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Evidence for algebraic orientational order in a two-dimensional hard-core nematic
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We present Monte Carlo simulations on a two-dimensional (2D) fluid of N infinitely thin hard
rods of length L (N & 3200). This system has an isotropic phase at low densities and a "nematic"
phase at high densities. Although true long-range orientational order is not excluded a priori, the
simulations indicate that the nematic phase has algebraic order. We find no evidence for a first-
order isotropic-nematic transition; rather, all the available evidence points towards the occurrence of
a disclination-unbinding transition of the Kosterlitz-Thouless type. The heat capacity Cp peaks at a
density some 20%%uo below the estimated disclination-unbinding transition point. We discuss earlier
simulations on 2D nematics in the light of the current results. We have computed the virial coeffi-
cients of the hard-needle fluid up to B5 and find that B4 is very small, while B5 is negative.

I. INTRODUCTION

In this paper we present a Monte Carlo study of a two-
dimensional (2D) system of infinitely thin hard rods of
length L (henceforth referred to as "needles" ). This
model system is interesting for several reasons. First of
all it is the simplest purely repulsive 2D system that has a
transition from an orientationally disordered state of low
densities (isotropic phase) to an (at least locally) orienta-
tionally ordered state at higher densities ("2D nematic"
phase). Because needles have zero proper volume no
stable solid phase can exist at any finite density. The na-
ture of the 2D nematic phase is of particular interest.
About a decade ago it was shown by Straley' that no true
long-range order (LRO) can exist in 2D nematics if the in-

termolecular potential is separable, i.e., if the interaction
potential between two molecules can be written as

V(r, e) = gf„(r)g„(e),

where r is the distance between the centers of mass of the
molecules and 8 their relative orientation. In contrast,
for nonseparable interactions the existence of true LRO
could not be excluded. This latter conclusion is intriguing
because most 2D systems with continuous degrees of free-
dom lack true LRO. In a recent publication Tobochnik
and Chester report a Monte Carl'o study of the orienta-
tional ordering properties of 2D nematics with separable
and nonseparable interactions. Their results strongly
suggest that the system with the nonseparable potential
exhibits true LRO, unlike the system with separable inter-
molecular interactions. Earlier work by Vieillard-Baron
on another nonseparable system namely hard ellipses in
two dimensions indicated that for ellipses with a ratio of
long-to-short axes of a/b =6, the transition from isotro-
pic to nematic phase is possibly 1' order. In contrast, for
separable interactions, at least for the closely related pla-
nar spin model, the transition from disordered to algebra-
ically ordered state appears to be a continuous transition
of the Kosterlitz-Thouless type. The hard-needle fluid
which we have investigated is an example of a nonsepar-

able system. Hence the existence of LRO is not excluded
in this system. However, as we shall discuss in Sec. III,
our simulations suggest that a 2D nematic of hard needles
has only quasi-LRO, i.e., the nematic order parameter
vanishes in the thermodynamic limit and all order-
parameter correlation functions decay algebraically.

Algebraic order is to be expected in 2D nematics if the
free energy associated with collective fluctuations in the
molecular orientation is of the form

(cos(28) ) —g~ (4)

The angular correlation functions g2~(r), defined as
g2I(r) = (cosI 21[8(0)—8(r)] J ), decay algebraically

—212k T/m. K Yl

g2I(r) =const X r =const Xr

One possible mechanism for the transition from the
nematic phase with quasi long-range orientational order to
the isotropic phase, is through disclination unbinding.

F= —, f K(V8) dr,
where 8(~) characterizes the molecular orientation with
respect to a fixed axis and K is the two-dimensional
Frank constant. Actually, the most general form of Eq.
(2) would contain two Frank constants K~~ and Kq associ-
ated with distortions parallel and perpendicular to the lo-
cal director. However, on a sufficiently large length scale
E~~ and Kz are renormalized to the same value. And
even for smaller systems where the distinction between
K~~ and K~ is still meaningful, most predictions of the
simpler elastic continuum theory described by Eq. (2)
remain valid if we replace K by (K~~Kj )' . Let us briefly
summarize some of these predictions: First of all, the
mean-square angular displacement diverges as the number
of particles in the system goes to infinity

(8') = 4'
As a consequence, the 2D nematic order parameter
(cos(28) ) vanishes as X~ oo .
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For 2D nematics this transition should occur at a univer-
sal value of the renormalized Frank constant

(6)

Note that at this value of E, q2 ——0.25 and q4 ——1, while
(cos(28) ) -N '~' . It should be stressed that other tran-
sitions even first-order ones, are possible from the nemat-
ic to the isotropic phase. But no stable nematic phase is
possible at values of K below the critical value given by
Eq. (6). Moreover, the value of K as obtained from simu-
lations on small systems is necessarily larger than the in-
finite system-size value. Hence simulations on finite sys-
tems will, if anything, overestimate the range of stability
of the 2D nematic phase.

A rather different description of the isotropic-nematic
(I N) tran-sition might apply in cases where true orienta-
tional LRO exists. In that case one may consider using
the 2D equivalent of the Onsager model for the orienta-
tional ordering of 3D hard rods. Kayser and Raveche'
have analyzed the 2D Onsager model and conclude that is
predicts a higher-order isotropic-nematic transition at a
reduced density

p =(3&/2) =4.71 .

However, as is pointed out in Ref. 10, these predictions
should be viewed with some caution, because the Onsager
theory neglects third- and higher-order virial coefficients,
which is not warranted for 2D hard needles (see also Sec.
III).

The two-dimensional equivalent of the Maier-Saupe
theory" also predicts a continuous I-1V transition, but as
for hard-core systems, the strength of the "molecular
field" is not simply related to molecular parameters, ' the
predictive power of this mean-field theory is rather limit-
ed.

II. COMPUTATIONAL TECHNIQUE

In this section we first describe those aspects of the
Monte Carlo (MC) simulations that are either peculiar to
the hard-needle system or nonstandard for some other
reason. For a description of the usual MC simulation
procedure we refer the reader to the literature (see, e.g. ,
Refs. 13 and 14).

A. Monte Carlo move and overlap criterion

Acceptable configurations of the hard-needle fluid are
those for which no pair of needles overlap. In a single
Monte Carlo trial move both the position r; and the orien-
tation u; of a needle (i) were changed. The x and y coor-
dinates of needle i were changed by a random number
b,„~~] uniformly distributed in the interval
—6 & b,~ [„]& 5, while the molecular orientation, charac-
terized by the angle 0; was changed by a random amount
60, —d &50&d. Both d and 6 were chosen such that the
overall probability of acceptance of a trial move was
-30%. In the actual computation the test for overlap be-
tween particles i and j consisted of two tests to see wheth-
er the intersection point of the lines through particles i

and j was within L/2 from the center of mass of both i
and j. We found it convenient to express this test in terms
of unit vector vj and v~ perpendicular to u; and uj,
respectively. The test for overlap can then be expressed as
follows: Define the quantities g; and gj by

g—:(r" v;) —'L —[1—(v; v ) ],2 I 2 2 (7a)

gj. =(r J.
.vj) —,'L [1——(v; vJ) ],2 & 2 2 (7b)

where r;J =r; —rj. Two needles i and j overlap if and
only if both g; and gJ are negative.

C. Order parameter

The two-dimensional nematic-order parameter S of an
N-particle system is defined as

N
S=—g ccc(28;)), (8)

where 8; is the angle of the ith molecule with the nematic
director. The order parameter and director are deter-
mined in practice by finding the eigenvalues and eigenvec-
tors of the tensor order parameter Q:

N

Q p
N' g [Zu (i)up(i——) —5 p],

where u~(i) is the ath Cartesian coordinate of the unit
vector specifying the orientation of molecule i. The
eigenvalues of Q are +S and the corresponding eigenvec-
tors are the nematic director and a vector perpendicular to
the latter. Note that this definition of S necessarily leads
to a positive order parameter, even in an isotropic phase.
However, in a phase which lacks true long-range order S
vanishes in the limit %~~. In order to distinguish be-
tween true long-range order, algebraic order and short-
range order it is essential to study system-size dependence
of the nematic order parameter. We did this both by per-
forming simulations on a variety of system sizes ranging
from N =30 to N =3200 and by computing the order pa-
rameter for smaller subsystems formed by dividing a large
system into 4, 16, or 64 blocks of equal area (see, for ex-
ample, Ref. 17). Another way to obtain an estimate of the

B. Pressure, density, and chemical potential

About half of the simulations were carried out at con-
stant pressure while the rest was carried out at constant
volume. A method to compute the pressure in such a
constant volume simulation has been described in Ref. 15.
In all cases periodic boundary conditions were employed;
the shape of the unit cell was square. In order to locate
possible first-order phase transitions the chemical poten-
tial was also computed using Widom's particle insertion
method. ' This method works quite well for hard needles;
even at the highest densities studied (p*=8.8), the proba-
bility of acceptance of a needle thrown in at random is
about 3%%uo. During the constant pressure simulations we
also kept track of the volume fluctuations. The mean-
square volume fluctuations ((b, V) ), are related to the
isothermal compressibility XT by VkTXT ((b, V)') (see-—,
e.g., Ref. 14).
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nematic order parameter is to study the limiting behavior
of the order-parameter correlation function gz(r)
=(cosI2[8(0)—8(r)]j ). If true LRO is present gz(r)
~Sz as r —mao. Of course, because finite systems were
simulated it is not meaningful to look at the behavior of
gz(r) for r &D/2= ,' (N/—p)', where D is the diameter
of the periodic box. Note that if the system has only
quasi-long-range order the estimate of S obtained from
S =gz(D/2) depends on the system size, S-N2= —g2/4

which is consistent with Eq. (4).

D. Disclinations

In order to test whether or not the behavior of the sys-
tem close to the presumed isotropic-nematic transition is
compatible with the Kosterlitz-Thouless disclination un-
binding mechanism, it is useful to be able to identify dis-
clinations. This is not straightforward because, on a mi-
croscopic scale, the director is only defined at the position
of the molecules, and the latter are free to move. The first
step is to extend the definition of the director in such a
way that it becomes a single valued vector function de-
fined everywhere in the periodic box. One possible defini-
tion is the following: At every point in space we define an
angle P(r) such that

tang(r)=g [w(r —r;)sin(28;)] g [w(r —r;)cos(28;)],

where 8; is the angle that characterizes the orientation- of
the ith molecule with respect to the x axis. w(r —r') is a
weight function chosen such that nearby moelcules dom-
inate the director field at r. Note that replacing 0; by
8;+~ leaves P unchanged. In practice we chose an an-
tisoptropic gaussian weight function

w(r —r;) =exp( —r ~~/sr~~ ri /o. i ), —2 2 2 2

where rI~ and rj are the components of r —r; parallel and
perpendicular to the orientation of the molecule under
consideration. Typically, we choose o-z ——0.6L and
cr~~ =40&, thus ensuring that the "influence area" of a nee-
dle has an elongated elliptical shape rather than a circular
one. Another choice of o.

~~
and o.z would, however, not

lead to qualitatively different results. In order to find dis-
clinations we determine the value of P(r) at a grid of
points that forms a square lattice. Disclinations are iden-
tified by observing the net change in P on going clockwise
around an elementary "plaquette" of grid points. A posi-
tive (negative) disclination corresponds with a net change
of P by +2m. ( —2m. ). Note that the orientation of the
nematic director n(r) changes by +ir or —m on going
around an elementary disclination. The nematic director
itself is however not very useful for computational pur-
poses as it is not a single-valued function of r [n(r) and—n(r) are indistinguishable].

III. RESULTS-

Simulations were performed on systems of X hard nee-
dles with 30&%&3200. Most runs were carried out for
%=50, 200, and 800. The initial configuration from
which the first few runs were started was one in which all

needles were aligned but randomly positioned in the
periodic box. Subsequent runs were started from previ-
ously equilibrated configurations at a higher or lower den-
sity. The phase diagram was traversed both in the direc-
tion of increasing and decreasing density in order to test
for possible hysteresis effects. Most runs consisted of
2)&10 passes (i.e., attempted moves per particle) exclud-
ing equilibration (typically 10 passes). But many runs in
the region where nematic ordering sets in were much
longer (up to 1.2X10 passes). Table I summarizes the
relevant parameters of the simulations that were used to
obtain the equation of state of hard needles (inforination
on the order parameters will be discussed below). Figure
1 shows a plot of both the density and the chemical poten-
tial as a function of pressure. Here, and in what follows
we use reduced units; kT=1 and L =1. At low densities
one may expect that the equation of state is adequately
described by the first few terms of the virial series. For
hard needles the second virial coefficient is known exactly
Bz ——1/m (in units L ). We computed the virial coeffi-
cients B3 through 85 using the Monte Carlo method of
Ree and Hoover. ' The results are summarized in Table
II. It is directly evident from Table II that the third and
higher virial coefficients are not negligible. Hence the as-
sumptions underlying the Onsager theory are indeed not
warranted for 2D needles. A second point to note is that
the fifth virial coefficient is negative. It is rather unusual
for hard-core systems to have a negative virial coefficient

2 9 6 8 10 12 1I 16 18 20
PRESSURE

FIG. 1. Chemical potential p (triangles) and number density
p (crosses) of a 2D hard-needle fluid, as a function of pressure.
All quantities are in reduced units. The dashed curve through
the density data points is a spline fit. The dashed curve through
the chemical-potential data points was obtained without adjust-
able parameter from the curve through the density points, using
the Gibbs-Duhem relation. The two solid curves at low pres-
sures (P & 11) correspond to the five-term virial series for p and
p. The solid line at high pressures (P ) 10) is given by the equa-
tion p=P/2 (see text).
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TABLE I. Summary of thermodynamic properties as obtained by Monte Carlo simulation of a sys-
tem of 2D hard needles. Column 1: P is the pressure (in units kT/I. ); column 2: p is the number den-
sity (units I ); column 3: p is the chemical potential (units kT); column 4: C~ —C, (in units k);
column 5: Nz is the total number of trial moves; column 6: X is the number of particles; column 7: P
is the constant pressure MC, Vis the constant volume MC.

1.00
2.00
3.00
4.00
5.00
6.00
7.00
7.50
8.00
8.50
9.00
9.50

10.0
10.0
10.5
10.5
11.0
11.0
11.0
11.5
11.5
11~ 5
11.75
12.0
12.0
12.0
12.5
13.0
13.0
14.0
15.0
16.0
17.0
18.0
10.87
11.09
11.22
11.22
11.30
11.76
11.70
11.84
12.11
12.29
12.21
12.49
12.44
12.57
12.88
13.06
13.13
13.63
14.71
16.13
17.91

0.782
1.373
1.771
2.164
2.584
2.910
3.269
3.466
3.653
3.860
4.064
4.240
4.494
4.466
4.786
4.647
5.067
4.880
4.882
5.267
5.044
5.153
5.230
5.520
5.441
5.486
5.701
6.205
5.974
6.477
7.188
7.779
8.288
8.812
5.000
5.000
5.000
5.000
5.000
5.250
5.500
5.500
5.500
5 ~ 500
5.500
5.750
6.000
6.000
6.000
6.000
6.000
6.250
7.000
7.773
8.753

0.297
1.249
1.892
2.394
2.828
3.195
3.518
3.678
3.817
3.95
4.089
4.201
4.329
4.322
4.440
4.426
4.546
4.528

4.622
4.607

4.663
4.709
4.718

4.801
4.891
4.893
5.034
5.205
5.344
5.462
5.583

Cp —C„

0.97
1.07
1.12
0.93
1.29
1.483
1.466
1.854
1.642
1.825
1.933
2.128
2.121
2.172
2.465
1.872
2.579
2.204
3.115
2.767
1.927
1.069
2.360
2.791
1.908
1.698
2.003
2.209
2.956
2.669
2.012
2.258
2.151
2.184

N~ (10)

0.4
0.4
0.4
0.4
4
4
4

4
4
4
4
1

4
4
4
1

4
1

4
4
4
1

4
4
4
1

4
4
4
4

4

6

19
24
12

8
6

13
19
24
21

8
6
4

15
22
21
9

200
200
200
200
200
200
200
200
200
200
200
200

50
200

50
200

50
200
800

50
200
800
200

50
200
800
200

50
200
200
200
200
200
200

30
50
75

200
800
800
30
50
75

200
800
800
30
50
75

200
800
800
800
800
800

Constant P or V

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P.
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
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TABLE II. Virial coefficients B2 through B5 for 2D hard
needles. Column 2: B„ in units L '" ", column 3: B„ in units
B2 '. The estimated error in the last digit is indicated between
brackets.

)Bn —1

N =800 p=3.5

~(j
"
4(j~w&~yES

N=BOO p=5.5

1/m
0.0533( 1 )

0.00058(9)
—0.00138(2)

1

0.526
0.0180

—0.134

N = 3200 p = 6.V5 N = 3200 p = 8.75

as low as B&', the only other example we know of is that
of thin hard platelets in 3D. ' As can be seen from Fig. 1

the five-term virial series fits very well to the MC data for
pressure P (3. In the same pressure range the virial ex-
pression for the chemical potential coincides with the
Monte Carlo results obtained by using Widom's particle
insertion method. At pressures P~3 the Monte Carlo
data deviate significantly from the five-term virial series.
In this regime we find that, for a given density, the five-
term virial series always overestimates the pressure. This
implies that at least one of the higher virial coefficients
must be negative. At reduced pressures between P=11
and 13 we observe a marked increase in equilibration
times. Very long runs were needed to obtain reliable
equation-of-state data in this region. The slope of the iso-
therm in Fig. 1 also changes rather rapidly around P = 12
(p= 5.5). In Fig. 2 we have shown typical configurations
of the hard-needle fluid at four different densities between
p*=3.5 and p*=8.75. As is clear from Fig. 2 there is a
pronounced increase the degree of alignment of the nee-
dles at the higher densities. At pressures above P = 15 the
equation of state of hard needles rapidly approaches the
limiting form P =2p. An equation of state of this form is
expected when the hard-needle fluid has a high degree of
orientational order on a local scale. For a derivation, see
Ref. 15, where we discuss the high-density equation of
state of hard platelets in three dimensions. Postponing for
a moment the question whether the high-density phase
has true long-range orientational order, we first look at
possible evidence for a first-order phase transition between
the isotropic (low-density) and "nematic" (high-density)
phases. The equation of state as obtained from the MC
simulations has no observable discontinuities nor is there
any evidence for hysteresis. As the estimated error in the
individual Monte Carlo point is of the order of 1% any
discontinuous jump in the density must be appreciably
less than 1%. The absence of a discontinuous density
jurnp is consistent with the observation that the curve of p
versus P (Fig. 1) is free of discontinuous changes in slope.
Of course, changes in slope are much harder to detect
than discontinuities, and the smooth behavior of p as a
function of P is, in isolation, no convincing evidence. A
thermodynamic quantity that is more sensitive to the na-
ture of the phase transition is the heat capacity at con-
stant pressure, Cz. In a hard-core system the heat capaci-
ty at constant volume, Cz, is an uninteresting quantity be-
cause it is equal to (d/2) (d =dimensionality), at all den-
sities. In contrast, Cp is sensitive to the equation of state
as it is related to the compressibiHty

FIG. 2. Snapshots of configurations of a system of 2D hard
needles at densities between p=3. 5 and 8.75. The snapshots at
p=3. 5 and 5.5 show systems consisting of 800 needles; the con-
figurations at p=6. 75 and 8.75 contain 3200 particles. Note the
increase in local orientational order as the density is increased.

Bp
XT =P

For a 2D hard-core system we have the following expres-
sion for Cp'.

C, =1+ p2

p2 BP

For the hard-needle fluid Cz varies from 2 at very low
densities (where P=p) to 3 at very high densities. The
isothermal compressibility XT of the hard-needle gas can
be obtained from the constant-pressure MC simulations
through the relation

&(~v)'&
T

Figure 3 shows the density dependence of (Cp-C~) as
obtained from the mean-square volume fluctuations in
constant-P MC runs. As the statistics on ((AV )) are
rather poor, the Cz points are rather noisy. The only con-
clusion we can draw from these data is that Cz has a peak
around p =6. Another method to obtain C~ is by nu-
merical differentation of the equation of state. We did
this by first performing a least-squares spline fit to the
equation of state points and then differentiating this curve
with respect to P. The result of this procedure depends
strongly on the rigidity of the spline fit. A very smooth
fit washes out all structure while an "exact" fit which
goes through all data points has a derivative that fluctu-
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g„(r)= (cosI 4[8(0)—8(r)] I ) .
Let us first consider the order parameter S. S is defined
as the average positive eigenvalue of the matrix

C —
Cy

40

FIG. 3. Cz-C„of a system of 20 hard needles as a function
of density [see Eq. (10)]. The solid line was obtained by numeri-
cal differentiation of the equation-of-state data. The points
were computed using the compressibility derived from the
mean-square volume fluctuations in constant pressure runs. In
the figure the results for a 200-particle system are indicated by
squares; the results for a 50-particle system are shown as circles.

ates wildly. Figure 3 shows the result obtained with a
spline fit that followed the data points as closely as possi-
ble without giving rise to multiple peaks in Cz. Although
this criterion is of course rather arbitrary a curve for Cr
results which has toughly the same width and peak height
as the compressibility points. Taken together the data in
Fig 3sugg. est that Cp has a finite and rather broad peak
around p=5. S—6.0. This is additional evidence that the
I-N transition in this system is not first order. Consistent
with this picture is the observation that the histogram of
volumes accumulated during the constant pressure runs
never exhibited the two-peaked structure typical of weak
first-order phase transitions. It should be noted that the
peak in Cz occurs at a higher density than the point
where the 20 Onsager model has its second-order phase
transition (po ——4.71). From the preceding discussion it is
clear that the thermodynamic properties of the hard-
needle fluid are not very sensitive to the onset of orienta-
tional order. In particular, on basis of the thermodynamic
data alone we cannot decide what the nature of the high-
density phase is, nor, indeed, if it is a distinct phase at all.
Much more information can be obtained by studying the
behavior of quantities directly related to the orientational
ordering, in particular the nematic order parameter
S= (cos(28) ) and the orientational correlation functions

gz(r) = (cos I 2[8(0)—8(r)] I )

and

In a finite system, S will be small but finite even in an
orientationally disordered phase. In the very dilute gas
phase it is easy to show that (S ') =1/N and hence that
S=0(1/~N ). At higher densities, where moleculear
orientations are correlated over a finite distance gz, finite
size effects will be more pronounced because S will vary
as 1/~n„where n, is the number of correlation areas:
n, =D /g2 (where D =diameter of the periodic box). An
example of the system-size dependence of S is shown in
Fig. 4. This figure clearly shows that the onset of orienta-
tional order is not abrupt and, moreover, occurs at dif-
ferent densities for different system sizes. It should be
stressed that long runs are needed to get a reliable esti-
mate of S once orientational order starts to develop
throughout the periodic box. In particular for the larger
systems (N=800, 3200), S may fluctuate appreciably on
"time scales" of 30000 passes or more. For example, for
a well-equilibrated system of 800 needles at p=5. 5 we
found the following values for S in subsequent runs:
S=0.141 (2.2X10 passes), S=0.129 (1.5&&10 passes),
and S=0.216 (1.5 X 10 passes). If we assume that the
typical "relaxation time" for fluctuations in S scales as
D then the number of passes to obtain S with a given ac-
curacy also scales as D, i.e., as N. The total number of
Monte Carlo trial moves then goes as X . It is clear from
this rough estimate that computation times become prohi-

FICx. 4. Apparent nematic order parameter S= (cos(28) ) as
a function of density. The different curves refer to different
system sizes. Squares: X=30; circles: X=50; triangles:
N =75; pluses: X=200; crosses: %=800; diamonds:
N =3200.
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bitively long if we aim to obtain reliable information
about 5 for systems larger than N=800. Data on the
nematic order parameter for different system sizes have
been collected in Table III. We can try to fit the system-
size dependence of S to a power law of the form
S=aN . The results of such a fit for system sizes with
30&N & 800 are summarized in the last three columns of
Table III. In this fit we have weighted the MC data
points with a factor proportional to the number of passes
and inversely proportional to the system size. For densi-
ties p &4.0 we observe that b = —, which is the result we
expect for an isotropic system. At higher densities b be-
comes less than —,. It should be stressed, however, that
even at highest densities studied, we always find that the
order parameter decreases with increasing system size.
Table IV contains information on the block-size depen-
dence of the block-averaged order parameter S, and S,
and 5 at densities p) 7. At these densities the molecular
orientation is correlated throughout the periodic box, at
least for the system sizes studied (N &3200). We find
that the exponents b]„b2, and b4 for N =800 and
N=3200 are comparable though the values tend to be
somewhat larger for the larger system. At this point it is
useful to recall that if elastic continuum theory may be
used to describe long-wavelength orientational fluctua-
tions in the 2D nematic, the exponent b is related to the
effective Frank constant K: b =kT/2~K. The exponents
bz and b4 describing the N dependence of (S ) and (S )
are in that case related to b by b2 ——2b and b4 ——4b. We
observe that at p=8.75 the relation b =bz/2=b4/4 is sa-
tisfied within computational accuracy for both N=800
and N=3200. For N=800 bz/2b=1. 00, bq/4b=1. 08,
while for N=3200 bz/2b=1. 02 and b4/4b=1. 06. In
contrast, at p=7 the relation between b, b2, and b4 starts
to deviate from the predictions of the 2D elastic continu-
um theory: bz/2b=0. 94, bz/4b=0. 87 (N=3200). The
system is unstable against spontaneous disclination un-
binding if mE/kT &8, i.e., b &+, , bz& —,, and b4& —,'.
Hence the data in Tables III and IV suggest that at densi-
ties p&7 no stable nematic with quasi-LRO can exist.
The existence of a nematic with true LRO is very unlikely
in view of the very pronounced system-size dependence of
the nematic order parameter. Additional evidence that
the system is isotropic for p & 7 comes from the decay of
the orientational correlation function

gz(r) = (cost 2[0(0)—g(r)] I )

and g4(r) = (cos [4[~(0)—&(r)]I ). As discussed in Sec. II
elastic continuum theory predicts an algebraic decay of
gz~(r) in the nematic phase

gz(r)-r ', g4(r)-r

with q2 ——2kT/~K and q4 ——8kT/~K. Spontaneous dis-
clination unbinding occurs if q2) —,, q4) 1. Figures 5—7
show a log-log plot of gz(r) and g4(r) versus r at densities
both above and below p=7. We observe that at the
highest densities the decay of both functions is algebraic
while at densities p & 7 the decay is faster than algebraic.
The values of zlz and z14 (Table V) are found to be larger
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TABLE IV. Effect of block averaging on the apparent nematic order parameter at densities between
p=7 and p=8. 75 for systems of 800 (p=7. 5 and 8.75) and 3200 (p=7, 7.5, and 8.75) particles. The
first four rows contain the values of the order parameter S for the full system (1/1) and subsystems
with an area equal to —„', —,'6, and ~ of the periodic box. The numbers between parentheses indicate the

total number of attempted Monte Carlo moves (in millions). Rows 5—7 contain the parameters of a
least-squares fit of the (sub)system order parameter S(N) to an expression lns(N) =a —b lnN, where N
is the average number of particles in the subsystem; r is the regression coefficient of the fit. Rows
8—14: the same for the mean-square order parameter. Rows 15—21: the same information for the
mean fourth power of the order parameter. Row 22: value (b) obtained by averaging b, b2/2, and
b4/4. Row 22: value of mK/gkT deduced from (b ) =kT/2m' Spo.ntaneous disclination unbinding
is expected to take place at ~K/8kT=1.

p= 7
N =3200

p=7. 5

N =3200
p= 8.75

N =800 N =3200

(1/1)
(1/4)

(1/16)
(1/64)

P2

b2

az
S4

(1/1)
(1/4)

(1/16)
(1/64)

(1/1)
(1/4)

(1/16)
(1/64)

r4
b4

a4.

n.K/8kT

0.532 (12)
0.549 (11)
0.632 (11)
0.7333 (11)
0.999
0.105
1.11
0.284
0.312
0.428
0.562
0.999
0.198
1.22
0.082
0.108
0.219
0.3S5
0.996
0.365
1.5
0.098
0.64

0.732 {7)
0.758 (4)
0.796 (4)
0.864 {4)
0.998
0.035
0.91
0.537
0.572
0.646
0.759
0.995
0.083
0.89
0.294
0.337
0.442
0.602
0.994
0.186
0.91
0.041
1.52

0.732 (47)
0.750 (35)
0.769 (35)
0.821 (35)
0.989
0.044
0.97
O.S50
0.564
0.598
0.681
0.991
0.087
0.96
0.304
0.323
0.372
0.482
0.993
0.177
0.97
0.044
1.42

0.864 (4)
0.872 (4)
0.888 (4)
0.919 (4)
0.994
0.013
0.93
0.747
0.761
0.791
0.848
0.994
0.026
0.88
0.558
0.582
0.632
0.728
0.994
0.056
0.79
0.013
4.81

0.820 (24)
0.832 (21)
0.844 (21)
0.873 (21)
0.991
0.023
0.95
0.673
0.692
0.714
0.765
0.991
0.047
0.92
0.453
0.480
0.515
O.S95
0.992
0.098
0.87
0.024
2.60

TABLE V. Results of fit of the orientational correlation functions gz(r )—:(cos [ 2[8(0)—8(r)] I ) and
gq(r) =(cosI4[0(0)—0(r)]] ) to an expression of the form lng, i(r)=a q»lnr, for 4.5—&p(8.75 and
N =800 and 3200. Columns 3—6 contain the best-fit values of g2 and g4 and the corresponding regres-
sion coefficients. N~ (column 7) is the total number of attempted Monte Carlo moves. Column 8 con-
tains the estimate of mK/8kT obtained from g2 and g4 using the relation q2 ——q4/4=2kT/~K. Column
9 gives typical values for the number of disclinations per 800 particles.

Np (10 )

4.5
5.0
5.5
6.0
6.5
6.75
7.0

8.75

800
800
800
800
800

3200
800

3200
800

3200
800

3200

2.4
1.4
1.9
0.72
0.36
1.2
0.20
0.39
0.16
0.15
0.050
0.059

0.93
0.99
0.81
0.99
0.998
0.99
0.98
0.99
0.98
0.99
0.97
0.99

2.6
2.0
2.3
1.61
1.65
3.9
0.78
1.77
0.78
0.61

' 0.203
0.252

0.92
0.82
0.94
0.95
0.90
0.94
0.996
0.98
0.999
0.99
0.96
0.99

11

12
11
16

1

9
11
4

23
4

21

0.65
0.23
1.27
0.60
1.41
1.65
4.96
4.10

23
16
15
4.5
2.5
3.5
1

0.5
0
0
0
0
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FIR. 5. Log-log plot of g, (r) =,,(cos {2[8(0)—8(r) ] J )
(squares), and g4(r)= (cos{4[8(0)—8(r)] I ) (circles) as a func-
tion of r (in units L). The system size is %=3200, the density

p =6.75. Note the residual secondary maximum in g&(r) which
is a consequence of slow equilibration. As can be seen from the
figure the decay of both g2(r) and g4(r) is faster than algebraic.

than the critical value for disclination unbinding at all
densities p& 7. We should add that for the 3200-particle
systems, which were prepared by quadrupling a previously
equilibrated 800-particle configuration, excessively long
runs were needed to allow the initial correlations between
the four subsystems to decay. These correlations showed

up as a secondary maximum in g2(r) and g4(r) at
r=D/2. The relaxation times involved in the decay of
this secondary maximum were in some cases longer than
we could afford to wait (for an example, see Fig. 6). For
these cases the exponents g2 and g4 were obtained by per-
forming the fit on g2(r) and gq(r) only for values of r
where these functions were decreasing; in all cases points
with r &2L were excluded from the fit because at very
short distances local ordering effects will dominate. We
find that fluctuations in the orientational correlation
functions occur on the same time scale as fluctuations in
the total-order parameter. In this respect the present-sys-
tem seems to behave differently from the model systems
studied by Tobochnik and Chester. These authors note
that the statistics on g2(r) tend to be much better than the
statistics on S.

Combining the information on the effective Frank con-
stant as obtained from b&, b2, b4, g2, and g4 (see Tables
IV and V), we find that the data are consistent with the
existence of a phase with algebraic orientational order for
p&7. 5 and an isotropic phase for p(7. Note that the
thermodynamic data do not exhibit unusual behavior in
the vicinity of the presumed I-N transition; the phase

FIG. 6. Log-log plot of g2(r) = (cos{2[8(0)—8(r)) I )
(squares), and g4(r) is (cos{4[8(0)—8(r)]] ) (circles) as a func-
tion of r (in units L). The system size is %=3200, the density
p=7.00. The points shown were obtained after a fairly long run
(-4&10' passes). In addition we show the result obtained in
the run immediately preceding the above run [dashed curve for
g4(r), solid curve for g2(r)]. From the figure it is clear'that the
secondary maximum in g4(r) disappears on equilibration, ' g2(r)
relaxes somewhat slower than g&(r).

transition occurs at a density which is some 20% higher
than the density where Cz has its maximum. At densities
below p=4.0, g2(r), and g&(r) are very short ranged, they
do not fit well to a simple exponential. This can be seen
from Figs. 8 and 9. For this reason it was not possible to
determine correlation lengths of the orientational order in
the isotropic phase. Taken together, the behavior of the
hard-needle system is strongly reminiscent of the 2D
planar-spin model which almost certainly undergoes a
Kosterlitz- Thouless disclination unbinding transition. If
indeed a disclination unbinding transition occurs in the
hard-needle system it should be possible to observe a
marked increase in the number of topological defects in
the region where the heat capacity has its maximum. We
have employed the construction described in Sec. II to
visualize disclinations. This method suffers from a cer-
tain degree of aribtrariness because of the artificial coarse
graining of the director field. As a consequence the abso-
lute number of disclinations, which is rather sensitive to
the degree of coarse graining, has little meaning. Still we
can compare different configurations that have been
analyzed in the same way. We find that the total number
of defects is too small to be observed for p) 7.5 and in-
creases rapidly, but not discontinuously, as the density is
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FICx. 8. Short-range behavior of g2(r) = (cosI 2[8(0)
—8(r)] J ) as a function of r (in units L). Note that for densities

p(5. 84, gz(r) has decayed to a value less than e ' within 1.5L.

FICi. 7. Log-log plot of g2(r)=(cos[2[8(0) —8(r)]] )
(squares) and g4(r)=(cos[4[8(0)—8(r)]I ) {circles) as a func-
tion of r (in units L). The system size is %=3200, the density
p=8.75. The decay of both g2(r) and g4(r) appears to be alge-
braic for distances (r /L ) & 1.

FIG. 9. Short-range behavior of g4(r) = (cosI 4[8{0)
—8(r)] I ) as a function of r (in units L). Note that for densities

p & 5.08, g&(r) decays to a value less than e ' within 1L.

decreased. Around p=7 we observed no free disclination,
but this is hardly surprising in view of the "small" system
sizes studied. Some typical defect structures are shown in
Fig. 10. Typical numbers for the defect concentration
have been collected in Table V. These numbers are only
meant as an indication as they are based on the results for
one or two snapshots. As was mentioned in the beginning
of this paper hard needles do not solidify at finite densi-
ties. As a consequence we expect to observe only short-
range translational order at all densities studied. That this
is indeed the case can be seen from Fig. 11 where we have
plotted the radial distribution function, g(r), at a number
of densities. Two things should be noted. First of all,
g(r) is almost completely featureless for r &L. Secondly,
the onset of local orientational order is reflected in a
strong increase in g(r) for r &L. This is understandable
because the centers of mass of parallel needles can come
arbitrarily close. Let us briefly summarize our findings
for the hard-needle fluid. Qur observations are compati-
ble with the following picture. At low densities the hard-
needle fluid is in an isotropic phase in which orientational
correlations die out over a distance smaller than the
length of the needle. At high densities (p & 7.5) we find a
2D nematic phase with algebraic order. For densities

p (7 this ordered phase becomes absolutely unstable with
respect to disclination unbinding. On the basis of the
present data we tentatively conclude that a Kosterlitz-
Thouless (KT) disclination-unbinding transition takes
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b2

Q2

S~4

r4
b4
a4
7l2

g4
mK/8kT

(1/1)
(1/4)

(I/16)
(1/64)

(1/1)
(1/4)

(1/16)
(1/64)

(1/1)
(1/4)

(1/16)
(1/64)

0.666
0.720
0.798
0.903
0.999
0.072
0.95
0.447
0.528
0.653
0.835
0.999
0.150
0.94
0.207
0.296
0.459
0.733
0.999
0.310.
0.98
0.32
1.38
0.79

0.489
0.500
0.617
0.726
0.98
0.138
1.05
0.243
0.263
0.407
0.559
0.98
0.290
1.24
0.062
0.082
0.199
0.362
0.99
0.598
1.97
0.41
1.52
0.50

0.400
0.402
0.431
0.591
0.98
0.206
1.30
0.160
0.162
0.200
0.379
0.99
0.424
1.9
0.026
0.027
0.049
0.178
0.99
0.868
5.0
0.68
2.2
0.33
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lipses (a/b =6) at p/po ——0.6, i.e., at a density some 7%
higher than Vieillard-Barons s I-N transition. We per-
formed the same analysis of the system-size dependence of
the order parameter as described before and we also stud-
ied the behavior of the orientational correlation functions
g2(r) and g4(r). The results of this analysis have been
collected in Table VI. The data show a pronounced
system-size dependence of the order parameter, while both

g2(r) and g4(r) decay monotonically as a function of r.
Analyzing the data in terms of an effective Frank con-
stant we find that, for the largest system size,
mE/8kT =0.33. At this value the nematic phase is unsta-

ble with respect to disclination unbinding. This finding
is corroborated by the fact that we observe a high defect
concentration in the hard-ellipse fluid at p/po ——0.6.
Hence the present analysis suggests that the I-N transi-
tion observed by Vieillard-Baron is in fact related to a
peak in the compressibility in the isotropic phase, similar
to what we observe in the hard-needle fluid between

p =5.5 and 6. We have not analyzed higher density points
of the hard ellipse system and hence we do not know the
nature of the true nematic phase in this system. The ab-
sence of any discontinuities in the thermodynamic proper-

ties of the hard-ellipse system between p/po ——0.563 and
0.83 makes it unlikely that the I X-transition is first or-
der. A rough estimate of the location of the point where
spontaneous disclination unbinding becomes possible can
be obtained in the following way. As can be seen from
Table IV the order parameter in the nematic phase of the
hard-needle fluid has a system-size dependence of the
form S=a X with a=1, which is reasonable as S
must be I for X= l. If we assume that a a= I for the
hard-ellipse system we find that at the disclination un-
binding point S=N ' ' . For N = 170 this yields
S=0.73. The data in Ref. 4 show that S reaches this
value at p/po-0. 65. Due to the renormalization of K,
the true disclination-unbinding instability is probably at a
somewhat higher density. It thus appears that the I-N
transition in the hard-ellipse system need not be qualita-
tively different from that observed in the hard-needle
fluid, although more work is needed to sort this out. The
nonseparable ellipsoidal Lennard-Jones system studied by
Tobochnik and Chester remains the only example of a 2D
liquid crystalline system which appears to exhibit true
LRO, but we should add that we have been unable to
reproduce their results.
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