
PHYSICAL REVIEW A VOLUME 31, NUMBER 3 MARCH 1985

Dynamic scaling theory of the critical attenuation and dispersion of sound
in a classical fluid: The binary liquid

Richard A. Ferrell
Center for Theoretical Physics, Department of Physics and Astronomy, University of Maryland,

College Park, Maryland 20742

Jayanta K. Bhattacharjee
Department ofPhysics, Indian Institute of Technology, Kanpur 2080I6, India

{Received 13 August 1984)

Following the ideas of Herzfeld, Rice, Fixman, and Mistura, we are able to establish the adiabatic
temperature oscillations as the sole origin of the critical attenuation and dispersion near the conso-
lute point of a binary liquid. Special attention is given to the scaling function F(Q) for the attenua-
tion normalized to its consolute-point value, where Q is the frequency, scaled by the relaxation rate
of the fluid. By imposing some general conditions, we are led to the empirical function
F(Q)=(1+Q ' ), which is in excellent agreement with the data of Garland and Sanchez. By
including a new hydrodynamic effect, we find that the frequency scale is also in accord with experi-
ment.

I. INTRODUCTION

On December 23, 1816, Pierre Simon Laplace' read a
paper before the Academic Franqaise in Paris on the prop-
agation of sound in air. He showed that the error in
Newton's calculation of the velocity of sound resulted
from the neglect of the local temperature changes generat-
ed by the rapid compressions and dilations of the gas. In
modern language, Laplace's contribution was the demon-
stration that agreement with experiment is achieved when
the sound velocity is calculated from the adiabatic rather
than from the isothermal compressibility. The adiabatic
temperature rise upon compression increases the effective
stiffness of the air, thereby removing the 20% discrepancy
in Newton's calculation of the sound velocity. The adia-
batic temperature oscillations play an essential role, not
only in the propagation of sound, but also in the attenua-
tion of sound in polyatomic gases, as noted by Herzfeld
and Rice. They noted that the transfer of energy from
the translational degrees of freedom to the internal de-
grees of freedom (i.e., the vibrational modes of oscillation
of the molecules), is characterized in general by various
mean relaxation times w;. When the sound frequency co

equals one of the ~ s, the excitation of the corresponding
internal mode will lag behind the temperature oscillation,
as measured in the translational modes. The resulting
hysteresis can be described by a complex frequency-
dependent specific heat, leading in turn to a complex and
frequency-dependent compressibility and propagation
velocity. The imaginary part of the velocity corresponds
to the ultrasonic attenuation coefficient a.

Fixman and Mistura applied the Herzfeld-Rice idea
to second-order phase transitions of classical fluids. In
this case the "internal modes" can be considered to be the
continuum of long-wavelength order-parameter fluctua-
tions. The relaxation times in a fluid are normally very

short. But the critical slowing down occurring in the vi-
cinity of a second-order phase transition brings the relaxa-
tion rates r, ' of the long-wavelength modes down into
the experimentally accessible frequency range. By adding
the idea of dynamic scaling to the Herzfeld-Rice-
Fixman-Mistura approach, the present authors have
found excellent quantitative agreement between theory
and experiment for ultrasonic attenuation near the A, point
of liquid He . The present paper is an effort to provide a
thorough discussion of the same type of theory for the
binary liquid, with a subsequent similar paper to be devot-
ed to the pure fluid.

The Herzfeld-Rice mechanism for ultrasonic attenua-
tion in the binary liquid 3-methylpentane and nitroethane
has been verified by Clerke et al. By means of sudden
adiabatic pressure changes it was possible' to measure the
"coupling constant. " This is the proportionality constant
that relates the amplitude of the adiabatic temperature os-
cillation to the amplitude of the pressure oscillation. The
numerical value of the coupling constant permitted an
unambiguous prediction of the strength of the ultrasonic
attenuation in the same binary mixture. %'e contend that
the exact agreement, within experimental error, with the
measurements of Harada et al. " establishes that our
theory is based on the correct physical mechanism. The
theories of Kawasaki, ' of Shiwa and Kawasaki, ' and of
Kroll and Ruhland' differ from ours in that they attempt
to calculate the second viscosity (or "bulk" viscosity) coef-
ficient directly. '

In order to compare with the experimentally observed
temperature dependence of the ultrasonic attenuation it is
necessary that the theory provide a scaling function for
the frequency-dependent specific heat. The present paper
constitutes a refinement of our earlier calculation of the
scaling function. ' The scaling function is characterized
by the following two parameters: (l) a for the frequency
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scale and (2) b for the shape. In Sec. IV and in Appen-
dixes A and B we establish that, because of a new hydro-
dynamic effect, the value of a is smaller than calculated
in Ref. 16. By carrying out the specific-heat calculation
to two loop order we find a value of b somewhat greater
than before. Both of these changes seem to find confir-
mation in the recent measurements of Garland and San-
chez, ' as illustrated in Figs. 5—7.

In the present treatment we derive various general con-
ditions that have to be satisfied by the attenuation func-
tion F(Q) =a~/a~, where a~ is the ultrasonic attenuation
per wavelength, a~ is its value at the critical point, and Q
is a certain scaled frequency. A new finding is that the
empirical function F(Q)=(1+Q '~

) satisfies all of
the imposed conditions, as well as giving an excellent fit
to the data, as shown in Figs. 5 and 6. The simplicity of
this form of F(Q) facilitates the comparison of ultrasonic
attenuation data with the theory.

Section II is a review of the thermodynamic basis of
our theory and leads directly into the simple critical-point
frequency dependence that is discussed in Sec. III. Sec-
tion IV deals with the more complicated problem of the
scaling function and concludes with a detailed comparison
of the empirical function with the data of Garland and
Sanchez. ' Section V deals with various aspects of the
dispersion in the ultrasonic velocity. Here we not only
make use of the Kramers-Kronig relations but, in addi-
tion, present a new treatment of dispersion based on the
Cauchy-Riemann conditions that have to be satisfied by
any function of a complex variable (in this case, the
frequency-dependent speeifie heat). Section VI is primari-
ly of academic interest and discusses the underlying distri-
bution of relaxing modes that gives rise to the observed
frequency-dependent specific heat. Section VII is a brief
summary followed by Appendix A, dealing with the
Kawasaki scaling function for the order-parameter relaxa-
tion, and Appendix B, dealing with the e expansion, in-
cluding a short discussion of the effect of the new hydro-
dynamic effect on the frequency scale parameter a.

II. THERMODYNAMICS

In this section we study the thermodynamic behavior of
the propagation velocity u of low-frequency and long-
wavelength sound in the vicinity of the critical point.
This will provide a sound basis for the calculation of the
more complicated, but closely related, effects of attenua-
tion and dispersion in Secs. III—V. Because we are con-
cerned with pressure changes, it is necessary to consider
not just one critical point but, rather, a "A, line" of critical
points described by the pressure-dependent critical tem-
perature T, (P). In the specific case of the binary liquid
3-methylpentane + nitroethane, for example, this function
has been measured by Beysens and Tufeu' over a wide
range of pressure and by Clerke et al. , ' with greater ac-
curacy over a more limited pressure range. In principle,
the variation of the critical concentration with pressure
also needs to be taken into account. But we will neglect
this pressure dependence here because it is known empiri-
cally to be very small in most binary liquids. Further-
more, we have found' that even in cases where there is an

appreciable critical-concentration pressure dependence,
this has a negligible net effect on sound propagation.

In the critical region, it is useful to employ as tempera-
ture variable the displacement away from the A, line

hT=T T, (P—) . (2.1)

For sound propagation we need to know how the volume
V varies with P, under the clamping condition of constant
entropy S. Referring all extensive thermodynamic vari-
ables to unit mass of the fluid, we find V from the Gibbs
function by

BG
BP

BG
BP

BG
'

BP

BG BAT+ a~T, aP

+ Te'S (2.2)

The prime denotes differentiation with respect to P. In-
tegrating away from the A. line at constant pressure gives

hT
G(P, b T)=G, (P) f S(P,b—.T')dhT', (2.3)

where G, (P)=G(P, O) is the Gibbs function at points on
the A, line. The required derivative parallel to the A, line
and at constant displacement b, T from it is therefore

=G' — " ' 'dnT =G,' —S; ST,

(2.4)

where we have aPProximated (aSlaP)qz by its value
along the k line and have taken it outside the integral.
Substituting Eq. (2.4) into (2.2), we obtain the desired re-
sult

V(P, D,T)=G,'+T,'S —S,' b, T . (2.5)

The isentropic compressibility Ps is therefore given by

av av
ap , ap ,+ T,"AS—S,"AT

BAT
aP

(2.6)

with the A,-line limit expressed as

—Vgs —— ——G,"+T,"S, .aP, = ' (2.7)

S,'
PS=PS+ V'

apC S

The adiabatic temperature variation is expressed by

(2.8)

Here we will neglect the first-order terms in hT and
ES—=S—'S, in Eq. (2.6), although in the similar case
of the propagation of sound in superfluid He they have
to be included. With this simplification, the isentropic
compressibility becomes
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BAT
BP

V,

Cp
(2.9)

frequency-dependent compressibility Ps(co) and the
frequency-dependent velocity u(to). Thus Eqs. (2.13) and
(2.11) become

TcSc

V,
(2.10) and

where we have again approximated the entropy derivative
by its A,-line value. The dimensionless coupling constant

g uc
Ll ( co ) = lc~ +

2T, Cp(co)
(2.14)

has been determined to be g = —0.34+0.01 in 3-
methylpentane+ nitroethane. Substituting Eqs. (2.9) and
(2.10) into Eq. (2.8) yields

g2
Ps =&s (2.11)

T, Cp

a quantity that has been measured directly by Tanaka
et a1. The sound velocity is given by

(2.12)

where u, is the velocity at the critical point. Because g
enters squared, Eq. (2.12) represents a decreasing linear
function of Cz for all binary Auids, as illustrated
schematically by Fig. 1, regardless of the sign of g. The
second term on the right-hand side of Eq. (2.12) is gen-
erally small compared to u, , which permits Eq. (2.12) to
be approximated by

g uc
uc+ (2.13)

c I'

This increasing linear function of Cz is identical in form
to the expression used by Barmatz and Rudnick for
sound propagation ' near the A, transition in liquid He .
Because of the equivalence of Eqs. (2.12) and (2.13), we
call Fig. 1 a "Barmatz-Rudnick plot. "

All of the above analysis can be carried through at a
finite frequency co for an input pressure signal with time
dependence exp i cot. Equations —(2.11)—(2.13) then relate
the frequency-dependent specific heat Cz(co) to the

2

Ps(~) =Ps T-
Tc Cp(cv )

(2.15)

The frequency dependence is studied in detail in Secs.
III—V. In this section we limit ourselves to the first devi-
ation of these functions from their thermodynamic zero-
frequency limiting values of Cz(0) =Cp, Ps(0) =f3s, and
u (0)=u. We split Cp(co) up into its noncritical
frequency-independent background component C& and
the critical part C(co), so Cp ——C&+C(0). A two-term
low-frequency Taylor's expansion for C(co) gives

C(co)=C(0)+coC'(0) =C(0)(1+ivor), (2.16)

where we define an effective mean relaxation time by

. C'(0)
C(0)

(2.17)

Ps(~) =Ps+i g'Ps~ . (2.19)

Identification of the imaginary terms in Eqs. (2.18) and
(2.19) yields

From Eqs. (2.15) and (2.16) the cur &&1 correction to Eq.
(2.11) becomes

2

Ps(co) =/3s+iC(0) cor . (2.18)
T, Cp

The imaginary part of Ps(co) corresponds to a lagging
response and, thus, a hysteresis and damping of the sound
waves. In the low-frequency regime the damping can al-
ternatively be described within the framework of conven-
tional hydrodynamics by the introduction of the bulk
viscosity g', which gives

-2
U

V, gg'= C(0)
13sCp

(2.20)

FIG. 1. u vs Cp ' where u is the velocity of sound and Cp
the specific heat at constant pressure. The straight-line
Barmatz-Rudnick plot is the thermodynamic relation. The
dashed curve shows the deviation from thermodynamics pro-
duced by a finite frequency, resulting in frequency dependence
at the critical point.

The dominant temperature dependence in Eq. (2.19) is
provided by r, the other factors being more slowly vary-
ing. It needs to be emphasized, as already discussed by
Herzfeld and Litovitz' for ultrasonic attenuation in po-
lyatomic gases, that the concept of a bulk viscosity has
been introduced only for the purpose of establishing contact
with conventional hydrodynamics g' is of no va. luein elu
cidating the physical mechanism of the damping, which de
pends upon the adiabatic temperatuI'e variation, as exhibit-
ed by the second term of Eq. (2.15).

III. DYNAMIC SCALING AT THE CRITICAL POINT

The critical part of the specific heat that determines the
complex sound velocity via Eq. (2.14) has the thermo-
dynamic temperature dependence
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C(0) ~ r (3.1)

where o.o is the critical exponent and t =6T/T,
=(T T,—)/T, is the reduced temperature. The critical
diffusion that produces the relaxation of the concentration
fluctuations ' is determined by

ATD=
6nrig

' (3.2)

where kz is Boltzmann's constant, g is the shear viscosi-
ty, and g is the correlation length with the critical ex-
ponent v. The characteristic relaxation rate for the fluid
is therefore

y(r)=2Dg 2=yot o =yo(AT) ',
where, with the critical viscosity exponent included,

zp ——3.05 .

(3.3)

(3.4)

3 0 =0.33 MHz .
21T

(3.5)

Using Eq. (3.3) to eliminate t in terms of y, we can ex-
press the temperature dependence of C(0) in the entirely
equivalent form

yo and go are constants. For 3-methylpentane
+ nitroethane and with AT in kelvins, FIG. 2. Frequency and rate plane illustrating the working of

dynamic scaling. Crossover occurs from quasithermodynamic
to nonthermodynamic behavior at the dashed line co=ay. As
the critical point is approached at a constant finite frequency m'

as shown by the dot-dashed line, y dependence changes to co

dependence.

ao Oo 1 1 0 057
3.05 ~0.63

0) y
0 0+

where the small exponent is

(3.6)

(3.7)

1+aO/zov—co a

a(ReCP)

cL os'
sin

, 2zpv

I +ao/zov—Qp7T ~~ a
2zova (ReC )z

co 1m'(co) '= ImC(O, co)
(ReCp )

(3.9)

C(O, co) oc

—aO/zOv—lCO (3.8)

Figure 2 illustrates this crossover behavior from the
quasithermodynamic region I, where y is the dominant
variable, to the nonthermodynamic region II, where the
frequency dominates and y disappears from the problem.
The dashed slanting line at co=ay divides the two re-
gions. An experiment at constant co, as indicated by the
horizontal dot-dashed line, passes from region I to region
II as the critical point is approached.

The factor —i that occurs in Eq. (3.8) is required by the
purely relaxational nature of the critical-concentration
fluctuations. It has the important consequence that
Cp(co) is a complex function leading, in turn, by virtue of
Eq. (2.14), to a complex sound velocity. The attenuation
coefficient a in Np/cm is proportional to

When we pass to the critical point, dynamic scaling, as ex-
hibited explicitly by the single-loop expressions of Sec. IV,
requires that y be replaced by ico/a, —where a is a di-
mensionless constant of' order I. Thus, with t=0 and
y =0 Eq. (3.6) is replaced by

the approximations being permitted by ao/zov«1. The
noncritical background attenuation varies as co, so that a—' —ao~zov —i O6plot of a/co versus co ' =co ' will be a straight
line, provided that the frequency dependence of ReC& can
be neglected. We note that this approximation is not, in
fact, allowed, for the special case of 3-methylpen-
tane+ nitroethane, where the effective exponent in the
observable frequency range is expected to be 1.03 instead
of 1.06. We further comment in passing that, by keeping
the various numerical factors in Eq. (3.9), it has been pos-
sible to verify that Eq. (2.15) predicts exactly the ob-
served strength of the attenuation at the critical point.

IV. DYNAMIC SCALING FUNCTION

C(y, O) cc y (4.1a)

A. Decoupled-mode specific heat

In Sec. III above we limited our study of the
frequency-dependent specific heat C(y, co) to the y and co

axes where
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C(O, co) cc

—CXO/Zo V

(4.1b)

C(y, ~)
C(y, O)

(4.2)

for ~z
~

&&1, where

. EOz=——tQ= —s— (4.3)

Thus a is a scale parameter for the reduced frequency Q.
In order to compare various approximations for C(y, co) it
is convenient to eliminate the occurrence of the critical
exponent ao by defining the scaling function

are the thermodynamic and critical-point functions,
respectively. In this section we take up the study of
C(y, co) in the entire positive quadrant of the y-co plane,
as illustrated in Fig. 2. Equations (4.1a) and (4.1b) consti-
tute "boundary conditions" that must be satisfied by any
theoretical expression for C(y, co). It is convenient to con-
sider the ratio of C(y, ~) to C(y, O), the thermodynamic
limit, so that the boundary condition of Eq. (4.1b) be-
comes the asymptotic equality

' —ao/sos
z

G2(&2) ) = —, J d~x2) (5p (2)5p (1))

(2~)D
(4.9)

For the order-parameter correlation function we use the
Ornstein-Zernike approximation

provides an alternative frequency-scale parameter and is
equivalent to a.

We now turn to the decoupled-mode computation of
the frequency-dependent specific heat via the correlation
function for 5$, the fluctuation of the squared order pa-
rameter. We denote the order parameter at space-time
point x& and t& in a classical fluid by P(1). This fluctuat-
ing order parameter will describe the entropy and concen-
tration fluctuations in a pure fluid or binary liquid,
respectively. 5P is essentially the energy fluctuation. As
is well known in the theory of thermodynamic fluctua-
tions, the latter is related to the specific heat. We begin
with the correlation function for 5$ at a time difference
of t2& ——t2 —t ~. Because the individual components of
wave number p decay at the pair rate y(p, a), we have the
desired correlation function in the decoupled-mode for-
malism, represented by the single noninteracting loop of
Fig. 3(a), in the form

L(z)=
zov C(y co)

ln
ao C(y, O)

(4.4) —2

v +p 1+q
(4.10)

The boundary condition of Eq. (4.1a) for the thermo-
dynamic limit becomes

where we have introduced the scaled wave number

L(0)=0, (4.5a) (4.11)

whereas the critical-point limit, Eq. (4.1b), is transformed
into the asymptotic condition

L (z) ——In(z/a ) (4.5b)

for
~

z
~

&&1. In addition to the frequency-scale parame-
ter a, it is possible from the low-frequency behavior of
L (z) to define a shape parameter b by

[The Fisher-Langer modification of g(p, ~) for q &&1 will
be discussed in Sec. IV B below. ] For p &&~ (long-
wavelength limit) the pair rate is related to the charac-
teristic rate y(t) by y(p, a. ) =(p/a) y(t).

The frequency-dependent specific heat is, according to
the fluctuation-dissipation theorem, the Fourier transform
of the causal linear-response function

dL(z)
GZ

(4.6) R(r) = — [[G,(t) —G, (0)]e(r)I,dt

where

(4. 12)

Because the critical fluctuations are not able to follow a
variable temperature signal, the frequency dependence
generally reduces C(y, co) below its thermodynamic equi-
librium value C(y, O). In fact, L(z) is a negative and
monotonically decreasing function of z along the positive
real z axis, i.e., along the positive imaginary 0 axis. Else-
where in the complex z plane, L(z) is a complex quantity.
Along the real Q axis, i.e., the negative imaginary z axis,
we define the attenuation function, as discussed below in
Sec. IVB, by

1, t)0e'"= 0, r(O (4.13)

is the usual retarded unit step function. It follows that

E(Q) —=—ImL( i 0), —=2 (4.7)

(c)

E(Q]y2): (4.g)

normalized at the critical point to F(0o)=1. The 50%
attenuation frequency Q~/2, defined by

FIG. 3. Specific-heat graphs to two-loop order. The wavy
lines in {c)and (d) correspond to the hydrodynamic shear modes.
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C(y, co) =Gz(0) +i cog'(co), (4.14)

where the Fourier transform of the correlation function is

g2(co)= f dte' 'Gp(t)= f dte '"'G2(t), (4.15)

—ZP

zy+ y(p, ic)

with the second version becoming the Laplace transform
for real z. Carrying out the Laplace transform on the in-
tegrand of Eq. (4.9) gives

—zy e ~'~ "e '~'dt=
0

I"D (q)-q
into Eq. (4.20) gives

(4.24)

With the denominator in Eq. (4.23) given by Eq. (4.21),
it remains only to obtain an expression for the integral in
Eq. (4.20) as a function of z. This can be carried out in
closed form in the high-frequency limit, which will lead
to an explicit formula for the frequency-scale parameter
a. Substituting the q »1 asymptotic form of Eq. (4.17),

z+ I D (q)

where the scaled-pair decay rate is

(4.16)
HDD (z)=, du ,r, Z-"

(z+ u )u
"D'

(4.25)

(q)VP t q2(1 +q2)D /21( Ic)

y(t)
(4.17)

CD
C(y, co)= Dlc 'HDD (z),

(2m. )
(4.18)

For the actual three-dimensional fluid, setting D'=3 in
Eq. (4.17) gives a good approximation to the Kawasaki
function, as discussed in Appendix A. For mathemati-
cal convenience, however, it is useful to treat D' as a free
parameter. We note that Eq. (4.17) implies zo ——D', which
is equivalent to neglecting the weak critical divergence of
the viscosity. For the purpose of obtaining an approxima-
tion to the scaling function, this is sufficiently accurate.

With these preliminaries behind us, we can now substi-
tute Eqs. (4.17), (4.16), and (4.9) into Eqs. (4.15) and (4.14)
to obtain, with @=4—D,

where

I(5)= du u
1 g 7T

1+u sin(m5)

Thus,

Hhf
( )

~/D —P/g)'

si (nm.e/D')

(4.26)

(4.27)

Substitution into Eq. (4.23) and comparison with Eq.
(4.5b) yields

4 sin[@(D/2 —1)jlnaDD —— ln
e D'(D —2) sin(ate/D')

(4.28)

Of particular interest is the case of D~4, or e—+0. Then
the limiting value of e ' times the logarithm is —,', in-
dependent of D'. Therefore

where

—C
D

f
D
2

(4.19)

D'/2
a4D ——e

Special cases are

Q44=e =7.39,
a43 ——e =4.48,

(4.29)

(4.30a)

(4.30b)

is the volume of the unit sphere in D dimensions, and and

1 1 Ia'e'
Hg)D(z)= d q

CD (1+q ) z+I D(q)
qD-' I D'(q)

dq (1+q~)~ z+I (q)
(4.20)

Q32 =e =2.72 . (4.30c)

Appendix B is devoted to an expansion of Eq. (4.28) in
powers of e and e'= 4 D'. Other —spe—cial cases of Eq.
(4.28) for integer values of D and D' are

00 1 D/2 ] ] 1 —e/2
HD (1+u )2 sin(me/2)

(4.21)

By inspection of Eq. (4.18) we identify the critical ex-
ponent for the single-loop model as

In the thermodynamic limit the "dynamic dimensionali-
ty" D' disappears from Eq. (4.20). We therefore drop this
index and, with. the variable substitution u =q, obtain

a34 ——2 =4.00,
3

Q33 = =3.65,8

3 3

a32 ——2 =4.00,
a„=(—,

' ~)'=2.47,

(4.30&1)

(4.30e)

(4.30f)

(4.30g)

CX0=E'V . (4.22)
3/4

Substituting Eqs. (4.22) and (4.20) into Eq. (4.4) gives the
scaling function

4~
a23 = =3.76 . (4.30h)

DI
L(z) = ln

E

HD~ (z)

HD
(4.23)

For D=4, Eqs. (4.30a)—(4.30c) exhibit a steady trend
of decreasing frequency scale as D' decreases. For D =3
the dependence on D' is much reduced and exhibits a
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minimum in the vicinity of D =3, as is evident in Eqs.
(4.30d)—(4.30f). For D =2, the trend is reversed and
a22 ——oo, indicating a breakdown of Eq. (4.25). This in-
frared divergence is discussed in Appendix B. We now
take up the dependence of the shape parameter bDD on
the dimensionalities. The substitution of Eq. (4.23) into
Eq. (4.6) gives

P(z) = —,
' (1—4z) '~ ln

1+(1 4z)
1 —(1—4z) '/

L44(z) = —lnz+2+ —lnz+2 ——3 P(z),I 1

Z z
(4.36)

(4.37)

D'H'—g)D'(0)

PHD

and
(4.31)

Lq2(z)=21n(2z ~ —3z+1)—41n(z —1) . (4.38)

with the prime indicating the differentiation of the in-
tegral in Eq. (4.20). The resulting integral is readily
evaluated to yield for the numerator in Eq. (4.31)

Some care needs to be exercised in evaluating P(z) in the
complex plane. Along the positive real z axis, P(z) is real
and equal to

I (2+ —,
' (D' —D))—D'H' DD(0) = I 1—

I ( —,D')

(4.32)

tanh '(1 —4z), 0&z& —,
'

P(z)= i4z —1
i tan '(4z —1), —, &z.

The denominator is found from Eq. (4.21) to be
r

e m.e/2
2 sin(ere/2)

(4.33)

Both of these expressions have limiting values of unity at
D =4 and @=0, thereby establishing the identity

~4D =a4D .

From Eqs. (4.30a)—(4.30c) we obtain

b44 ——7.39,

b4g ——4.48,

b42 ——2.72 .

(4.34)

(4.35a)

(4.35b)

(4.35c)

For D=3, Eq. (4.31) develops a D' dependence which,
combined with Eqs. (4.30d)—(4.30fl, yields

(4.39)

By factoring the denominator of the integrand of Eq.
(4.20), we can also obtain H34(z) in closed form. But the
resulting scaling function is complicated and not con-
venient to use, and, therefore, will not be exhibited here.
For demonstrating the close similarities that exist among
the various scaling functions, in spite of their apparent
differences in form, L44(z) and Lq2(z) will suffice.

It is a complicated, but straightforward, task to find the
attenuation function according to Eq. (4.7) by extracting
the imaginary part of L44(z) for the negative imaginary
values z = —iQ. We have exhibited the resulting function
F~(Q) in Fig. 2 of Ref. 6. It has a smooth monotonic
rise between E~(0)=0 and F44( oo )= 1, with the halfway
point falling at 0'&/2' ——5.47. Relative to the frequency-
scale parameter, this is

b34 —12.00,

bye ——9.29,

(4.35d)

(4.35e)

n", /4,
'

=0.740 .
a 44

(4.40)

and
The high-frequency behavior of the scaling function is
described by the three-term expansion

bg2 ——8.00 . (4.35fl L44(z) ——Inz+2 — z
37T ] /2

2
(4.41)

Gur interest is primarily in the fully three-dimensional
case D=D'=3 for which Eqs. (4.30e) and (4.35e) give
a 33 —3.65 and b 33 —9.29, respectively. Unfortunately,
for this particular case, it is not feasible to carry out the
integration and to exhibit L33(z) in closed form. For this
reason we have determined the parameters for the fre-
quency scale and the shapes as functions of D and D'.
We will return to the scale parameter in Sec. IVC below
and concentrate, for the moment, on the shape parameter.
It is our experience that b&D goes a long way in fixing not
only the low-frequency behavior, but, in fact, the entire
global shape of LDD (z) over the entire range of z. It is
therefore a considerable mathematical convenience that
we can approximate the 33 case by other cases whose bDD
values are close to b33 —9.29. The integration of Eq.
(4.20) is possible in terms of elementary functions for 44,
34, and 32. Thus we find, by substituting into Eq. (4.23),

where, by inspection, we recognize a44 ——e, in agreement
with Eq. (4.30a). Equations (4.7) and (4.41) give

1 /2

F4g(Q)=1 — Q = 1 bg4—3 &/2, a 44

vZ Q
(4.42)

where

b 4g —— ——0.7803

e 2
(4.43)

Lsz(z) ——lnz+2 ln2 —3z

which yields

(4A4)

is a shape parameter'based on the high instead of the
low-frequency behavior. Equation (4.42) yields quite ac-
curately the first 20% drop in F44(Q) below F~( oo ) = 1.

The corresponding expansion for the 32 case is
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F»(Q)=l — Q '~'= I —b'„ 0
1/2

(4.45)

where

3
b32 —— ——0.675 .

1T 2
(4.46)

4 i 3Q —v2Qi 8
F32(Q) = —tan ' ——tan 'Q

2Q'" (4.47)

from which we recover Eq. (4.45) for Q &&1 as well as

The fact that b32 differs from b44 by only 14% ls con-
sistent with the near equality of b3z and b«, for which
the difference is 8%. This serves to support our conten-
tion that one parameter (either b or b') suffices to give a
reasonably faithful indication of the shape of F(Q). A
further example of this is our plot of F4&(Q) in Fig. 2 of
Ref. 6. It is evident by comparing it with the curve for
F«(Q) that the former is much steeper. This is precisely
what is to be expected from the smaller value of b [2.72 as
compared to 7.39, according to Eqs. (4.35c) and (4.35a)].
In Ref. 6 we advocated the preference of F43 over F«be-
cause one of the dimensionalities had been reduced to the
physically true value of 3. We now believe that this inter-
mediate case does not give a good scaling function and
that it is necessary to set both D and D' equal to 3. This
second step of reducing D from 4 to 3 doubles the shape
parameter, as seen from Eqs. (4.35b) and (4.35e). The re-
sulting stronger low-frequency tail will stretch out the
plot of F33(Q) versus Q and result in a less-steep rise. Be-
cause b32 is close to b33 we expect F32(Q) to be a fair
representation of F33(Q). As already explained, this ap-
proximation is dictated by mathematical convenience.

The full course of the 32 attenuation function is given

by

erality beyond the specific single-loop prototypes studied
in Sec. IV A. The latter correspond to Fig. 3(a). We first
turn our attention to the effect of the interaction of the
fluctuations as illustrated in Fig. 3(b). We write the
single-loop function as

C'= (C—1).,
ap

(4.50a)

where we write the function that has been calculated in
Sec. IV A in the exponentiated form

Ap
C =exp K

ZOV
(4.50b)

K(y, co) =KTH+L(z), (4.51)

where the substitution of KTH=K(y, O) into Eq. (4.50b)
yields the thermodynamic specific heat C(y, O). Working
close to D=4 we have ap ——0(e), which permits the
development in powers of ap according to

&oC' —K+ K +.
2Zp V

(4.52)

Now representing the strength of the first-order interac-
tion of the fluctuations by —u4, corresponding to the
heavy dot in Fig. 3(b), the effect of the fluctuations on the
specific heat is given to this accuracy by the modified
function

The subtraction inside the parentheses represents the non-
critical background term resulting from the Debye cutoff
at short wavelengths that we have, up to now, been ignor-
ing. The temperature and frequency-dependent function
in the exponent is related to the scaling function defined
in Eq. (4.4) by

4 2 b32
F32——0=— A

7T 7T a 32
(4.48)

apC"=C' —u4C' =K+ —u4 K +
2Zp V

for Q && 1, in agreement with Eqs. (4.30f) and (4.35f). In
order to exhibit clearly the high-frequency behavior of Eq.
(4 45) we have plotted F3q(Q) of Eq. (4.47) versus
(a32/Q)' as the dashed curve in Fig. 4. In this way the
high-frequency variation is converted into a straight line.
The halfway point falls at Q'»z' ——3.19, or in units of the
frequency-scale parameter a 32

——4, at
~(32)

=0.797 . (4.49)
&32

The close agreement with Eq. (4.40) is to be expected from
the near equality of the shape parameters.

This completes our study of the decoupled-mode theory
of the frequency-dependent specific heat. The decoupling
neglects the interaction of the fluctuations. In Sec. IVB
we argue that, guided by the two-term e expansion, we do
not expect the scaling function to be modified significant-
ly by the interactions.

B. General theory

In this subsection we discuss some theoretical aspects of
the frequency-dependent specific heat that have some gen-

CXO=K+ + ~ ~ ~

2Zp V

ZO V (ao /zov)E
(e 0 0

CEO

ZpV ao /aoC ' '—const.
CXp

(4.53)

Because Eq. (4.51) is still applicable, it follows from Eq.
(4.53) that the scaling function is unaffected by the fluc-
tuations to first order in the e expansion. To this order,
the only effect of the fluctuations is to change the critical
specific-heat exponent from its "bare" single-loop value to

Ap =exp —2z vu 4 (4.54)

This is, of course, the standard e expansion theory of ap
and tends to explain why the observed value at D= 3 of
0.11 is much smaller than the single-loop value of
v =0.63. Our purpose in repeating this well-known
theoretical result here is to establish qualitatively the justi-
fication for neglecting the effect of the static interaction
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CXp

(K TH+ReL) ImL .ImC" ~ exp
zov

(4.55)

By comparing the attenuation per wavelength a~ with its
critical value a~ and neglecting the weak dispersion and
the slow variation of the prefactor in Eq. (4.55), we find
for their ratio

of the fluctuations on the scaling functions. This is the
basis for our approximation of using the single-loop func-
tions derived in Sec. IV A.

The ultrasonic attenuation is determined by ImC". By
substituting Eq. (4.51) into Eq. (4.50) and exploiting
ao/zov «1 and the fact that Im L, is bounded by —,m we
obtain

z+r .
z z'=1— +I D I D(I D'+z)

z z'=1—
I D q'(q'+z)

(4.62)

It is very convenient that, in spite of the lack of an ex-
plicit Fisher-I anger correction, the general requirement
expressed by Eq. (4.61) is nevertheless satisfied by F44 and
F32 as is evident in Eqs. (4.42) and (4.45), respectively.
Being just part of the interaction effect, Eq. (4.60) is only
suggestive, with a 3-loop calculation still needed.

We now study in greater detail the low-frequency
behavior of the single-loop integral. The frequency-
dependent factor in the integrand of Eq. (4.20) is

2=—ImL =F(n), (4.56)
where we have substituted the q «1 approximation to
Eq. (4.17) in the last term. Substitution of Eq. (4.62) into
Eq. (4.20) yields

the definition of the attenuation function in Eq. (4.7). In
subsequent work we drop the prime on o.o and the double
prime on C.

A second general feature of the scaling function is the
error ensuing in the single-loop integral of Eq. (4.20) from
the use of the Ornstein-Zernike approximation, which has
its high-momentum behavior =H3 zH3D (0)+ ——, mz (4.63)

00

H3D (z) =H3 zH3D (—0)+z dq (1+q') I D (I D +z)
OQ

=H3 zH3D (0—)+z dq
0 q +z

g(p, ~)=p 'Q(q)

described by the deviation function

(4.57a)
Substituted into Eqs. (4.23) and (4.7), this gives the low-
frequency forms for the scaling and attenuation functions

Q(q)=1 —q (4.57b)

The correct high-momentum behavior is known to be
L3D (z) z+2D—'z3D' 3/2

a3D
(4.64)

g(p, ~) ~ p '+"Q(q),

with the deviation function

g(q)=i —c q-""—c q-"- ""
—(2—a) /2v

=1—CF Lq
—D'/2

(4.57c)

(4.58)

2»3DF„(n)=—"n D'n'"—
a 3D&

Z»3D
Q —0.90D'0

'jT a 3D~
(4.65)

2 —o'. =D'v . (4.59)

(Because C& and C2 are of opposite sign, an average ex-
ponent with different weighting would be more accurate. )
Substituting Eq. (4.58) into the integrand of Eq. (4.20)
yields a correction to its high-frequency value Which can
be calculated as a weighted average. Denoting this aver-
age with angular brackets, and noting that the variable
q is converted into z by the averaging, gives the frac-
tional correction to Eq. (4.25) of

(Q(q)) —1 ~ —CF Lz (4.60)

This requires that the attenuation have, in general, the
high-frequency form

F(n)=1 —constn (4.61)

Here we have neglected the small anomalous dimension
exponent g and have approximated the two terms by a
single effective Fisher-Langer coefficient and an average
exponent, which has been simplified by the scaling law

These equations are a refinement on the low-frequency
linear behavior studied in Sec. IVA and characterized by
the shape parameter»DD. The 0 correction to the
linear term results from the D=3 nature of phase space
and must be regarded as a general requirement that has to
be satisfied by any theory for F(n). For this reason
Fq4(n) has to be regarded as less satisfactory than
F32(n). We note that for Q « 1, Eq. (4.47) reduces to

F3/(n) Q Q =—Q —1.80Q3 (4.66)
4 4~2 3' 4

in accord with Eq. (4.65). With D'=3, the coefficient of
n ~ in Eq. (4.65) becomes —2.70.

%e conclude this section by considering the possibility
of characterizing the scaling function entirely on the basis
of F(n). In other words, suppose F(n) is given without
the underlying scaling function L(z). The shape parame-
ters» and b' are determined by the low- and high-
frequency behavior of F(Q), respectively. But for this we
need to know the value of a which, according to the dis-
cussion of Sec. III, is determined from the high-frequency
form of Eby
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(4.67)

In Sec. V below we use the Kramers-Kronig relations to
express K as an integral over F(Q). Substituting this re-
sult for K(y, 0) into Eq. (4.67) leads to

F(n)=n —2Q = ——e ——2Q32 2~ 2 32
2 a

3/2
2m 2Q 3 0

e —2e
m. 2 a a

(4.74)

lna = lim
QD —+ oo.

1 n I" dn F'Q'
o Q

(4.68) where use has been made of Eq. (4.71). The coefficient of
the linear term yields the shape parameter

which can alternatively be written as b= —e =11.6.~ 2

2
(4.75)

I [F(n)—e(n —a )]=0, (4.69)

with the unit step function defined in Eq. (4.13). From
Eq. (4.69) we see that a can be interpreted as the position
of a sharp cutoff that would be equivalent to the smoothly
varying function F(Q).

F(Q)= 1+ 1

Q

—2

(4.70)

Carrying out the integration in Eq. (4.68) shows that the
frequency-scale parameter for this function is

C. Empirical attenuation function

As argued in Sec. IV B, the decoupled-mode single-loop
integral, in spite of its neglect of the interaction of the
fluctuations, yields correctly the scaling and attenuation
functions. These functions are not affected, at least to
first order in the e expansion, by the interaction. There-
fore we should, in principle, base our theory on L33(z)
and F33(n), as defined by Eqs. (4.23), (4.20), and (4.7).
But we deviate from this straightforward course for the
following two reasons: (1) mathematical convenience, and
(2) uncertain accuracy of the e expansion. For both of
these reasons it is preferable not to adhere strictly to the
33 single-loop result, but rather to characterize it in a
more general fashion by the frequency parameter a and by
the various low- and high-frequency shape parameters.
Because of reason (2) above, a function F(n) satisfying
the several general conditions can be expected to have as
much validity as the specific function F33(n). Further-
more, by a judicious choice of form, F(n) may be much
easier to work with, because of the impossibility of carry-
ing out the 33 single-loop integration in closed form.
Such a function exhibiting all of the necessary and desir-
able features is

This value of b is close to the predicted value of 10.7 for
b 33 from Eq. (4.35e), after inclusion of the 15% correc-
tion from Appendix A. Thus Eq. (4.70) acquires a further
quantitative basis from the theory over and above the
qualitative requirements that led to its choice. The second
term in Eq. (4.74) has the general form required by Eq.
(4.65), with the coefficient of —2 as compared to the
a priori value of —2.70.

In the high-frequency-range, Eq. (4.70) becomes
1/2

F(n)=1 —2Q 'i =1———, (4.76)
e Q

which yields the shape parameter

2b'= —=0.736 .
e

(4.77)

This value is in the good range and is bracketed by the re-
sults b44 ——0.780 and b32 ——0.675 [as reported in Eqs.
(4.42) and (4.46), respectively]. Thus we see that the shape
parameters for Eq. (4.70) correspond well to those coming
from the single-loop integrals, but that the a value of Eq.
(4.71) is bigger than that coming from the D =3 integrals.
This latter defect is readily eliminated by a scale change
so that the empirical attenuation function, adjusted for
any desired value of a, or half-attenuation frequency Q~&2,
1s

' 1/2 —2
1

'

QF(n)= 1+—
e Q

1+0.414
1/2
0

' 1/2 —2

(4.78)

Obviously the shape parameters are unaffected by this
scale change. The coefficient of n ~ in Eq. (4.74) is,
however, raised to

a=e =7.39 .

The half-attenuation point comes at

(4.71)
e—2 = —5.76,
a3

(4.79)

Q~y2 =3+2~2= 5.83

with the ratio

(4.72)

Q1/2 =0.789
a

(4.73)

only l~o removed from the value 0.797 found for the 32
case. The low-frequency expansion of Eq. (4.70) is

or somewhat more than twice the a priori expected value
of —2.70. Equation (4.78), as a function of (a/Q)'~, has
been plotted as the solid curve in Fig. 4. As expected
from the approximate equality of b' and b 32, there is no
appreciable separation of the solid and dashed curves in
the high-frequency region. This is evident in the upper
portion of these curves, where the salient feature is the
linear or nearly linear dependence on 0, ' for the first
(20—30)%%uo drop. The curves cross at approximately the
half-attenuation point, with F32 lying below F for larger
values of Q ', as expected from the smaller shape pa-
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FIG. 4. Normalized attenuation function F(Q) vs (a/0)'
where Q is the scaled frequency.

FIG. 5. Attenuation per wavelength a~ vs hT, measured by
Garland and Sanchez (Ref. 17) at the following frequencies in
MHz: 1(+ ), 3( ), 9(O ), 17( & ).

= 1+0.414 1/2

/0+1/2= 1+0.414 (gT)0.96

0;96

= 1+0.414
1/2

=1+C1/2 AT,

where

0.414
1/2 —

g T1/2
(4.81)

Although a straight line is to be expected when the data
are plotted versus AT, it is more convenient to make
the plot versus hT instead. The 4% difference in ex-
ponent produces a negligible curvature. In any case, the
error from this approximation vanishes at AT=AT1/2,
the half-attenuation temperature. The latter is related to
the half-attenuation frequency by

Q~y2= (ET~g2)
CO —1.93

Xo
(4.82)

(Here it is not permitted to approximate the exponent. )
Figure 5 shows the 1, 3, 9, and 17 MHz data of Gar-

land and Sanchez, ' plotted in the manner of Eq. (4.80).

rameter (b32 ——8 as compared with b = 11.6).
The comparison of Eq. (4.78) with experimental mea-

surements of ax, the attenuation per wavelength, is most
easily carried out for F ', which is a completely linear
function of 0 '~. Therefore, identifying (a~/a~)
with I', where ~~ is the critical-point value Qf &g
expect a straight-line plot for

' 1/2

=@(n)] '"=1+-0414.0
' 1/2

To avoid cluttering the plot, we have omitted the 9 and 11
MHz runs, as well as some of the data points close to
AT =0. For every run, there is a straight line that gives a
good fit to the data. In order to find the best overall fit
for each frequency, we do not give any special weight to
the critical-point attenuation. Consequently, the quantity
a~ in Eq (4.80.) is an effective critical-point attenuation
which may differ by a few percent from the value actually
measured at T= T, . For example, at 3 and 17 MHz, the
effective value of a~ from the best fit is found to be
0.0126 in both cases. The corresponding measured values
are 0.0132 and 0.0119, respectively. (The noncritical
background has been subtracted from all of the data
shown in Fig. 5.) In fact, we find the same effective value
of a~ for all of the frequencies. Because of this con-
venient circumstance, all of the straight lines have the
same vertical axis intercept, (a~) ' =8.9. For each par-
ticular frequency, the slope of the straight line,
(a~) '

C~~2, determines T&&2 according to Eq. (4.81).
This construction is shown by the horizontal dashed line,
at v 2(a~) '~ =12.6. When the straight line crosses the
dashed line the attenuation falls to 50% of its (effective)
critical-point value. The values of D, T&&2 from these
crossings yield the values of Q1/2 that are discussed in the
next paragraph.

The 3 MHz run of Garland and Sanchez has a special
status. As is evident in Fig. 5, for this frequency these au-
thors have succeeded in carrying the measurements of
aq(Q) out to especially small values of II Figure 6 .com-
pares its data with Eq. (4.78) in a more conventional way,
namely, as a~/a~ plotted versus log100. There is evident-
ly good agreement with the empirical function shown as
the curve. Here, for the vertical axis normalization we
continue to use the effective value of a~ which, as noted
above, is 5% below the actual value. For the horizontal
axis normalization we obtain AT1/2 ——1.93 from the inter-
section of the solid and dashed lines in Fig. 5. With this
value and yo/2vr=0. 333 MHz substituted into Eq. (4.82)
we find Q1/2 ——2.53. This result and the determinations of
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found that the "exchange" graph of Fig. 3(c) brings a sub-
stantial cancellation of the "direct" graph of Fig. 3(d), so
that the effective decay rate is substantially smaller than
that of an isolated order-parameter fluctuation. The
theoretically expected frequency scale is found in Appen-
dix B to be shifted down to 0~&2 ——2. 1, in good agreement
with the experimental value of 2.0 that is shown by the
dashed line in Fig. 7.

FIG. 6. Normalized attenuation function F(Q) vs 0/Q&z&.
Q&~2 is the value of the dimensionless frequency Q for which
F(Q)= 2.

Q&~2 at the other frequencies are exhibited in Fig. 7 as a
function of the frequency f (in MHz). Giving extra
weight to the 3 MHz run we find a mean value of approx-
imately O&&2

——2.0, as indicated by the horizontal dashed
line in Fig. 6.

We conclude this section by confronting our theoretical
prediction of Qt~2 with the above experimental value of
2.0. From Eq. (4.30e) and the 18% enhancement dis-
cussed in Appendix A, we expect a = (3m. /8)a 33
=1.18X3.65=4.31, which would yield Q~/2 —3 40
virtue of Eq. (4.73). There would seem to be a serious
discrepancy between this result and the observed value,
smaller by about 40%. Some important physical effect
has evidently been left out of the calculation. We believe
that we have been able to identify the missing effect in the
critical relaxation process itself. The usual critical relaxa-
tion of an order-parameter fluctuation is illustrated by
Fig. 3(d). This is taken into account by Eq. (4.17) and by
the discussion in Sec. III and in Appendix A. Figure 3(c),
on the other hand, illustrates a new effect ensuing from
the coupling of the order-parameter modes to the trans-
verse hydrodynamic modes, represented in the figures by
the plain and wavy lines, respectively. This is a kind of
exchange process that does not contribute to the decay of
a single mode. It, however, has to be taken into account
when dealing with the relaxation of a pair of order-
parameter modes, as is the case with the frequency-
dependent specific heat. The details of this calculation
will be presented in a separate paper devoted to the
theory of the frequency-dependent specific heat. We have

I/2

V. DISPERSION

The dramatic increase in the attenuation of sound near
the critical point is a clear manifestation of the critical
slowing down of the diffusive relaxation of the concentra-
tion fluctuations. This effect is more readily accessible to
experimental observation than the corresponding effect of
the fluctuations on the velocity of sound. But the study
of the critical dispersion is not without interest and it is to
th1s goal that this scct1OIl ls dcvotcd. It 1s important to
recognize that, for this purpose, we no longer need a mi-
croscopic theory of the critical dynamics of the fluctua-
tions. Because the critical attenuation has been explored
so completely, we can use it as an empirical input for
predicting the critical dispersion. Once we have establish-
ed, as we claim to have done in Sec. IV, that the observed
attenuation can be understood on the basis of the micro-
scopic theory, we can then consider that the latter has ful-
filled its task and that it can therefore be laid aside. At
this point completely general considerations can take us
from the observed attenuation to the associated dispersion
that must inevitably go along with it. The important con-
nection follows from the fact that C(co) is a causal
response function which is therefore analytic in the upper
half of the complex frequency plane. Furthermore, since
C(co) is a superposition of relaxing modes, it has no zeros
in the upper-half plane. (The regular region extends, in
fact, all the way down to the cut along the negative imagi-
nary frequency axis. ) Therefore, the logarithm is also an-
alytic in this region, which is the precondition for the ap-

, plicability of the Kramers-Kronig relation connecting
L~(Q) and L2(Q), the real and imaginary parts of the
scaling function. As L2(Q) is already known from the at-
tenuation, we thus find L&(Q), which determines the
dlspcrs1on.

In Sec. VA below, we carry out in detail the program
sketched above. An alternative derivation of L

& (Q),
based on the Cauchy-Riemann conditions, is presented in
Sec. V B. Although approximate, this alternative treat-
ment is, in fact, quite accurate and has the advantage of
being simpler than the Kramers-Kronig method. The
reader who is primarily interested in the results may wish
to skip over this mathematical work and go directly to the
applications in Secs. V C and V D.

oo t

l6 A. Kramers-Kronig relation

FICs. 7. Q&&2 vs frequency f(MHz) from the plot ln Fig. 5 af
the data of Garland and Sanchez (Ref. 17}. The dashed line
shows the theoretical prediction.

As explained above, L (z) =L.( i Q) =L t(Q)—+iLz(Q)
is a causal function which therefore satisfies the
Kramers-Kronig relation
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+ 00

L~(Q)= —P f dQ', L2(Q')+const, (5.1)

with the question of convergence at the limits of integra-
tion to be dealt with directly. By changing the principal
value integral to a contour integral passing below the pole
at Q'=Q, we include iL2(Q) to obtain

IITl W

Lp=O

7T
Lp= pF

= Re

1 +~ 1L (z) =—f dQ', L2(Q')+constQ' —iz
+oo Q'=—f dQ' L2(Q')+const .

O QI2+z2 (5.2)

= —z f dQ F(Q),
Q(Q +z )

(5.3)

the first line being generally more useful than the second.
It is convenient to impose a high-frequency "Debye" cut-
off on the integral and to deal with the two terms of the
integrand separately. In the range

~

z
~

&&1 we can use
the asymptotic approximation F=1 in the first term to
obtain

Here we have invoked the fact that L2(Q') is an odd func-
tion. We now drop the prime from the variable of in-
tegration, identify the attenuation function as
F =(2/vr)L2, and require that the constant term be such
that L (0)=0. This puts L (z) into the subtracted conver-
.gent form

00 Q 1L(z)= f dQ F(Q)
o Q'+z'

Lp= vrf
AXXXXAVA'AX% YA'AXXX VAXXVA'AXMXk'A'A~ w AXXkAXXYAXXX A'AX'A'Ak A'Ak'ARM X'AXXM %XXX
AXXXXXXXXXXWXXXXXXXX&iXXQXXXXIXNXXXXAXXXXN AXXXXXXXNXXVVVAV VV YAXXXXXXXXWXXXXXXXVAX

FIG. 8. The complex co plane illustrating the definition of the
attenuation function F at Im w = —

2 m and of the spectral func-

tion at Imw = —m, where w =ln( —iQ).

QL)(Q)=
Q —1

2 —lnQ— 4 lnQ

Q —1

Q3/2

(Q+1)' (5.7a)

(This function is regular at Q=1, the singularity being
only apparent. ) For Q »1 Eq. (5.7a) becomes

L )(Q) = —lnQ+2 —m.Q (5.7b)

For physical applications we have to evaluate Eq. (5.6)
along the negative imaginary z axis, which is the range of
physically real frequencies. It is a simple mathematical
exercise to verify that along this axis L2(Q) reduces to
—,'m times the attenuation function F(Q) of Eq. (4.70),
with which we started. The corresponding dispersive, or
real, part of the function is plotted in Fig. 10 and is ex-
pressed by

Q~
dQ =ln

Q +z
Substituted into Eqs. (5.3) and (4.5), this yields

(5.4) the coefficient of Q ' satisfying the general requirement
that it equal —,m times the corresponding coefficient in
F(Q).

lna = lim lnQD —f d Q
F(Q)

QD~ 00 0 Q
(5.5)

L(z)=

as reported in Eq. (4.68) of Sec. IVB. The integration in
Eq. (5.5) is readily carried out in terms of the variable
V Q, giving a =e for the present case of interest [namely,
the empirical function of Eq. (4.70)], as reported in Eq.
(4.71). We integrate along the dashed line in Fig. 8.

The integration of Eq. (5.3) for an arbitrary value of z
is straightforward and yields

2Z 23—Z
2 2

+z 2 2
lnzz'+ 1 (z'+ 1)'

B. Cauchy-Riemann conditions

We base our work in this section also on the analyticity
of the function L (z) in the right half of the complex z
plane. But instead of exploiting this analyticity in an in-
tegral form by means of the Kramers-Kronig relation, we
use it now in a differential form which, with suitable ap-
proximations, leads to simpler expressions, of yet ade-
quate accuracy. It is convenient to transform to the new
complex variable

L(z)

3/2 3

(z'+ 1}' ' (z'+ 1)' (5.6)

0 .3
I

It can readily be verified that Eq. (5.6) conforms to the
various high- and low-frequency limiting forms that have
been discussed above in Sec. IV. It is apparent from the
plot of L(z) versus ln(z/a) in Fig. 9 that it serves as a
smooth interpolating function, along the lines discussed
qualitatively in Sec. III above, between the thermodynam-
ic limit L (0)=0 and the high-frequency asymptote—ln(z/a). The latter is shown as the dashed straight line
in Fig. 9.

FIG. 9. Empirical scaling function L (z) vs lnz/a. The
dashed straight line shows the asymptotic behavior for z &&1.
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m, +Em2 ——m =1nz . (5.8)

As shown in Fig. 8, this transforms the positive z axis
into the w1 ——Rew axis, along which L is a real function.
Indicating explicitly the dependence of L1+iL2 on the
variables u1 2, we have

ik

0

L2(w&, Q) =0 (5.9)

L2(wi, ——,m. ) = 2 mF. . (5.10)

Because of its analyticity, L satisfies the Cauchy-
Riemann conditions

for all w1. The entire z plane is mapped into a horizontal
ribbon of width 2~. The cut along the negative z axis is
mapped into the line m2 ——Imu = —~, shown at the bot-
tom of Fig. 8, and into the line w2 ——m. (not shown). The
line of physically real frequencies falls at w2 ————,'m as
shown by the horizontal dashed line in Fig. 8. Along this
line the measured attenuation function F(Q)=F(e ') is
related to the complex function L by

FIG. 10. Ll(Q) vs ln(Q/a), where L(z)=LI(Q)+iL2{Q).
The dashed line shows the asymptotic behavior for Q/a && 1.

2 2
~2 ~1 (5.12)

where we denote the partial differentiation 8/Owl 2 by
812. It immediately follows that both I.1 and I.2 satisfy
Laplace s equation, which gives the useful operator identi-
ty

and

8 IL I ( w I,w z ) =BpL 3 ( w I,w p )

d L, (w„w )=—B,L (w„w ),

(5.11a)

(5.11b)

With these preliminaries out of the way, we can now re-
late the scaling function defined along the w I axis to the
measured attenuation function by working our way down
from m2 ——0 to the m2 ————,

' m. line, holding w1 constant.
Taylor's theorem for fixed m1 gives

L2(wl, — m) =exp( ———'mB&)L2(wl, w3)
~ p

=i h( ——,
' &)L(, )~,=o+ oh( ——, &)L(, )~„,=

=sin( ——,
'

FBI)L I(w $,0)+cos( ——,
' fral)L2(w], 0), (5.13)

the last line ensuing from the application of Eqs. (5.11a)
and (5.12). By Eq. (5.9) the last term vanishes identically
yielding the desired differential connection

2 1/2
L (z) = —2 ln(1+z' ')+

1/2
z

24 ( 1+ 1/2)3

(5.18)

LI(wI, O) = —,
'

m csc( ——,
' +BI)F . (5.14)

L, (w„O) = —[8, '+(n. /24)B, ]F (5.15)

is quite accurate. The differential operator acting on
F(Q) is

a
an (5.16a)

This is a rigorous identity. We have found that approxi-
mating it by the two-term expression

For all practical purposes, Eq. (5.18) is entirely equivalent
to the exact but more complicated expression, Eq. (5.6).
The accuracy of Eq. (5.18) is confirmed for z »1 by

2

L(z)= —lnz+2 —4+ z
24

(5.19)

where the coefficient of z '~ deviates by only a fraction
of l%%uo from the exact value m-v 2. This result is to be ex-
pected from the operator identity

and its inverse is

(5.16b)

csc( ——,
' ~a, )n~=csc( ——,

' ~&)n~ (5.20)

m1 ——lnQ,

and, in turn, by z, to give, for z ~ 0,

(5.17)

After these operations are carried out, 0 is to be replaced
by

for the eigenfunction Q" and the associated eigenvalue p
of the operator 81. For p = ——,

' the two-term approxima-
tion to csc(n/4) is very clo. se to the exact value of v 2.

The two-term approximation of Eq. (5.15) is not as ac-
curate in the low-frequency range 0&z &&1. Here Eq.
(5.18) gives
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~2
L (z)=— 1+ z

24
(5.21)

~ 7T csc( —
~ 'Irp)

I ~ (5.22)

with a coefficient 1l%%uo smaller in magnitude than the ex-
act value of

But this error has negligible effect because it sets in only
after L(z) itself has become very small. A plot of Eq.
(S.18) versus ln(z/a) is indistinguishable from the exact
curve shown in Fig. 8.

The derivation of the connection between L &(w~, ——,m. )
and I' follows similar lines. Again we employ Taylor's
theorem, coming down from the m& axis, to obtain

L,(w„——,'m)=exp( ——,'m.B~)L,(w(, wg) I, 0

=cosh( —,' vr dq)L—~( w &, wz ) I, o+ sinh( ——,
'

m Bz)L ~ ( w &, wq )
I

=cos( —T~1TB))L((w), 0)—sin( —
~ STD))Lp(w„O), (5.23)

where we have used Eqs. (5.lib) and (5.12). By Eq. (5.9)
the second term in Eq. (5.23) vanishes identically. Elim-
inating L~( w~, O) from the remaining term by means of
Eq. (5.14) yields the desired connection

2

L &(w&, ——,n ) = , m cot—(——,nBi)F= —8& + Bt F,1 1 7T

1
lmL(wl w&)

I w, =—~w =t~ ~ (5.29)

with the limiting values f (0)=0 and f ( co ) =1. Further-
more, for s ~~1,

fined in terms of the variable s = —z on the lower side of
the cut along the negative z axis by

(5.24) 1 —f(s) ccs (5.30)

where we have again introduced a two-term approxima-
tion. The result of carrying out the indicated operations
can be written as

L, (n) = —21n(1+v Q)+EL, (n),
where

2vn ~' n
1+v Q 12 (1+Un)

(5.25a)

(5.25b)

is a monotonic function of Q which rises from AL~(0) =0
to its high-frequency limit &I- ~( oo ) =2. For Q ))1 these
equations reduce to

with the coefficient of proportionality equal to m
' times

the coefficient of z ' in L(z) and equal to 2 '~ times
the coefficient of Q ' in F(n). From Eqs. (5.6) and
(5.29) we find

s (s —3) V2sf(s)=
~ ~ + ~ ~

(1+2s —s ) . (5.31)(1+s')' (1+s')'
A simpler expression equivalent to Eq. (5.31) within the

required accuracy can be obtained from the Cauchy-
Riemann conditions. Replacing , vr by m i—n Eq. (5.13)
and substituting from Eq. (5.14) gives

Lz(w~, —m. ) =sin( —mB~)L&(w~, O)
2

L, (Q)=—inn+ 2 —4—
12

(5.26)

=~ cos( ——,
' ~a, )F(n) . (5.32)

=2cos( ——,
'

mB~)sin( ——,
'

n B,)L, (w~, O)

with the coefficient of Q '~ differing from the exact
value m by 1%. Here again the approximation is not as
good for Q «1, where Eqs. (5.25a) and (5.25b) give

To two-term accuracy, the substitution of Eq. (5.32) into
Eq. (5.29) yields

L ) (Q)=— 1 — Q = —0. 18Q .
12

(5.27) f(s)=F B,F . —
8

(5.33)

The small coefficient should in fact vanish according to
From Eq. (4.70) we have F(s)=(1+s '~

) and

—,
'

m cot( —,' np)
I & i

——0 . —. (5.28)
1 —vs /2
(1+vs )

(5.34)

But as with L (z), the error in the low-frequency region is
of no consequence because of the smallness of the func-
tion itself. For practical applications, Eqs. (5.25a) and
(S.25b) are equivalent to the exact but more complicated
formula of Eq. (5.7). A plot of Eq. (5.25a) versus ln(n/a)
shows no perceptible deviation from the exact curve ex-
hibited in Fig. 9.

A further function of interest is the spectral function,
which will be discussed further in Sec. VI below. It is de-

Equation (5.34) has been substituted into Eq. (5.33) and
plotted in Fig. 11 versus s/a =s/e . Equation (5.34)
fixes the point of inflexion of F(s) considered as a func-
tion of lns at s =4, for which F(4)= —,'. This is close to
the halfway point, which means that the halfway points
for f(s) and F(s) are expected to be nearly the same.
This expectation is evidently borne out in Fig. 11 where
f(s)= —, comes at a value of s close to Q&zz/a =079.
[from Eq. (4.73)].
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0.75—
f {s)

0.50

0.25

00 2
s/a

OO ——————————————————————I. Away from the critical point, it is a simple matter to re-
place the logarithm in Eq. (5.37) with the scaling function
L

& (Q), defined in Eq. (5.7). But as explained in Sec. V B
it is more convenient to use the two-term approximation
to the Cauchy-Riemann conditions. Thus, instead of us-
ing the exact expression given in Eq. (5.7), we will calcu-
late the differential dispersion from the simpler formula
of Eq. (5.24). The fractional change in the specific heat
due to b,co is proportional to b,co/co times

FIG. 11. The spectral function f(s) vs sla showing the dis-

tribution of relaxation rates. C-'a, C D(Q) —= a,L—, =F
12

(5.39)

For comparison we cite here the spectral functions for
the single-loop specific heat in dimensionalities DD =44
and 32, which are

and

f44(s) = [(1 +4s)1/2 1]2

[(1+4s)'i +1](1+4s)'i

2 2 3/2f32(s) =—tan
1+3s

(5.35)

(5.36)

respectively. When these functions are plotted versus s,
there is no perceptible difference between them and f (s)
as expressed by either Eq. (5.34) or Eq. (5.31). In Fig. 1 of
Ref. 6 we have plotted f4D (s) for D'=4, 3, and 2. Figure
2 of Ref. 6 shows the corresponding attenuation functions
F4g)'( Q ).

C oc co " =exp[ —(ao/z„v)inca] . (5.37)

Consequently, the change in the specific heat when the
frequency is changed by b,co is found by differentiating
Eq. (5.37), which leads to

AC= —C = —C 61nQ= —C Am& .
o'o Ace o Ao

ZpV Ct) ZpV ZpV

(5.38)

C. Differential dispersion

, In experiments on the velocity of sound in a binary
liquid it is generally not feasible to carry out the measure-
ments at sufficiently low frequencies that the thermo-
dynamic limit is attained —at least, not close to the criti-
cal point. It is, however, entirely feasible to compare
sound velocities observed at different frequencies. This
differential dispersion requires that we extend the theory
to include the frequency derivative of the specific heat.
The differential dispersion is most easily studied at the
critical point, where the frequency-dependent specific heat
behaves according to dynamic scaling as the simple power
law

This differential dispersion function, like the attenuation
function, has the critical-point asymptotic limit
D(oo)=1. The second-derivative term is of the same
form as already encountered in Eq. (5.33). Changing the
coefficient by the factor —', and replacing s by Q in Eq.
(5.34) yields the plot of D(Q) versus logic(Q/Q~~2) shown
in Fig. 12. As was the case with the spectral function, the
halfway point for D(Q) is practically the same as that for
F( Q ). Furthermore, it is evident from comparing Fig. 6
with Fig. 12 that the two functions are quite similar over
the entire range —Oo &logloQ& 0e. D(Q) has a some-
what greater slope than F(Q) in its middle section. At
the point of inflexion, the slope is multiplied by the factor
1+m /72=1. 14, or a 14% increase. Similarly the spec-
tral function compared to the attenuation function is
steepened in its middle section by the factor I+~ /48, or
a 21% increase.

D. Velocity

1m'�(co)&&Recp(co)

we can replace ReC p
'

by (ReCp) ' to find

c 8 cReu =u, + ' =u, + ' [CI+ReC(y, ~)]
2Tc ReCp

(5.40)

(5.41)

Making use again of Eq. (5.40) we have from Eqs. (4.4)
and (3.6)

0.8

In this subsection we calculate the absolute dispersion,
i.e., the actual critical sound velocity as a function of fre-
quency and temperature. This is given by the real part of
Eq. (2.15). Because of

This expression can be employed even when the frequency
change is substantial because of the small value of
ao ——0.11. For example, a change in frequency by a factor
of e gives Am& ——1. Even this substantial value of Aw&

can be treated as a small differential as far as Eq. (5.38) is
concerned because of the very small numerical value of
the coefficient. Thus, a change of frequency by e pro-
duces only a 5.7%%ue change in the specific heat.

0.4

0.2

0
to 2 io i

IO

FKx. 12. Differential dispersion D(Q) vs Q/Ql/2.
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CXp
ReL ( —iQ)

—ap/zpv~y ' 'exp
ZpV

p
ReC(y, co) =C(y, O) exp ReL ( i—0)

ZpV

(5.42)
Cp(co) ~ (1 i—cow) (6.1)

dependent specific heat and thus, to an additional sound
absorption. For a process characterized by a single relax-
ation rate y =r ' the frequency-dependent component of
the specific heat is

ReL ( i—II ) = —ln(Q/a ) (5.43)

For 0 »1 we can substitute from Eq. (4.5b) to obtain If the system has several relaxation processes acting in
parallel, Eq. (6.1) becomes

so that the high-frequency limit of Eq. (5.42) becomes
ap/zpv

Cp(co) =g (6.2)

ReC(O, co) 0-.
a

On the other hand, Eq. (3.8) yields

(5.44) with the co =0 thermodynamic limit

Cp ——gC~ . (6.3)

ReC(O, co) cc

ap/zp

cos('iTlxo/2zov ) (5.45)

2 2e &
ceo

a ay
so that

ReL ( iQ) =Li(—Q')

= —2 ln(1+ v 0')+ b,L, (A')

=iny —21n(v'y+v co')+ALi(II') .

Substituted into Eq. (5.42), this yields

(5.46)

(5.47)

ReC(y, co) ~(My+v a)') ' ' exp ALE(A')
ZpV

The difference between Eqs. (5.44) and (5.45) is negligible,
being of second order in the small exponent ao/zov.

To determine the dispersion explicitly we need to sub-
stitute Eq. (5.7a) into Eq. (5.42), but a more convenient
expression results from substituting the approximate for-
mula of Eqs. (5.25a) and (5.25b). We accommodate the
necessary change in the frequency scale by the introduc-
tion of the variable

The constants CJ are the contributions of the various indi-
vidual internal modes to the thermodynamic specific heat.
All of these contributions disappear from Cp(co) for suffi-
ciently high frequencies such that co »yj ——rJ, for all j.
Every constant CJ is associated with a rate yJ. Setting up
this functional relationship is facilitated by analytically
continuing the frequency variable down to the right-hand
side of the cut along the negative imaginary axis. With
co= io+o, w—here 0&o.& oo and 5 is an infinitesimal
positive quantity, Eq. (6.2) yields

ImCp ——m g CJy~6(o —yj ) =pro C(o ) + 5(o —yl ), (6.4)
J J

where C(o.) is now a continuous function of o. At the
discrete frequencies o=@;, C(o) takes on the values
C(y;)=C;. Equation (6.4) describes the distribution of
relaxation rates plotted versus the continuous rate variable
o. as a set of discrete spikes at o.=y;.

The picture near the critical point of a binary liquid is
conceptually the same, except for the fact that the system
is characterized by a continuous set of relaxation rates
o =y(k, ~) belonging to the Fourier components of wave
number k. Instead of a set of spikes, we now find a con-
tinuous function of o. In the high-frequency limit
co/y~ oo, Eq. (3.8) gives

=(V y+ v co') ' ' 1+ AL i(Q')
zpv

(5.48)
ImC(0, i o+5) ~ Im——e

a

—ap/zpv

the approximation in the last line being permitted by
ao/zov«1 and by the fact that AL, (Q') is bounded by
its high-frequency limit b,L j ( oo ) =2. The scaling func-
tion contained within the large parentheses in Eq. (5.48)
provides a smooth transition from the thermodynamic
limit of Eq. (3.6) to the high-frequency limit of Eq. (5.44),
as indicated by the dashed curve in Fig. 1.

VI. DISTRIBUTION OF RELAXATION RATES

It has long been recognized that in polyatomic gases
and in many liquids the sound attenuation is not ade-
quately described by the classical Stokes-Kirchhoff for-
mula. The reason was shown by Herzfeld and Rice to lie
in the slow energy exchange between the translational and
internal degrees of freedom in the polyatomic gases. The
associated relaxation phenomena give rise to a frequency-

ap/zpv
a

sin

ap/zp v
&Exp a
ZpV O'

ZpV

(6.5)

ImC(y, —io+6) =C(y, O)lme

CXp Ap
C(y, O) exp ReL ImL,

zpv ZpV

(6.6)

Because the distribution of critical modes extends to short
wavelengths and high relaxation rates, Eq.. (6.5) is valid
and nonzero out to large values of o.. At finite values of
s =cr/y, we have from Eq. (4.4)
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where substituting from Eq. (5.6) gives

2s s(3—s ) i s —3s
ReL ( —s) = + lns+ —,m

s +1 (s +1) (s +l)2 (6.7) f (s) ccs (6.13)

Identifying In with s yields the general D=3 require-
ment for 0 &s « 1,

and

ImL( —s i5—)=mf (s), (6.8)

with the spectral function written out in Eq. (5.31). Be-
cause f(0)=0 and because ReL occurs in Eq. (6.6) with
the coefficient ao/zov«1, we can approximate Eq. (6.7)
by the s »1 asymptotic expression

Equation (6.13) is patently satisfied both by Eqs. (5.36)
and (5.31) for the 32 single-loop expression and the empir-
ical function, respectively. Equation (6.13) is illustrated
by the small kink at the bottom end of the curve in Fig.
11. At the other end of the spectrum, it follows from the
generalization of Eq. (4.42) that the spectral function has
to be of the form

ReL ( —s) —ln(a/s). ,

which brings Eq. (6.6) into the form

(6.9)
1/2

b af (s)~1
2 $

(6.14)

ImC(y, iver—+5) ~cr ' ' f(cr/y) . (6.10)

The first factor produces a slow monotonic rise with de-
creasing cr Th. is is interrupted at cr =0(ay) by the oppos-
ing decrease in f(o/y). Thus, the distribution of rates
has a broad maximum and drops monotonically to zero in
the range 0&a.&y. In the remainder of this section we
will neglect the slowly varying factor in Eq. (6.10) and
concentrate on some general features of the spectral func-
tion f(s), which contains the dynamic scaling informa-
tion.

In arriving at the empirical attenuation function of Eq.
(4.70) we did not adhere strictly to the single-loop scaling
function, with its two-loop validity as established in Sec.
IV B above, because of (1) mathematical convenience and
(2) uncertain accuracy of the loop expansion. We argued
that because of reason (2), an attenuation function F(Q)
that satisfies the various general requirements can be ex-
pected to have as much validity as the explicit single-loop
function F33(Q). Analogously, we can expect that a spec-
tral function f (s) that satisfies all of the general condi-
tions to which a spectral function is subjected may be as
good an approximation to the true spectral function of the
fluid as a spectral function that comes explicitly from a
single-loop calculation. In other words, it is possible to
exploit the basic idea of Herzfeld and Rice and to set up
a dynamic scaling theory of the critical ultrasonic at-
tenuation based on an empirical distribution of relaxation
rates.

In the low-momentum range, Eq. (4.17) can be approxi-
mated by

If f(s) is given, Eq. (6.8) can be inverted by means of
Cauchy's theorem. An integration along the cut yields the
scaling function at an arbitrary point in the complex z
plane as

L (z) = —z f f(s) .
o s(s +z)

(6.15)

From Eq. (4.5b) and the z~oo limit of Eq. (6.15), we
determine the frequency scale by

f (s)
lna = lim lnsD — ds

SD~ oo 0 $
(6.16)

similar to Eq. (4.68). Substitution of Eq. (6.15) into Eq.
(4.6) yields the shape parameter

i =a f"ds (6.17)

As a simple example of the application of Eq. (6.15), we
first consider the unit step function

f (s) =e(s —1) . (6.18)

a=b=1. (6.19)

Substitution of Eq. (6.18) into Eq. (6.15) gives

Although Eq. (6.18) exhibits neither the low-frequency
behavior of Eq. (6.13) nor the high-frequency behavior of
Eq. (6.14), it does have the proper endpoint values
f(0)=0 and f(ao)=l. From Eqs. (6.16) and (6.17) we
obtain

I D (q)=q (6.11) L (z) = —ln(1+z),

from which we obtain

(6.20)

independent of D', which enables us to eliminate q as the
variable of integration in the single-loop integral in terms
of I D. Thus, for D =3 but D' arbitrary, the q «1 por-
tion of Eq. (4.20) becomes

1 3 1 ~a' 9
C3 e«& ] +q z+I D q

22

1 ID
C3 e«& z+I D

4 ID
dq

3/2

d I D . (6.12)
q 1 z+q2 ~D'&&& z +I ~

E(Q)=—ImL ( i 0)= —tan —0 .2 ~ 2
(6.21)

dF(Q) &, 2 0
dlnQ m 1+@2

(6.22)

of vr '=0.32 at A~~2. This can be compared with the

Consequently, the halfway frequency is 0~&2——1, with the
characteristic ratio Q~~q/a = 1, somewhat larger than the
characteristic ratio for the single-loop scaling functions.
The plot of F(Q) versus in' shown in Fig. 6 would, in
this case, have the slope corresponding to
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slope of the empirical function. Differentiating Eq. (4.70)
gives

dF(Q)
d lnQ

from which we find the midpoint slope

(6.23)

dF(Q) 1 1

ding n, , 2 2v2
(6.24)

The single-loop function E&2 has a similar shape with the
slightly larger midpoint slope of 0.16. The midpoint slope
of twice this amount found above for the unit step func-
tion results from the abrupt jump off(s) at s = 1 from itsf(0) to its f ( oo ) value. Therefore, the step function is an
extreme case, with the slope in Eq. (6.22) providing an
upper bound for the slope of any attenuation function
based on a continuous spectral function.

Such a more realistic spectral function is

f(s)=(1—s ' )6(s —1) . (6.25)

This is an improvement over Eq. (6.19) in that it has the
correct high-frequency behavior. From Eqs. (6.16), (6.17),
and (6.14) we obtain

a =e =7.39, (6.26a)

b =e /3=2. 46, (6.26b)

v2
a

=0.521 .
e

(6.26c)

Substituting Eq. (6.25) into Eq. (6.15) gives

L (z) = —ln(1+z)+2 —2z ' tan '(z' ), (6.27)

so

ImL ( —i0)=—F(A)2

1 1+0+&20
2&20 1+0—&2Q

(6.28)

where the arctangent is to be evaluated in the second
quadrant for 0& 1. For this function, the halfway point
falls at Q«2 ——5.25, with the characteristic ratio

=0.71,5.25

e
(6.29)

close to that found for the .single-loop functions. The
halfway slope is 0.19, smaller than that for the step spec-
tral function. On the other hand, this slope is larger than
that of Eq. (6.24) for the empirical function, which is to
be expected from the relatively small values of the shape
parameters in Eqs. (6.26b) and (6.26c). Although the
high-frequency behavior of Eq. (6.14) is qualitatively
correct, the small value of b'=0. 521 compared to
b'=0. 736 for the empirical function indicates that the

term is relatively weak. Thus, the decrease of

F(Q) in Eq. (6.28) from F( ~ ) = 1 down to F(Q) gp) = —,
'

as 0 decreases is more confined to the midregion, which
increases the midpoint slope.

As a final example of the possibility of basing a theory
of critical attenuation on a postulated distribution of re-
laxation rates, we consider the following spectral function
which has the required behavior in both the high- and
low-frequency regions:

( 1+ —1/2) —3

Equations (6.16) and (6.17) give

a =b =e =20.1,

(6.30)

(6.31)

from which we find
1/2

b'= — =V2e ~ =0.95 .
a

This shape parameter is larger than that for the empirical
function, so that the latter is bracketed by the last two ex-
amples. Substitution of Eq. (6.30) into Eq. (6.15) yields

L (z) = lnz +z + (1—3z), (6.33)
z (3—z) 3z —1 &z

(1+z)' (1+z)' (1+z)'
which will be seen to exhibit all of the required properties.
It is a straightforward task to extract from Eq. (6.33) the
corresponding attenuation function. Although we do not
exhibit it here, it is clear from Eq. (6.32) that the mid-
point slope of this attenuation function will be less than
that of the empirical function.

(6.32)

VII. SUMMARY

In this paper we have tried to paint a detailed picture of
the critical behavior of sound propagation near the conso-
lute point of a binary liquid. Carrying the ideas of La-
place, ' Herzfeld and Rice, Fixman, and Mistura to
their logical conclusion, we have established that this crit-
ical behavior resides entirely in the relaxational nature of
the critical specific heat. We have developed the theory
so as to exhibit, at every stage, the dynamic scaling rela-
tionship between the applied frequency co and the intrinsic
relaxation rate y of the fluid. We have made a special ef-
fort to establish the model-independent general features of
the dependence of the dynamic scaling function on the
scaled frequency A=co/y. Following the treatment of
thermodynamics in Sec. II, where we show that the sound
velocity is finite at T=T, and that, near T„ it has a
small critical part which is proportional to Cz, we ob-
tain the frequency dependence of the critical-point at-
tenuation in Sec. III. In the more detailed theory of Sec.
IVA we have calculated examples of scaling functions
from various models. From these examples and guided by
some general considerations in Sec. IV 8 we have extract-
ed the salient model-independent features of the scaling
function. In particular, we have found that the scaling
function can be accurately characterized by just two
parameters —namely, the frequency scale a and the shape
parameter b (or alternatively, the shape parameter b'). In
this way we were led in Sec. IVC to the empirical func-
tion F(Q)=(1+0 '~ ),which predicts a linear plot of
cx~

' versus temperature, in excellent agreement with ex-
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periment as shown in Fig. 5, where a~ is the attenuation
per wavelength.

An alternative empirical approach to the scaling func-
tion is developed in Sec. VI from a spectral function f (s)
that incorporates the Herzfeld-Rice idea of a distribution
of relaxing modes contributing to the frequency-
dependent specific heat. Like F(Q), f (s) is a monotonic
function varying smoothly between the zero- and infinite-
frequency limits of 0 and 1, respectively. Thus both ways
of characterizing the details of the dynamic scaling are
similar in that the information is contained in a simple,
smooth, positive-definite function. The close connection
between f(s) and F(Q) is established in Sec. VB by ex-
ploiting the analyticity of the scaling function in the com-
plex frequency plane. We show that f(s) versus s has a
shape similar to that of F(Q) versus Q, the former being
somewhat steeper. Also contained in Sec. V is the dynam-
ic scaling prediction of the theory regarding the sound
velocity.

In summary, we believe that the excellent accord that
we have found here between the experimental measure-
ments of Garland and Sanchez' and the theoretically
predicted scaling function, when taken along with the ex-
act agreement established by Clerke et al. for the
strength of the critical-point attenuation, confirms the
dynamic scaling theory of critical ultrasonics in every
respect.
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APPENDIX A: KAWASAKI FUNCTION

For the D =D'=3 one-loop integral, we have used Eq.
(4.17) as an approximation to the scaled-pair decay rate

I 3(q) =q (1+q )' (Al)

o(0)=1 (A3a)

and

Here we want to replace Eq. (Al) by the more accurate
Kawasaki expression, which we write as o(q)I 3(q),
where

o(q)=(1+q )
'/ [1+q +(q q')tan 'q] . (A2)—2 —1 /2 3

4q

The high- and low-momentum limits are, respectively,

H33(z) =H33(z/cr ) (A5)

= —f dq(1+q )
/ cr

0
(A7)

The correction produced by the Kawasaki function is ex-
pressed by the ratio

H '3,(0)

H33(0)

with the average over momentum space defined by

dq(1 +q )
'/ cr '(q)
2 —5n (A9)

dq(1+ q')-'"
In the low-momentum range, cr '(q) is very close to 1.
To estimate the average deviation from 1 in Eq. (A8), we
can use the first term in the expansion

2
o. —1=—

10
(A10)

to obtain

OO 2

dq
P ( 1+ 2)—5/2

(o. '& —1=- f dq(1+q )

1

20 ' (A 1 1)

representing a 5% decrease. Including higher terms
shows that this is an overestimate of the effect by roughly
a factor of 2, with the actual decrease of H 33(0) relative
to H33(0) equaling only 2%. Coupled with the 18% in-
crease in a33 this gives for the shape parameter, accord-
ing to Eqs. (4.6) and (4.35e),

633 —1 .16b 33 —1 . 16 && 9.29 = 10.8 (A12)

This is close to the value b =11.6 found in Eq. (4.75) for
the empirical function, which gives further support to the
latter as being a faithful representation of the theoretically
predicted attenuation function.

It follows from Eqs. (4.23), (4.5b), and (A3b) that the
corrected frequency-scale parameter is

a 33 —0 a 33 —1.1Sa 33

This 18% frequency shift is included in the discussion of
Appendix B.

At the low-frequency end of the scale, the dynamics are
characterized by the derivative

2 —1

H 33(0)= —f dq (1+q')'

o ( ce )=—o.„= = 1.18 .3&
(A3b) APPENDIX B: e EXPANSION

oo q CTI 3
H33(z) = dq

P (1+q2)2 z+crI 3
(A4)

For z &&1, the high-frequency limit, Eq. (A4) becomes

Denoting corrected quantities by a tilde, we find for the
one-loop function of Eq. (4.20)

Here we investigate the feasibility of determining the
frequency-scale parameter a by an expansion in powers of
@=4—D. This study is necessitated by the fact that the
graph shown in Fig. 3(c) has to be evaluated in the e ex-
pansion. The single-loop integral in D dimensions with a
critical slowing down expressed by I (k)-k yields Eq.
(4.28), which can be rewritten as
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1 1 2 1 sin(~e/2)
nag)g) = nD' e D' 1 —e/2 sin(me/D')

(81)

Equations (4.30a)—(4.30h) give the values of azz that re-
sult from Eq. (81) by setting e equal to 0, 1, and 2, while
choosing various integer values for D'. This straightfor-
ward procedure has the merit of simplicity, but the disad-
vantage that, by choosing integer values of F., it is difficult
to compare the resulting changes in lna with the change
(ulna)q„d„resulting from the coupling to the transverse
hydrodynamic modes, as illustrated in Fig. 3(c). The com-
putation of this effect, which is carried out to the lowest
order in the e expansion, yields

2

(82)12'(5 1na)gyd„———

1 ) p 1 1 1
lnQg)g)&~ ~— E.Dl 2 24 D' 8

(83)

This low-order expansion can be tested for @=1 and
D'=4, 3, and 2 by examining

In order to obtain an estimate of the reliability of this
low-order result, it is useful to study the corresponding
first-order expansion of Eq. (Bl) for an arbitrary value of
DI 1

found that such an infrared divergence is quite common
in critical dynamics and that the neglect of it is generally
the principal source of inaccuracy in the e expansion. The
error is evidently already serious for the D =D'=3 case.
Setting e'=e in Eq. (87) gives

(b, lna), „,„,„=— E,
8

(89)

or —m /8= —1.23 for @=1. Thus, the first-order e ex-
pansion overestimates the one-loop integral by the factor
1.73/0. 71=1.75= 4. In other words, the first-order e
expansion requires the correction factor —', . Our study of
the hydrodynamic effect that is illustrated in Fig. 3(c),
and which yields Eq. (82), indicates that it also has an in-
frared divergence. It follows that Eq. (82) is also an
overestimate because it, too, takes no account of this in-
cipient divergence. Therefore, Eq. (82) requires a correc-
tion factor similar to that required for the e expansion of
the one-loop integral. In the absence of more detailed in-
formation, we adopt the working hypothesis that the two
correction factors are equal (or approximately so). This
implies that Eq. {82)should also be reduced by —', .

An equivalent, alternative approach for correcting the
e-expansion error in Eq. (82) is to note the following sim-
ple ratio between the e-expansion results in Eqs. {82) and
(89):

(b, lna)zz =1nann —lna44 .

Equation (83) gives

(84) (b, lna)z„d«

(5 lna), „,~„~ 3

(b. Ina)34 ———0.73,
(b. 1na)33 ——0.81,

(b. 1na)33 ———0.75,
while, from Eqs. (4.30d)—(4.30fl, the exact values are

(85b)

(85c)

(b, ina)«, ——(b, 1na)one ~no~+(b, lna)q„d«

(5 lna)gyd„

~ in+ one-joop

5= —,(b, 1na),„,(„p .

(85a) Therefore, the total change in lna is

(811)
(6 1na)34 ———0.61,
(6 1na)33 ———0.70,

and

(86a)

(86b) At this stage we replace the e-expansion value of
(b, lna)o„, «o~ by its true value, as given by Eq. (86b), to
obtain

(6 lna)3q ———0.61 . ina =2——,
' (0.71)=0.82 . (812)

The error in Eqs. (85a)—(85c) of the order of 20%, is ac-
ceptable for such a low-order truncation. This satisfacto-
ry performance of the e expansion worsens, however,
when it is extended to a simultaneous expansion in powers
of e'=4 —D'. To first order in e', Eqs. (83) and (84) be-
come

3' O gQ

8

Substituting Eq. (4.73) then yields

(813)

Including the 18% high-frequency correction from the
Kawasaki function, as discussed in Appendix A, gives

(6 lna)~~ ———
2

1

8 2 2
E—

n, ~, =0.79a =2. 1 . (814)

For e= 1 and e'=2, Eq. (87) would give

(b, lna)33 ———1.73, (88)

which, by comparing with Eq. (86c), is obviously grossly
in error. This reftects the neglect of the onset of the in-
frared divergence at D =D'=2 that was noted in Sec. IV
in connection with Eqs. (4.30g) and (4.30h). We have

This result is in good agreement with the experimental
value of 2.0 that is shown by the dashed line in Fig. 7.

It would take us too far afield to discuss b, the other
parameter of the problem. In a separate publication we
will show that the shape parameter is modified only very
little by the hydrodynamic coupling, thereby, justifying
the use of the one-loop integrals and the closely related
empirical attenuation function.
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