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The authors present a self-consistent approximation scheme for the calculation of the dynamical
polarizability a(k, ~) and plasmon dispersion at long wavelengths in electron films trapped on the
free surface of liquid helium. The principal building blocks to the construction of the approxima-
tion scheme are the nonlinear fluctuation-dissipation theorem and linearized equations for the plas-
ma density, fluid velocity, pressure tensor, and heat-flow tensor moments. Equilibrium three-point
correlations, quadratic polarizability response functions, and the Navier-Stokes hypothesis linking
the pressure tensor to its trace are all central elements in the development of the theory. At frequen-

'cies high compared with the collision frequency, the Golden-Lu (GL) formula for a(k, co) exactly
satisfies the co moment sum rule. Analysis of aGL(k, m) at co=(2mne k/m)' &~kuth leads to the
description of the long-wavelength plasmon structure over the range of couping strengths spanning
the entire fluid regime. The GL theory predicts that the transition from plasmonlike to
longitudinal-phonon-like dispersion occurs at the critical value of the coupling parameter
r„,t=3.22; this transition is inextricably linked to the onset of a "liquid-state" short-range order sig-
naled by the development of oscillations in the equilibrium pair correlation function somewhere in
the range 2.2 & I &2.9. In the infinite coupling (I ~ oo ) limit, the GL long-wavelength dispersion
relation very nearly reproduces the zero-temperature Bonsall-Maradudin longitudinal-phonon
dispersion for the two-dimensional hexagonal lattice.

I. INTRODUCTION

Over the past decade there has been a considerable ef-
fort directed at the understanding and prediction of the
collective mode and transport properties of electron films
trapped on the free surface of liquid helium. In the actual
laboratory setup' extra electrons are deposited in a mono-
layer just above the free surface and are held there by the
combination of the long-range image potential and short-
range repulsive barrier to penetration into the liquid-
helium surface. At a temperature T-0.5 K and over the
range of areal densities 10 & n & 10 cm realized in the
Grimes-Adams experiments, ' such electron monolayers
behave very much like a strongly coupled two-
dimensional (2D) classical one-component plasma (OCP):
The electrons can execute only horizontal (parallel to the

. free surface) motions and they interact via the Coulomb
potential P(r) =e /r (r is the range along the surface and
e=eo[2/(I+eH, )j' is the effective electronic charge
(eo ——4.8X 10 ' esu)). The compensating uniform posi-
tive background is provided by an electrode placed just
below the surface.

Some of the more novel characteristics exhibited by the
2D classical OCP can be listed here. (i) Laboratory
experi. ments"' confirm the existence at long wavelengths
(k « kD 2n ne P, P =——k~ T) of surface-plasmon excita-
tions near the frequency co=co&(k) =(2nne k/m)'~; these
low-frequency plasma modes are well developed and per-
sist over the entire range of liquid-state coupling strengths

up through crystalization. " ' (ii) The mean electron-
electron collision frequency v too (-2mne——kD /. m ) '~,
even when calculated under the usual weak-coupling as-
sumption that a test electron interacts weakly with a large
population of field electrons inside the Debye circle, turns
out to be entirely independent of the plasma parameter
y=kDI(2mn) (iii) C. on. sequently at co=co&(k)«v and
for y&0, collective mode behavior should be profoundly
affected by dynamic collisions howeuer weak the coupling
may be. Indeed, Baus's long-wavelength plasmon disper-
sion formula

co(k «kD, y«1)=co~(k) 1+ k
kD

bears this out: The non-random-phase-approximation
—k/(2kD) dispersive correction is a consequence of two-
dimensional adiabatic compressions in which plasma
wave-induced perturbations in the longitudinal component
of the pressure tensor are immediately accompanied by
collision-induced perturbations in the transverse com-
ponent. The collisional transfer of longitudinal momen-
tum is controlled by viscous transport. (iv) The y-
independent viscous transport and y-dependent correla-
tional effects play a central role in the damping of the 2D
OCP plasma mode. In the actual laboratory experiment, '

however, it is, in fact, electron-ripplon scattering which
controls the lifetime of the surface-plasma mode for
T(0.68 K.
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Computer experimental and theoretical efforts have al-
ready provided a great deal of information about the
dynamical properties of the 2D classical OCP over a wide
range of y values. Structure function data and curves for
the longitudinal and transverse collective excitations have
been generated from molecular dynamics (MD) computer
simulations. Formulas for the dispersion and damping
of the collective excitations have been derived (i) by calcu-
lating the frequency spectrum of lattice vibrations of a
finite 2D electron crystal, (ii) in the random-phase ap-
proximation (RPA), (iii) by following the Singwi-Tosi-
Land-Sjolander mean-field-theory approach, (iv) from
the Boltzmann equation, and (v) by following a micro-
scopic hydrodynamic approach.

The present paper has a twofold purpose: (1) to formu-
late a long-wavelength (ku, h «~o) dynamical theory of the
2D OCP in the language of linear and nonlinear response
functions and (2) to calculate [from (1)] the dispersion of
&he 2D OCP plasma mode over the range of coupling
strengths spanning the entire fluid regime. Our formula-
tion of the dispersion in the fluid regime will provide the
critical value I „;, of the coupling parameter
I =Pe (mn)'~ =(y/2)'~ marking the transition from
plasmonlike to phononlike dispersion; MD simulations
predict that I,„, lies somewhat above 2.29. The accuracy
of our dispersion relation will be further assessed by going
to the infinite coupling (I ~oo) limit and making com-
parison with dispersion calculations of the 2D OCP
crysta1. ' ' Our calculations are to be carried out in the
velocity-average approximation (VAA) (Refs. 9 and 10)—
actually an improved version of it—and in a linearized
hydrodynamical framework which explicitly displays the
two-dimensional compressions for kv, h « co « v. The
hydrodynamical equations are to be generated by taking
velocity moments of the first Bogoliubov-Born-Green-
Kirkwood-Yvon (BBCxKY) kinetic equation. We wish to
emphasize that the VAA is not a central element of the
theory, nor is the VAA indispensable to the derivation of
the dispersion relations of this paper. The VAA is in-
voked because it provides a convenient and transparent
way of converting mathematically intractable higher-
velocity moments of the two-particle distribution function
G(12;t) into tractable nonequilibrium two-point func-
tions. The procedure for incorporating the VAA struc-
ture into the 3D OCP hydrodynamical chain has been
described at some length in Ref. 10. This procedure can
be easily adapted to the present case with the stipulation
that a Navier-Stokes description of the pressure tensor
must necessarily be invoked for co « v to take account of
the y-independent dynamic collision effects. The need for
the Navier-Stokes hypothesis becomes all the more ap-
parent when we observe (i) that even weakly coupled
(y « 1) two-dimensional OCP's must be in a state of local
thermodynamic equilibrium for co«v and (ii) that the
dominant zeroth velocity moment and higher even-
moment VAA projections of G(12;t), because they are y
dependent, cannot possibly relate to the persistence of col-
lisions all the way down to y«1. %'e shall see how the
nonequilibrium two-point correlation functions enter mo-
ment by moment in the linearized hydrodynamica1 equa-
tions and how, in particular, the dominant y-dependent

correlation appears as the lowest-order (in k) term ori-
ginating from the zeroth moment of G(12;t). A central
element of the theory is the nonlinear fluctuation
dissipation theorem (NLFDT) (Ref. 11) which makes it
possible to trade the nonequilibrium two-point correla-
tions for more accessible quadratic polarizability response
functions. What ultimately results from the combined
NI.FQT-hydrodynamical equations is a compact and
elegant response-function relation linking the linear and
quadratic polarizabilities. Self-consistency can then be
guaranteed by approximating the latter in terms of the
former. A systematic decomposition scheme for making
this kind of approximation has been worked out
elsewhere ' ' for bulk OCP's and can be easily reformulat-
ed for the 2D OCP under consideration here. Finally, it
should be mentioned that our treatment of the 2D OCP
will not take account of electron scattering by helium-
vapor atoms and by ripplons on the liquid helium
surface. "'

The plan of the paper is as follows. In Sec. II relevant
structure and polarizability response functions are intro-
duced and defined. In Sec. III velocity moments of
G(12;t) are introduced and linearized moment equations
for the average plasma density and pressure tensor and
heat-flow tensor responses are generated from the plasma
kinetic equation; the fundamental zeroth arid first velocity
moments of G(12;t) are at the same time converted from
nonequilibrium two-point functions into equilibrium
three-point functions. In Sec. IV the linear polarizability
a(k, co) is calculated at high frequencies co&&v where the
compressions are one dimensional. This is done by com-
bining the longitudinal projections of the moment equa-
tions into a single equation linking the average plasma
density linear response to a total (average+external) den-
sity perturbation. In Sec. V a(k, co) is calculated at lower
frequencies kv, h &» co « v characterizing the long-
wavelength hydrodynamic regime where local thermo-
dynamic equilibrium is expected to prevail. Consequent-
ly, the hydrostatic pressure p and the Navier-Stokes hy-
pothesis connecting the pressure tensor to p play the prin-
cipal role in describing the y-independent dynamic col-
lision processes. The calculation of a(k, to) in Sec. V will
therefore be accomplished by incorporating the Navier-
Stokes hypothesis into the full two-dimensional moment
equations (of Sec. III) and then combining the latter into a
single equation linking the average plasma density
response to the total density perturbation. generally
speaking, our results in Secs. IV and V can be best sum-
marized by the simple relation a(k, co;y) =a(k, co;y
«1)[1+U(k,co)], where the dynamical coupling correc-
tion U(k, co) contains all the y-dependent correlational
contributions. The identification of a(k, co;y &&1) as the
RPA polarizability ao(k co) in Sec. IV and as the "hydro-
dynamical" polarizability aH(k, co) in Sec. V is entirely
consistent with the dimensionality of the y-independent
compression processes described in these sections. As to
the development of the y-dependent v (k, to), it will
proceed in three stages In the fir.st stage U(k, co) is ex-
pressed in terms of equilibrium three-point structure func-
tions (Sec. IV). In particular, we shall demonstrate in Sec.
IV that U(k, co), when evaluated at co ~~v, reproduces the
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exact O(1/co4) moment sum-rule structure for the 2D
OCP polarizability. The second-stage conversion of the
three-point functions into quadratic polarizabilities is ef-
fected by application of the centrally important NLFDT
(Sec. V). The resulting response-function relation linking
the linear and quadratic polarizabilities is made self-
consistent in the third stage (Sec. V) by postulating that a
decomposition of the latter in terms of the former, which
prevails in the k~0 limit for weak coupling, can be relied
upon as a paradigm for arbitrary coupling. The formula-
tion of our self-consistent approximation scheme in Sec. V
is one of the two principal accomplishments of the present
paper. The second principal accomplishment follows in

I

Sec. VI, where the dispersion of the long-wavelength sur-
face plasmons is calculated over the range of coupling
strengths spanning the entire fluid regime. We shall see
that in the infinite coupling limit, our dispersion formula
very nearly reproduces the longitudinal-phonon dispersion
characterizing the zero-temperature 20 hexagonal lattice
in the k~0 limit. Conclusions are drawn in Sec. VII.

II. STRUCTURE FUNCTIONS
AND POLARIZABILITIES

We begin by listing and defining the relevant structure
and polarizability functions. The former are customarily
defined by the relations

(nq nzz)' '=(2~N)5q &5(co —p)[S(k,co)+(2mN)5q5(co)), (2)

(ng np„nq„)' '= (2mN)5g p q5(co —p —v)

X IS(p,p;q, v)+(2mN)[5q5(co)S(p, p)+5~5(p)S(q, v)+5q5(v)S(k, co)]+(2vrN) 5~5q5(p)5(v) I, (3)

S(k)=f S(k,co), (4)

where the angular brackets denote ensemble averaging of
the microscopic densities n ~

=g, e px( —ip x; ); the zero
superscript indicates that the averaging is to be performed
over the equilibrium system; and N =An, where A is the
large but bounded area of the system. Successive frequen-
cy integrations of (2) and (3), namely

where e(k, co)= I+a(k, co) is the dielectric response func-
tion. Since n '"=n/e, we have from (6) to (9) that

(k )
a(kco)
e(k, co)

"(p p q»= a(p p'q»)
e(p, p)e(q, v)~(p+q, p+v)

'

S(p;q)= f f S(p,p;q, v),

provide the corresponding static structure functions.
"External" polarizability response functions are defined

through the 20 OCP relations

( nq )"'(to)= a(k, c—o)n(k, co),

III. MOMENT EQUATIONS

Let F(x,v; t) and G (x,v; x', v'; t) be one- and two-
particle velocity distribution functions normalized to X
and N(N —1), respectively. In the absence of external
perturbations, the 2D OCP equilibrium distributions are
given by

&"'( )= " +13'P(p)P(k —p)
2A

a p,p;k —p, co —p
dp ~
2'

mnF'"(u) = exp2'
G' '(x v x' v')

—Pmv 2

2
J

(12)

X n(p, p)n(k —p, co —p, ), (7)

=F' '(u)F' '(u')

X 1+—g[S(q) —1]exp[iq. (x—x')]1
(13)

connecting the average density response (nk)(co) to the
weak external density perturbation n [P(p) =2vre /p is the
Fourier-transformed Coulomb energy]. "Total" polariza-
bilities, on the other hand, connect (nq)(co) to the total
density perturbation n =n + ( n ):
( n~)"'(co) = a(k, to—)n "'(k,co), (g)

I""and 6'" are the corresponding first-order responses
to the weak external electric field perturbation F; they, are
linked by the linearized first BBGKY kinetic equation

a a (~] e a (0)+v. F'"(x,v;t) — E(x, t) F' '(v)
at a.

'"
' —. a.

"'

( ng )' '(co) = g ft'P(p)P(k —p)
2A

dp a(p, p;k —p, co —p)
—~ 2' e(k, co)

a a „, , e'
m Bv Bx [x—x'[

X fd'v'G"'(x, v;x', v', t) . (14)

Xn "'(p,p)n '"(k—p, co —p), The long-wavelength (ku, h «co) hydrodynamical equa-
tions of this paper are to be generated by taking velocity
moments of (14). Thus dynamic collision effects will ap-
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pear in a natural way as correlations originating from
velocity moments of the two-particle distribution func-
tion. The following illustrates the generation of the fun-
damental correlations:

[ G].„(x,x', t) —=fd'u fd'u'G (x,v;x', v', t)

= (n (x)n (x') ) (t) —5(x—x') ( n (x) )(t),

[vG],„(x,x', t)—:f d u f d u'vG(x, v;x', v', t)

= ( j(x)n (x') ) (t)—5(x—x') ( j(x) )(t),

(16)

etc. The straightforward procedure of taking the 1, v, vv,
etc. moments of (14) then results in the conservation equa-
tions

a
Bt

(n (x) )(t)+nu~ ~(x, t) =0,
a 1

up(x, t)+ Ep(x, t)+ pp „(x,t) =-
m " '

mn

2fd x'[G],„(x,x';t)

2fd x'(n(x)n (x') )(t)
mn BXp X—X

(17)

(18)

a n

p
p&„(x,t)+ —[5„~~~(x, t)+u& ( xt)+p„„(x,t)]+q„„q«(x, t)

d x' [u„G],„(x,x', t) +[u,G]„(x,x';t)
e2

[
x—x'

[

= —fd x' (j„(x)n(x'))(t) +(j„(x)n(x'))(t)
Bxp x—x

a n a
q&~(x, t) +— E&(x,t) + u &(x, t) (5&&5~+5~+&&+5~&5&,) +r„~~ ~(x, t)

(19)

2
d x' I5g„[ u„u„G],„( x, x';t)+5g [u„u„G],„(x,x', t)+5g„[u„u G],„(x,x';t)I

Bx~ [x—x'
/

where

u(x, t) =—( j(x) )"'(t)
n

is the mean fluid velocity and the tensors

pz (x, t) =m fd w w&w„F"'(x, w;t),

q„~(x,t) =m fd w w„w, w„F'"(x,w;t),

r„~q(x, t) =m fd w w„w„w„w~F'"(x, w;t),

(21)

(22)

etc. are defined in terms of the peculiar velocity
w=v —p, . Note that the (1) superscript has been dropped
in (17)—(20) to keep the notation from getting too
cumbersome.

As was mentioned earlier, our approximation scheme is
to be formulated in a hydrodynamical framework in
which the dynamic collision contributions appear in a
natural way as correlations originating from velocity mo-
ments of the two-particle distribution function. Indeed,
the zeroth and first velocity moments are inextricably
linked to nonequilibrium two-point correlation functions
[see Eqs. (15) and (16)]. Unfortunately, no such two-point
function links exist for the higher moments appearing in
the chain of equations beyond (19). Note, however, that
the original VAA ansatz

G(x, v;x', v', t)= — ' ' d u G(x, v;x', v', t)
1 F(xvt) z

2 n(x) (t)
1 F(x', v', t) 2+ (, )

d u G(x,v;X,V;t)

[u„u„G],"„'(x,x';t) =5„, [G),"„'(x,x';t),1

m

[u„u vG],"„'(x,x';t)=5„„[vG],'„"(x,x';t),

[u„u u„ugG],"„'(x,x';t)

(25)

(26)

=(&JtcAfk+5pv5 A+5pA5vg) ~ [G] (x,x 't),
(Pm)

(27)

etc., such that

[uG],'„'(x,x', t) =0 . (28)

(24)

makes it possible to systematically factorize the (otherwise
intractable) higher moments into velocity- and position-
dependent products or, equivalently, into products of 1/p
and the fundamental (nn )(t) «( jn ) (t) correlations, that
is,"
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Moreover, the VAA ansatz, when substituted into (14),
generates —via the fluctuation-dissipation relations —the
exact static BBGKY hierarchy at co =0. ' ' Consequently,
in solving the self-consistent set of equations (54) and (59)
below for the dynamical polarizability, it will be entirely
justifiable to input the correlation energy density contribu-
tion to (59) with high-precision data which are assumed to
be. determined by computer or other experimental data or
by an independent theoretical approach.

The condition (28) [which is a corollary of (24)] will be
dropped in the sequel since [vG],"„'(x,x';t) in fact plays a
crucial role in the kU, I, «co «v frequency domain where
collisions are predominant: In a nutshellt, his fundamen-

I

tal moment goes hand in hand with the state of local ther-
modynamic equilibrium which, in the 2D OCP, persists
all the way down to very small y values. The treatment
of the present paper sti11 invokes the decompositions
(25)—(27), but improves on the original VAA by now con-
sidering [vG],„(x,x', t) to be different from zero. The ex-
actness of the theory in the static (co=0) limit is at the
same time preserved since [vG],'„'(k—q, q;t =0)
= —

& jq&"' (t =0)=0. In Ref. 10 this improved version
of the VAA is called the "velocity-moment approxima-
tion" (VMA).

Equations (17)—(20) and (25), when combined and
Fourier transformed, give

co~(k) co&(k) 1 g q
& ng&(co)= 2ptt(k, co)+ 2 n(k, ci7)+ 2 g &ng qnq &(co),

n kg
pp„(k, co) = [5pJaguar(k, to)+k„up(k, co)+kobu, (k, to)]+ qp, g(k, co)

(29)

+ g4(e)[e.&i,„, ,&( )+e„&J.„, ,&( )],1

q

(30)

(&~t &~+48„„+4A. )

co~(k) kg
X z n(k, co) — uq(k, co)+

co&(k) kg—g (e~/e)&nk —qnq&(~) + rpvgjl(l ~)
CO

q&k

(31)

where p0=(k&k„/k )p&„ is the longitudinal component of the pressure tensor. The passage from E language to the

more convenient total density n language was effected first by exploiting the 2D GCP relation E(k, co)

=2nien(k, co)(k/k) and then by separating out the q=k contribution to the g P(q)q&n~ qnq &(co) terms in (29) and

(31) and combining it with the n terms. As to the q&k nonequilibrium two-point function contributions, they can be
converted into equilibrium three-point functions: straightforward statistical mechanical calculations provide the
fluctuation-dissipation relations

kD g ~ 00 00

& nq qnq &(co)
~ q&I, = — n(k, co) f dp f dv 5+(co p —v)S—(q,p;k —q, v)+S(q;k —q) (32)

kD ~ ICO 00

& jg n &(co)= — n(k, co) J dp J dv5+(~o —p —v)T(q, p;k —q, v),
2

(33)

where

dX . ~ (0)T(q p'& —q»)= &nq, pJ{—q, vnj, x & (34)

~~(k) co~(k)
nq (co)= 1+3

co ~ kCO D

Elsewhere, ' it has been demonstrated that S(q,p;p, v) is

T(q,p;p, v) is also real, this follows from the fact
that T changes sign both (i) under space inversion, i.e.,
T(q,p, ;p, v) = —T( —q,p; —p, v), and (ii) under microscop-

ic time reversal, i.e., T( —q,p; —p, v) = —T( —q, —p;
—p, —v)= —T'(q, p;p, v). Hence, T(q,p;p, v)
=T'(q p p v).

IV. HIGH-FREQUENCY BEHAVIOR

X n(k, co)+ —g &nq qnq &(co)
1 k.q

N kq
q&k

co~(k) 2

+,rtm(~, ~) . (35)

At high frequencies where collisions are unimportant
(i.e., co &&v), perturbations in the average plasma density
are necessarily one dimensional and adiabatic. One there-
fore combines the longitudinal (i) projections of (30) and
(31) with (29) to readily obtain

Subsequent calculations of the higher-order moments be-
ginning with rtttt(lt. ,co) provide higher-order (in k /co )

contributions to the coefficients [co&(k)/co ][ 1

+3[co~(k)/co ][k/kD]I and [co~(k)/co ] of the first and
second right-hand side (rhs) members, respectively, of
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(35). These coefficients ultimately sum to the RPA polar- '

( „
izability

a0{k, co »v) =Reaa(k, ro »v) X n (k,~)+—g {nl, znz )(co)
1 k.q

q&k

co&(k) co&(k)1+3—
CO co'

co&
(k)+15 '

ka
(36)

+ —k' —g (jl, n )(~) . (37)
2 1 kq
co N kq

Substitution of (32) and (33) into (37) and comparison
with the (n ) nco—nstitutive relation (8) then results in
the high-frequency polarizability

a(k, co » v) = aa(k, co » v)

X [1+u(k,co)+w(k, co)], (38)

whence (43) becomes where the dynamical coupling function u (k, co) is given by

u (k, co)

e(k, co) f dp f dv5+(cu p —v)S—(q,p;k q, v—)+S(q;k q)—
k & kq 2m

q&k

(39)

w ( k, co)

e(k, co)

The expression

ikD 1 k q 00f dp f dv5+(co —p —v)k T(q;p, k —q, v)
mk N kq

(40)

u(k, co) kD 1 k q dp " dv S(q,p,'k —q v)Re ' = — coP —S q;k —qe(k, co) k N kq —~ 2n —~ 2m' co —p —v
q

q&k

when further evaluated at co—+ oo according to the procedure of Ref. 9(d), gives

(41)

u(k, co~ oo )Re
e(k, co~ oo )

q f P f (p+v) S(q,p;k —q, v)
q

q&k

kD 1 kq
k N'~ kq

q&k

, + „S(q,t';k —q, t")8
at' at" t'=~"=0

(k.q)' [S(k—q) —S(q)] .
co N

q
k'q

q+k

u k~
e(kCO~ oo ) lO2 N kq

(43)

through O(co~(k)/co ). Equations (38), (42), and (43) then
combine into the high-frequency expression

co&(k)
~ ~ ~ (44)

CO

n'"(k)
CO

a'(k, co »v) =—

1 k.0' '(k)=co (k) 3 +—g [S(k—q) —S(q)]
ko N „k3q

q~k

(45)

As to (40), its evaluation at co~ oo according to the pro-
cedure of Ref. 10 gives

(42)

which is known to be exact through O(co~(k)/co ). '

Finally, note that at such high frequencies, the longitu-
dinal projection of (30) simplifies to

3 k
p (k co) pll( lo) — {nk )(co)+ qlll(k cu) (46)

V. POLARIZABILITY FORMULATION
IN THE HYDRODYNAMIC REGIME

%'e come now to the task of formulating the fundamen-
tal response-function relation in the hydrodynamic regime
kU, h ~~co &~v. Our development proceeds in two stages:

this follows from the fact that w and, consequently,
(jq zn~)(co) contribute nothing through O(co~(k)/co ) to
Rea(k, co »v). The hydrostatic pressure p has been intro-
duced since, for a one-dimensional compression, p and the
longitudinal pressure pII are, by definition, one and the
same.
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First, we establish a relation which links linear and quad-
ratic polarizabilities; this relation is then made self-
consistent by approximating the latter in terms of the
former. At the lower frequencies co ((v where collisions
are predominant, the 2D OCP is in a state of local ther-
modynamic equilibrium and perturbations in the longitu-
dinal projection of the pressure tensor are immediately ac-
companied by collision-induced perturbations in its trans-
verse (t) projection. Consequently, the hydrostatic pres-
sure p (k,co) = —,'p&&(k, co) is expected to play a central role
in a hydrodynamic description of the 2D OCP; from (30),
(31), and Appendix A,

pit(k, co) =p(k, co) —tk7)ul(»co)

=p (k, co) — (nl, )(co),
n

(49)

p«(k, co) =p (k, co) +ikriul(k, co), (50)

in order to properly account for the y-independent col-
lisional transport processes which persist all the way down
to very small y values (0&@&&1), we suppose in the
sequel that the 2D OCP pressure tensor has the Navier-
Stokes structure

p (k, co) = —(nl, )(co)+ q„„l(k,co)
2 k

(47a) p«« ~)=pa(»~) =0 (51)

2 cop(k) [1+u (k, co) ]n (k, co)
CO

k+ 2 [rllll(»co)+&trll(»co)]
2co

(47b)

Equations (46) and (47a) describe entirely different pro-
cesses even though they are structurally quite similar:
The former highlights the one dimensionality of high-
frequency compressions where y-independent dynamic
collisions can have no significance; the latter, on the other
hand, highlights the two dimensionality of compressions
at the lower frequencies where y-independent collisional
transport effects become all-important.

The momentum-energy conservation equations (29) and
(47b) are the principal velocity-moment equations in our
derivation. The third rhs member of (29),

co~(k) 1 k.q co~(k)
(nl, qnq)(co) =, u(k, co)n(k, co),

q+k

X [1+u(k,co)]n(k, co)

k4
+ [ llll(k co)+ ttll(k co)]

2ma4

= —aH(k, co)[1+u(k,co)]n(k, co), (52)

where

cop(k) cop(k) k irik cop(k)
aH(k, co) = — —2 +

CO co kD mnm'

(53)

consistent with our remarks in Appendix A;
g ~ (m/mP)' (2/Pe ) is the coefficient of viscosity. The
Navier-Stokes hypothesis (49) now makes it possible to
join (29) and (47b), resulting in

cop(k) co~(k)
n«(co)= 1+2

CO kD mnco

contributes the fundamental y-dependent correlational
correction to the linear polarizability in the approximation
scheme. The subsequent next-higher-order (in k /co )

correction (which is the lowest-order VAA projection (25)
of the [Vl 6],'„" moment) appears in (47b) as the contribu-
tion proportional to u (k, co); successively higher-order
VAA projections will operate the higher velocity-moment
contributions to the I"'s. Now, for the sake of closure and

l

From (52) and (8), one then obtains the compact formula

a(k, co) =aH(k, co)[1+u(k,co)] (54)

linking the linear polarizability to dynamical three-point
structure functions [cf. (39)].

We next convert the Eq. (39) three-point structure func-
tions into quadratic polarizabilities (defined in Sec. II) by
application of the NLFDT [Ref. 11(b)]

S(p,p;q, v)= —2Im a(p, p;q, v) a( —.p —q, p v; p, p) a(—q, v—; —p —q, —p —v)

pv p(p+ v) (p+v)v
(55)

which is a central element of this theory. As the straightforward but involved mathematical steps for the conversion are
already detailed in Ref. 9(d), we need only state the final result here:

u(kco) = — dp 5 (p) ' ' ' +lkD 1 k p " a (p,p;k —p, co —p) a (p, co —p;k —p,p)
k N kp —~ e(p,p)e(k —p, co —p) e(p, co —p)e(k —p,p)

(56)

The appearance of the screening ee clusters indicates that
the dynamical coupling function has a superposition
structure reminiscent of the well-known cluster expan-
sions of statistical mechanics. The completes the first
stage in our derivation: Eq. (54): with u(k, co) given by

I

(56) is the fundamental response-function relation linking
linear and quadratic polarizabilities in the regime
kUth ((co ((v.

The second stage in the formulation of the approxima-
tion scheme consists in making (54) and (56) self-
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consistent by approximating the quadratic polarizability
in terms of linear ones. To accomplish this, we suppose

I

that the quadratic polarizability a (p,p;q, v) has the RPA
structure

ao(p, p;q, v)= d v k p +k.q (q=k —p, v=co —p),i, F'"(U) q.v p v
Pmn (~—kv)2 v —qv p —pv (57)

consistent with the fact that U (k, co) is y dependent. Following the procedure of Ref. 9(d), we next develop (57) at long
wavelengths (

~
k v

~
&&co) and introduce the resulting expression into (56). After some algebra [see Ref. 9(d) for the de-

tails], one obtains

co~ (k)
Uo(k~O co)= g [So(k—p) —So(p)]k'p

~z(k) oo—g (1 4X—'+5X")I dp, 5 (p)ao(p, p)ao(p, ~—p)
kD N

(58)

where 7= (k —p)/k. p We. now postulate the expression (58) to be valid for arbitrary coupling and accordingly drop the
"0"subscripts. This done, the resulting expression is then put into the more compact form

k 5
U(k~O, co)= 13E,(y) ——g—I—dp & (p)&(p,p) o.(p, ~—p)

kD 8 ' 8X (59)

I

sidered to be a given known input. This completes the
task of the present section.

VI. PLASMON STRUCTURE

For the calculation of the dispersion and damping rate
of the long-wavelength surface plasmons, we let

I3E,(y)—k 5

kD 8
lim —g [S(k —p) —S(p) ]

o co( k) =co~(k)+ b.co(k), (61)

where

E,(y)= g[S(p)—1]P(p)
1

2A
(60)

is the correlation energy per particle. Notice how the
correlational part

of the third frequency-moment sum-rule coefficient
Q' '(k) [cf. Eq. (45)] appears explicitly in (59): This contrt'
bution to U(k~O, co) is assuredly exact. Consequently, it
is only the second rhs contribution (proportional to the
aa cluster) which is RPA-like. Equations (54) and (59)
comprise the proposed self-consistent approximation
scheme in which the correlation energy density is con-

where co(k) satisfies the dispersion relation

a(k, co(k) ) = —1,
and

~
bee(k)

~
&&cuz(k) is the long-wavelength correction

which is to be calculated. The development of a(k, co(k))
in what will amount to a small-k expansion about the
point co=co&(k) gives [through O(k r )]

a{k—+0, co(k)) =u{k~0, co (k))+Ace(k) a(k~0, a))p 067
+ 0 ~ ~

a)=co (k)

=—1 —2 —v(k~O, cop(k))+ +2
k i rtk b,co(k)

kD mnco~(k) co~(k)

Taking account of (62), one then obtains

Rehco(k)= + —,
' Reu(k~O, co&(k)) co~(k),

D

Imbue(k)= — + —,Imu{k~O, co&(k))co~(k) .qk
2mn

Now, from the Appendix 8 calculations,

(65)

u(k~O, cop(k))= — PE, (y) —g 2 S (—p)
kkD

co&(k)J S (p,p)

(66)

so that (64)—(66), when substituted into (61), gives
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Reco(k~o)= I+A(y) ~~(k),k
kD

(67)
contribution to the dispersion is readily identified by ob-
serving that

L

; 3/2

Imago(k~o)= —5(y) cop(k),
D

(68)

where

k
A,(y) =1+ PE, (y) — —g S (p),

32 X p2
(69)

Equations (67)—(70) describe the dispersion and damping
of long-wavelength surface-plasmon excitations over a
wide range of y values. The y-independent collisional

I

A.,og(y « 1)=A, (y « 1)—A,Rp~ —1 ——, = ——, (71)

the first rhs viscosity term in (70) is the corresponding y-
independent collisional contribution to the damping rate.
Considering the low-frequency character of the excita-
tions, it is hardly surprising that the dispersive corrections
turn out to be wholly thermodynamic, a feature which is
not shared by the high-frequency electron plasmons in
bulk systems. Since the improved VAA (Ref. 14) is exact
at co=0, it is entirely justifiable to input (69) with correla-
tion energy density data which are assumed to be deter-
mined by computer or other experimental data or by an
independent theoretical approach. For example, Totsuji's
cluster expansion calculations ' '"' and Monte Carlo
simulations' "provide

13E,(y) =(y/2)[ln(2y)+0. 1544] for y «1,
PE, (y)= —0.79y' +0.65y'~ —0.38 for 1 &y &5X 10

= —1.12I +0.71r'~ —0.38 for 0.707&1 & 50 (I =pe v'mn=v. 'y/2),

(72)

(73)

whereas Lado's hypernetted-chain (HNC) calculations'
provide

PE, (I )= —1.0952I +0.9851 for I &30. (74)

S(p)=
P(dP/Bn )pp +kD

(75)

should suffice for y&2. Equations (72), (B8), (73), and

(75), when substituted into (69), result in the weak- and
strong-coupling-regime expressions

As to static structure function inputs, the Debye-Huckel
formula (B8) is appropriate for y « 1, while Lado's HNC
data' or the somewhat less accurate compressibility for-
mula

I

It is especially interesting to examine our fluid dispersion
formula (67) in the infinite coupling ( I —+ oo ) limit.
Strictly speaking, our theory can reach this limit only by
inputting (69) with the fluid HNC expression (74). The
resulting dispersion then saturates according to

R~(k ~0)
I r 1 0 1711 k

HNC
~~(k) . ('79)

If, on the other hand, one inputs (69) with the Crann-
Chakravarty-Chester solid phase Monte Carlo (MC)
correlation energy expression'

pE, (r) = —l. lo6r+ —+5 560

A, (y « 1)=1+0.351y —0.375y lny

5 kD
A,(I » l)=1+. 0.354 0.3685+ &3/4

(76)

Redo(k~o)
~
„„=1 —0. 1728

k

MC 1Tn
cop(k) . (81)

and then goes to the F~ oo limit, one obtains

k 1 5

v ~pg 2I 16
Oo 354
p3/4

0.3685
F -co~(k) .

(78)

(77)
Note that the contribution from the third rhs cluster term
in (69), while it is prominent for y values up to unity, be-
comes dominated at stronger coupling by the (—„f3E,)
third frequency-moment sum-rule contribution. Equa-
tions (67), (76), and (77) show how at low y values the
dispersion is controlled by k/kD and y, whereas at high y
values it is k/v'nnand I wh. ich control the dispersion,
V1z.
Redo(k~o)

~ r)))
Auid

Equations (79) and (81) are in excellent quantitative agree-
ment with both (i) the Bonsall-Maradudin longitudinal-
phonon dispersion formula@ '

R~(k~O) ~, ,~= 1 —O. 173
k

crystal 7Tlf
co~ ( k) (82)

for the 2D hexagonal /attice' in the long-wavelength limit
and (ii) the 2D OCP liquid-state dispersion data pertain-
ing to the longest wavelengths (k =0.425''em and
0 847 m'en) w. hich c.ould be realized in the Totsuji-Kakeya
simulations.

As the plasma parameter increases from just above
zero, A, decreases from its maximum value, A(y «1)=1,
to zero and then becomes negative. Equation (69), when
inputted with (73), predicts that this transition from
plasmonlike (A, & 0) to longitudinal-phonon-like (A, & 0)
dispersion will occur at I,„t=3.22. Our result compares
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g(r)= —g[S(q) —1]exp(iq r),1
(84)

somewhere in the range 2.2 & I &2.9.

VII. CONCLUSIONS

The twofold purpose of the present paper has been (i) to
formulate a self-consistent approximation scheme for the
calculation of the 2D OCP dynamical polarizability at
long wavelengths and arbitrary coupling and (ii) to calcu-
late the dispersion of the low-frequency plasma mode.

The principal building blocks to the construction of the
approximation scheme are the nonlinear fluctuation-
dissipation theorem'" ' and linearized equations for the
plasma density, fluid velocity, pressure tensor, and heat-
Aow tensor moments. Equilibrium three-point correla-
tions, quadratic polarizability response functions, and the
Navier-Stokes hypothesis linking the pressure tensor to its
trace are all central elements in the development of the
theory. The polarizability calculations of this paper can
be best stated in terms of the simple relation

a(k, co;y)=a(k, cp;y «1)[1+U(k,co)], (85)

where the dynamical coupling correction U (k, co) contains
all the y-dependent correlational contributions. Else-
where, ' ' in a treatment of bulk OCP's, it was shown that
the 3D version of (85) has the static (co=0) counterpart

a(k, O;y) =ap(k, O)[1+U (k, O)] (86)

which turns out to be identical to the exact second .
BBGKY static equation linking the equilibrium pair and
ternary correlation functions. ' ' ' ' As one might expect,
Eq. (86) with

kD
ap(k, O) =

k

and [cf. (56)]

«D 1 + k p a(p, O;k —p, O)

k K kp e(p, O)e(k —p, O)
(88)

is also the exact static counterpart of (85) in two dimen-
sions. This further attests to the universality of (85) over
the entire frequency domain. At frequencies large com-
pared with the collision frequency, compressions are
necessarily one dimensional and a{k,co »v;y « 1) is

favorably both with the Totsuji-Kakeya simulations
which predict the occurrence of the X=O boundary just
beyond I"=2.29 and with Baus's I,„,=3.55 which we
have calculated by inputting his dispersion formula

Redo(k —&0)
~ B,„,—— 1+ c, p ap

(83)
c~ 2 Bpl p kD

with the same correlation energy density formula (73).'

This transition from "positive" to "negative" dispersion
which, incidentally, is observed in bulk OCP's as well, is
inextricably linked to the onset of a liquid-state short-
range order signaled by the development of oscillations in
the equilibrium pair correlation function, ' ""

identified as the Vlasov polarizability (36); U(ken), when
evaluated at m ~~v, simplifies to the known exact correla-
tional contribution (42) to the third frequency-moment
sum rule; consequently, our expressions (44) and (45) for
Rea(k, co»v;y) are exact through 0[co~(k)lco"]. In the
lower-frequency band ku, h «co « v characterizing the
long-wavelength hydrodynamic regime, the compressions
are two dimensional and a(k, co;y « 1) is identified as the
hydrodynamic polarizability (53); the conversion of
U (k, co) from its three-point structure function representa-
tion (39) to quadratic polarizability representation (56) is
effected by application of the NLFDT (55). Thus, Eqs.
(54) and (56) combine into a compact and elegant
response-function relation linking the linear and quadratic
polarizabilities. Self-consistency is then guaranteed by
postulating that a decomposition of the latter in terms of
the former, which prevails in the k~O limit for weak
coupling, can be relied upon as a paradigm for arbitrary
coupling. The resulting nonlinear integral equation for
the dynamical polarizability [Eqs. (54) and (59)] we now
propose to be valid at long wavelengths and arbitrary y
values.

We have analyzed Eqs. (54) and (59) near co=co~(k) to
determine the structure of the long-wavelength surface
plasmons. Equations (67)—(70) describe the dispersion
and damping over the range of coupling strengths span-
ning the entire fluid regime. Considering the low-
frequency character of the excitations, it is hardly surpris-
ing that the y-dependent dispersive corrections turn out to
be wholly thermodynamic, a feature which is not shared
by high-frequency electron plasma modes in bulk systems.
Our formula (69) for the dispersive coefficient A, , when in-
putted with Totsuji's correlation energy density expression
(73),' " predicts that the transition from plasmonlike
(A, &0) to longitudinal-phonon-like (A, &0) dispersion will
occur at V,„,=3.22. This compares reasonably well both
with the Totsuji-Kakeya MD simulations which predict
the occurrence of the A, =0 boundary just beyond I =2.29
and with Baus's I,„,=3.55 which we have calculated by
inputting his dispersion formula with the same Totsuji
correlation energy density formula (73). The transition
from positive to negative dispersion which, incidentally, is
observed in bulk OCP's as well, is inextricably linked to
the onset of a "liquid-state" short-range order signaled by
the development of oscillations in the equilibrium pair
correlation function' "' somewhere in the range
2.2&1 &2.9. Finally, in the infinite coupling (I —+co)
limit, our dispersion formulas (79) and (81) very nearly
reproduce the zero-temperature 8onsall-Maradudin
longitudinal-phonon formula (82) for the two-dimensional
hexagonal lattice. ' ' This suggests that it is the correla-
tional contribution (42) to the third frequency-moment
sum rule which controls the long-wavelength dispersion of
2D QCP longitudinal-phonon excitations.
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APPENDIX A. 2D OCP PRESSURE TENSOR

co&
(k)

p„(k,co)= — [1+u(k co,)]n(k co,)
CO

2 k+ XN(q)qt &j t„,n, &(~)+
q

(A2)

pit«, ~)= g4(q)[qt &Jt„n, &(~)+e(jt„n,&(~)1
1

~,'(k) 1 q,—g —(n~ n )(co) .
pco' X q

q&k

(A3)

To see that ptt(k, co)=0, we observe that the equilibrium
ternary correlation

(j, (t =0)n~(t =0)n k(t))' '

changes sign under the transuerse spatial inversion

q, ~—q, ; consequently,

gt))(q)qt(j, „nz,+~ )(co)
q

From Eqs. (30) and (31), the longitudinal (1: in the
direction of k) and transverse (t: perpendicular to k) ele-
ments of the pressure are calculated to be

3 co~(k)
ptt(k co) = [1+u(k co)]n(k, co)

p ~2

2 2

+ g gf(q)ql &jl„nq )(co)+ rim(k ~)
673 CO

g —'(nj, n )(co)=O,

q&k

(A6)

as well. Momentum conservation [cf. (18)] then requires

ut(k, co) = k
pit (k, co ) =0,

mn co
(A7)

i.e., collisions do not lead to a net gain or loss of total
(longitudinal + transverse) energy; they affect only ex-
change in energy between longitudinal and transverse de-
grees of freedom of the particle motions. In light of (A8),
Eqs. (Al) and (A2) can be restated in the forms

3 co~(k)
ptI(k, co) = — [1+u!k,co)]n(k, co)

1 &D k'
w(kco)n, (kco)+ re�(k,co),

CO

co&
(k)

p„(k,co) = —
2 [1+u(k,co)]n(k, co)

(A9)

w (k, co)n(kco)+ rtttt(k&co) .
P k

(A10)

The collision exchange term (1/p)(kD/k)w(k, co)n(k, co)

evidently tends to reduce the numerical coefficient of the
first rhs member of (A9) from 3 to 2 while at the same
time raising from 1 to 2 the corresponding numerical
coefficient in (A10). The hydrostatic pressure is accord-
ingly given by

p(k, ~)= &[pit(k, ~)+p««~)l
2 cop(k)

[1+u(k, co)]n(k, co)

consistent with the fact that symmetry considerations pre-
clude any possibility of a nonzero average transverse fluid
velocity response to a longitudinal perturbation.

Turning next to Eqs. (Al) and (A2), the tendency for ptt
and p« to equilibrate is a direct consequence of the fact
that

(A8)

q
qr k+ '

2 [rjltl(k&co) +rttll(k&~)]
2N

(Al 1)

whence

gt(t(q)qt (jt„n~ )(co)=0 .
q

On the other hand, the fact that the correlations

(jt (t =0)n~(t=0)n k(t))' ',
(nq ~(t =0)n~(t =0)n q(t))' '

do not change sign under q, —+ —q, inversion guarantees
that

APPENDIX 8: DYNAMICAL COUPLING FUNCTION

In this appendix we evaluate the dynamical coupling
function

udge„( k —+0,co )

k —g J dV& (S )~(p i )~(p ~—S»
8 ~2 ka N

y(((q)q, &j„,&( )=0,
q

(A5)
at co =co~(k). To facilitate the calculation, the function



1774 KENNETH I. GOLDEN AND DE-xin LU 31

H(p, ~)=f dp5 (p)a(p, p)a(p, ~—p) (82)

H(p, ~o)= —Pf ~ a "(p,p)a(p, co —p) .dp ~„
'7T oo p

(83)

Both Eq. (83) and the useful Hilbert transform

is first of all put into the somewhat more tractable form

a(p, O)a'(p, co)= ——P f a (P P)a(P ~—oo CO —p
(84)

are derived from (82) by exploiting the fact that

a(p, p) =a '(p, p)+ia "(pp) —=a*(p,p)+2ia "(p,p)
plus function and therefore a*(p,p) as well as a(p, co —p)
are minus functions of p.

We next observe that for co~(k) small,

H(p, co&(k))=ReH(p, O)+iso~(k) ImP(p, co)
Bco . co=0

+ —,
'

co~(k) z ReH(p, co)
Bco

+ 4 ~ ~

icop(k) m dp g cop(k)=—,'a'(p, O)+ Pf a "'(p,p)+ P f a "(pjM), a'(p, p)+ .
2' —~ p Bp 2& —~ p Qp

(85)

Imud~„(k~O, co&(k))

kkD ~ dp
cg (k) f S (p,p)&0.32K pP

(87)

Equation (86) provides an O(k) correlational correction
to the dispersion of the low-frequency plasma mode while

(87) provides an O(k ) correction to the damping. The
dispersive correction turns out to be especially prominent
in the weak-coupling regime for y values up to unity.

For y «1, (86) and (87) can be analytically evaluated
when inputted with the RPA structure functions

whence from (Bl) and the linear fluctuation-dissipation
theorem, one obtains to lowest order in k

kkD
Reud„„(k~O, co~(k))= —g— 2

S (p) &0,
16 X

Imvdy„(k~O, cop(k))
I r((,

7 k
3/2

16 kD
L

~dx ~ dp 1
'V

X ~Q E'0 X,P

X exp p
C00X

(812)

Imvd„„(k~O, co&(k))
I z

)ei =1
3/2

16 kD
f~d xf~dp p,

1 X 3 0 ~0 ~~2

is quite straightforward when screening effects are entire-
ly ignored, for then

So(x)= 1+x
7 k ~k

32 kD
(813)

~2~
So(x,p) = exp

x~o
I
e (p,p) I

p
2ctl0X

(89)

Note that the p;„=kD lower lImit has been imposed on
the x integration to compensate for the removal of the
screening. Should the screening be fully retained, then the
subsequently more involved calculations lead to

where

P(P) d2 P BF' '(u)/Bv
eo p~p =1+ V

fn p —pv
(810)

25e-'
y — + —,erf(1)

6

Imvdy„(k~0, cop(k))
I r(()

7 k -k '"
16 kD kD

and x =p/kD. Equation (86) readily integrates to + —,
' Ierf[(kz/k)'~ ]

Reud„„(k 0, co (k))
I )—— y(lny ' —1)

16 kD

(811)
—erf(1) I (814)

with the understanding that the summation in (86) is to
be cut off at p,„=1/(Pe ) =kD/y in order to avoid the
unphysical logarithmic divergence arising, most likely,
from the inherent RPA character of (86) (see Sec. V).
Note that for. y values above unity, the cutoff
p,„=(mn)' » I/(13e ) is more appropriate.

The evaluation of (87) at y « 1 or, equivalently, of

' 1/2
(k 0 (k))

I 16k k y, (815)

where

Equations (813) and (814) can be stated in the more com-
pact form
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=0.5,
screening

~ screening = 1 0

(816)

(817)

depending on kD/k in the range 1&(kD/k) & oo. To

summarize: (86) and (87) provide O(k) and O(k )
correlational corrections to the dispersion and damping of
the long-wavelength plasmon modes at arbitrary coupling;
(811) and (815) provide the corresponding corrections in
the weak-coupling limit.
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South Wales, Kensington, New South Wales 2033, Australia.
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