 2j=l (j/3m )

(51)

Following the techniques of I and II, we obtain (correct to
al/ powers of the parameters X/I.;, where X denotes the
mean thermal wavelength v'2'/3/m or the Compton
wavelength 1/m of the particles)

m4
X(/3, /J, )+ [(m —

)M
)' H2(p)+H3()M)],

2~/3

(50)

—(m —p ) ~ y(q)
H„(p)= g'

q y"(q)

with

(52)

) (q) =(e iL i+ezL2+e3L3)'" . (53)

The primed summation in (52) implies that the term with
q=0 is excluded; accordingly, y(q) &0. Using the stan-
dard thermodynamic relation" p=(OHIO)M)T we obtain
for the charge density

mp—=—= IV(P,p)+ H(()M), (54)
V 2~2 '

2m/3

where
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W(P, p) =m BX
Bp

E2(j /3m )=2 g sinh(jf3p)
j=1 J m

while use has been made of the recurrence relation

(55)

ay [~)f($)(t.L )—
V I

) (m2 p2)3/2
2m-

—[—,(m —p )H)(p)

+(m —p')' 'H, (p)

H„(x)= H„—,(x) [x =(m —p )'/ ];dx
(56) +H3(p)]J,

Eq. (54) agrees with the corresponding result, viz. Eq.
(29), of I. The thermal free-energy density of the system
is then given by

=(p —m)p —HF F —mQ
V V

W( f3,p) +X(P,p )
2a

[p(m —p)H) (p)
277

+(m2 —p, )'/ H2(p)+H3(p)] .

(57)
In the region of phase transition (p=m), we invoke the
expansions

W(p, p) = W(p, m ) — 2 (m p) +O—(m p) (58)—

and

y; = —,(m p)'/ L;—(i =1,2, 3), (63)

and remembering that the bulk critical point P, is deter-
mined by the condition

Pgp=
2 W(P„m),

2m2

Eq. (60) becomes, to leading order in (m —p ),

(64)

W(l3, m ) W(P„m ) =— , [2—S,(y, )],
Pl

where S„(y;) denote the familiar sums'

—2R(q)
S„(y, ) =g' [A(q) =(q) y) +q2y2+q3 y3)' '],

q 8 "(q)

where p(t), for a given p, is determined by Eq. (60).
Introducing the thermogeometric parameters y;, as de-

fined in I, namely

=2"(m' —p') " H (p) (66)

X(P,p) =X(P,m )+ W(P, m )

(m —p ) /+O((m —p ) ),
3l3m'

whence Eqs. (54) and (57) take the form

(59)

while L ( denotes, for convenience, the shortest side of
the container. At the same time, Eq. (62) takes the form

3

f"(t;L)=, I 3
—[2S)(y;)+2S2(y;)+S3(y;)lI .

277

3

p= W(P, m) — [(m —p )'
2m.P

H)(p)]+O(m —p —)

and

(60)

If we now specialize to the geometry of (i) a cube
(L ) L2 L3 L), ——(ii) a s——quar——e channel (L

&
~ ao,

L2 L3 L), or (iii) a film——(L——&,L2 —+ ao, L3 L), then we-—
have to deal with only one y, viz.

(68)

X(P,m )
m4

2m-

I (m 2 p2)3/2
2m'

—[ —,(m —p )H)(p)+(m —p )'/2H2(p)

+H3(p)]]+O((m —p )2) . (61)

We readily identify the singular part of the free-energy
density, viz. f '(t;L)=L Y(x)), (70)

Furthermore, if we restrict ourselves to temperatures close
to the bulk critical point, P=l3„Eq. (65) reduces to

P, m
y[2 —S)(y)l=

d
Lt (

i
t

i
((1) . (69)

C

Recalling expression (28) for C&, with d =3, the right-
hand side of (69) becomes C)Lt/n and, since the index v
for the system under study is equal to 1, it further reduces
to x) /vr, where x) (=C& tL '/') is the scaled variable ap-
propriate to the present analysis. Expression (67) is thus
manifestly in conformity with the Privman-Fisher hy-
pothesis (1), for



PRIVMAN-FISHER HYPOTHESIS ON FINITE SYSTEMS: 1821

V. TESTS OF THE PRIVMAN-FISHER HYPOTHESIS

First of all, we shall consider the behavior of the scaling
function Y(x, ) in different regimes of t and L and for
different geometries of the enclosure.

(a) t ~0, L~co. In this regime, x~ —++ oo, with the
result that y diverges while the functions S„(y) vanish ex-
ponentially. Equations (71) and (72) then give

X ]
Y(xi )= (73)

12m"

which agrees with prediction (31), with a = —1 and
Y+ ——1/(12m ). While the value of a obtained here agrees
with the bulk result (25), with d=3, the value of Y+
agrees with the prediction [see Eqs. (30), (32), (15), and
("-8)7

E+ q3
F+ ——

6C,
1

12m'
(74)

(b) t &0, L~op. In this regime, x~~ —oo, with the
result that y tends to zero while the functions S„(y)
diverge. It is not difficult to show that, for y~0,

r

I (d' n) —1
n (d

2d* —1 —nI (de /2) d*

Zm In(1/y)+ const
I'(d'/2) yd*

(n )d*),1 1

(75a),

(75b)

(75c)

where Y(x ~ ) is given by the parametric equations

Y(y) = y [ —, —[2Si(y)+2Sz(y)+S3(y)7)
2m

x i(y) =~y [2—Si(y) 7,
among which the parameter y is supposed to be eliminat-
ed. Note that no nonuniversal metric factor Co appears
in front of the function Y(x& ) in Eq. (70). We are now in
a position to verify the set of predictions made in Sec. III.

where d' ((d ) is the number of dimensions in which the
system is finite; d* =3 for a cube, 2 for a square channel,
and 1 for a film. The asymptotic forms of the function
S„(y), for relevant values of n and d' are given in Table
I; for the evaluation of S3(y), with d'=2, we had to
make use of the Hardy sum'

(qi+qz) '=4/(s)p(s) (s) 1),

where

g(s)= g (i+1) ',
1=0

Y(x))=——g( —, )f3( —,),2 3 3 (77)

which conforms to Eq. (33a), with e=3. The leading
term in f"(t;L) being independent of t, no L term is
expected to appear in the specific heat of the system in
this case. This is again true; see Eq. (35) of II, which
shows that the leading finite-size term in cz'(t;L) in this
case is of order

~

t
~

L
(iti) film (d''=1):

Y(x ) )=——g(3),1
(78)

which is qualitatively similar to the case of the square
channel. Here, too, we do not expect an L term in the
specific heat. A reference to Eq. (39) of II shows that the
finite-size effect in this case is exponentially small.

P( s) = g ( —1)'(2l + 1)
l=o

Applying Eqs. (71) and (72) to the three geometries of in-
terest, we obtain the following results.

(i) cube (d*=3):

Y(x& )=( —ln
~

x
& ~

+const),

which conforms to Eq. (33b), with Y* = —1. According
to (34b), this will lead to a finite-size term, —1/(t L ), in
the specific heat of the system, which is indeed true; see
Eq. (31) of II.

(ii) square channel (d* =2):

TABLE I. Asymptotic forms of the function S„(y) for y ~0.

y,

2 1
1n —+const

3y

2g(3)
y

2y

y
2m 1

ln —+const
y

4g( —,
'

)p( —', )

y 3

y 3

y
3

2m'

3

4m 1
ln —+const,

y y
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(c) The core region ! tL! =0(1). In this region both

! x)! and y are of order 1, so Eqs. (71) and (72) have to be
solved numerically. At the bulk critical point (x) ——0), we
have

dS„(y )

dg

we obtain

2S„1(y)+nS„(y)
(81)

S1(yo)=2, (79)

c"(t;L)=— 8 f"(t L)
Qt 2

I.

C] F"x ]
—F'x i'

x)'

where primes denote differentiation with respect to y.
Making use of the relation

which gives yo ——0.97, 0.76, and 0.48 for d =3, 2, and 1,
respectively. ' This leads to the manifestly universal
number [see Eq. (44)]

3

[ 3 +2S2(yo)+S3(yo)]
2m.

which depends on d only.
We shaH now consider the specific-heat function

C2
(s)(t.L )

vr L 1+So(y)

which agrees with Eq. (25) of II. The scaling function
Y(1)(x)) of Eq. (7) thus turns out to be

Y())(x1)=— 3'

rr [1+So(y)] (83)

coupled, of course, with Eq. (72) for x)(y). Again, we
shall examine different regions one by one.

(a) t )0, L~ oo. In this region y =x ) /(2m. ), whence
3

2~4 (84)

which reproduces the bulk result (13b), with E+ given by
(15). It will be noted that finite-size effects in this region
are exponentially small.

(b) t (0, L~ao. Using Eqs. (72) and (75), we find
that in this region

c,"(t;I,)=—
)fc

I-(d ) C)

(d" 1)(d*+') I (d*/2)
1

+

1/(d —1)

(85a)

for d*) 1, and

2
(.) Cic ' (t;L)=—const exp —

! t!L (85b)

I

pressed in a closed form which holds over a considerable
range of temperatures —in fact, from T) T, down to
T=0 K. Noting that, for d* = 1,

for d =1. Equations (85) give finite-size effects in the
specific heat of the system for temperatures below, but
close to, the bulk critical temperature T, . It is significant
to observe that only in the case of a film does one get ex-
ponential effects; for other geometries, one obtains a
power law instead. For all relevant values of d*, the
present results agree with the ones reported in II.

(c) In the core region further progress can only be made
numerically. Of course, at t=0, we encounter the univer-
sal number

xo
U(i) =—

m. [1+So(yo)]

S)(y) = ——ln(1 —e ~), So(y) =2 —2g

3' e2+

Eqs. (72) and (83) yield

1
Y(1)(x))= — y tanhy,~3

y=sinh '( —,'e '
) .

It follows that
2

c (t;L)= — y tanhy .(g) 1

(87)

(88)

(89)

see Eq. (45).
At this stage it seems worthwhile to point out that the

scaling function Y(1)(x)) in the case of film can be ex-
In the nonrelativistic (NR) limit the scale factor C„as
given by Eq. (28), takes the form

( Cl )NR
~

[g(
3 )]2/3 1/3 (d 3)

2

! 2/d
(d 2)/d (d 2) (90)

(91)
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whence one obtains

9[g(
& ))4/3 2/3

G
' (t;L)=-P y tanhy, (92)

e
—2yq

d q

—2yq

C3 vr——lim g' —Iy~o qq
all q q

where

y =sinh ( z expI 4 [g( —', )] /
p

/ tL j ) .

= —8.913633. . . ,

(93)
with the result that

Equations (92) and (93) are in complete agreement with
the corresponding results of Barber and Fisher reported
earlier. '

[I'(»(x))l'=, (ix, I+ [C3[).
27r2

(98)

VI. SCALING FUNCTION FOR THE CONDENSATE
This agrees with prediction (40), with P =0 and
P =

~
C3

~

/(2m' ); see also Eq. (43) for p. One is thereby
led to a "surface" condensate of the form

For the analysis of the condensate we may restrict our-
selves to the case of the cube. Since the condensate densi-

ty po, for
~

t
~

&& 1, is given by

iC3 im

2m f3,L
(99)

2P, Ly
(94)

[see Eq. (40) of I], the scaling function [I'2(x&)] in (11)
has the simple form

which agree with predictions (36) and (37), with y =2 and

P+ ——2m . In region (b) we obtain

[ I'(2)«) )l'=
27T2

which agrees with (20), with p= —,
' and P = I/(2~2).

To go beyond the leading term in (97), we invoke the
asymptotic expansion

S) (y) = + +2+0(y) (d' =3),
y

(97)

where

[ &(2)«()]'= (95)
2y

where y(x & ), as before, is determined by Eq. (72).
gion (a) we obtain

2= 2~2

[I'(2)«))] =
X(

(96)
2

C2 1
po(t;L )=2m

t L

which agrees with Eqs. (38) and (39), with P~ = ——,; see
also Eq. (43) for P~. Finally, in the core region, we en-
counter the universal number

1
U(2) =

~yo

see Eq. (46).

(100)

VII. CONCLUDING REMARKS

We have shown analytically that the various predictions
of the Privman-Fisher hypothesis on the hyperuniversality
of finite systems are fully borne out in the case of an
ideal, relativistic Bose gas confined to restricted
geometries. With pair production included, the scaling
functions governing the behavior of the system in the vi-
cinity of the bulk critical point T=T, are found to be
universal —irrespective of the severity of the relativistic
effects. The influence of the latter enters only through
the nonuniversal scale factors C~ and C2, which depend
on the particle mass m and density p as well; see Eqs. (28).
Once C& and C2 are determined, no more nonuniversal
amplitudes are needed to describe the critical behavior of
the system, regardless of whether it is finite or infinite in
extent.

The explicit expression for C) in the nonrelativistic
limit has been quoted in (90); for completeness, we place
on record other limiting forms as well:

(C2)NR=(2~)'"M(d/2)1 "")(""
~(d —2)(d+ ( )/2

(C) )ER=(d —I)l (d)
II [(2+1)/2]I" ' m

(101)

(d+1)/2~ d —2

(C2)FR=
21 [(d+ I )/2]g(d —1)

1/t'2(d —1)

(103)

all for d ~2. Here, NR denotes the nonrelativistic limit
()()/m « 1) while ER denotes the extreme relativistic lim-

it (p/m ~& 1).
Finally, we would like to remark that while the calcula-

tions reported in this paper have been carried out for the
field-free case (& =0), something can be said about the
manner in which h will enter into the scaling functions
governing the critical behavior of the system. For this, we
rewrite (8) in the form
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C2C~/t/) C, /t f

and let L —+ oo. We thus obtain for the bulk system

(104)
(109)

the constant of proportionality being universal. Next,
making use of Eq. (21) and remembering that p= —,, we
obtain

h =1,+"f(l2
~

t
~

/ql" ),
where

(106)

( ~c-"+" (107)
1

Recalling that the index 6 for this system is given by

5= (d +2)/(d —2) (2 & d & 4),
and using the general expression for Cz [as given by Eq.
(28)], we obtain

(t,h; oo ) ~+
(s) CA

(105)
C,C~[r ]~ C', [t ]'

where I'+— denote the limiting forms of the function I' as
x~~+oo. Taking the inverse of (105), multiplying both
sides by (4"/C2 C~&

~

t
~

~), where 6P=b„we arrive at
the bulk scaling form of Singh and Pandita, viz.

I2 ~B (110)
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'again the constant of proportionality being universal.
Equations (109) and (110) are in complete agreement with
the analytical results of Singh and Pandita, see their Eqs.
(48) and (49). A full investigation of the Privman-Fisher
hypothesis for a finite system with h&0 is clearly a
matter of some interest. We hope to return to this investi-
gation at a later date.
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