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Relativistic modulational instability of an electromagnetic wave in a magnetized plasma
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The relativistic modulational instability of an intense circularly polarized electromagnetic wave

propagating along an external magnetic field in a plasma is investigated. The method of investiga-
tion is based on the derivation of a nonlinear Schrodinger equation. The effect of the external mag-
netic field is to diminish the modulational instability of the circularly polarized wave. Actually, the
modulational instability can be completely eliminated if the external magnetic field is sufficiently
strong.

I. INTRODUCTION

Nonlinear interaction of very intense laser pulses with
plasma is of great interest in laboratory plasmas. At very
high laser intensities of current interest, the directed velo-
city of the electrons become relativistic. The consequent
electron-mass variation can lead to modulational instabili-
ty of electromagnetic waves propagating through the plas-
ma (Max, Arons, and Langdon'). The latter enables the
incident laser pulse to propagate into denser regions of the
plasma, and therefore, plays an important role in transfer-
ring the laser energy to the plasma. The usual
ponderomotive-force driven modulational instabilities
(Drake et al. and Kaw, Schmidt, and Wilcox ) involving
ion motions occur with characteristic frequencies

~
co~ (co». However, the relativistic modulational insta-

l

bility arising with high laser intensities involves only elec-
tron motions. This is because this instability can grow so
quickly in time that ion inertia prevents the ions from fol-
lowing along.

Experiments of Stamper et al. and some others
showed that intense spontaneously generated magnetic
fields are present in laser-produced plasmas. Therefore,
some studies have been made of the laser interaction in a
magnetized plasma (Aliev and Kuznetsov, Berezhiani,
Paverman, and Tskhakaya, and Rao, Shukla, and Yu ).
We investigate here the modulational instability of an in-
tense circularly polarized electromagnetic wave propaga-
ting along a constant external magnetic field in the plas-
ma. The method of investigation is different from the one
used by Max et al. ,

' and is based on the derivation of a
nonlinear Schrodinger equation.

II. GOVERNINCr EQUATIONS

Consider the propagation of an intense circularly polar-
ized electromagnetic wave of frequency cop and wave num-
ber kp in a plasma subjected to a state external magnetic
field Bp. In the modulational interaction problem the
plasma response is two-pronged: the high-frequency
motion of the electrons in the wave field, and the low-
frequency motion caused by the ponderomotive force ex-
erted by the self-interaction of the wave. The relativistic
modulational processes that occur in cases involving high
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where n is the number density, V is the velocity of the
fluid, c is the speed of light,

mpV

(l —V /c )'~

mp is the rest mass of an electron, and np is the unper-
turbed number density. Let us introduce the scalar and
vector potentials P and A to describe the wave fields E
and B:

B=Vx A, E= —VP ——1 BA
c Bt

P turns out to be the low-frequency ambipolar potential.
Let us consider a left-hand circularly polarized wave

given by

A=A (z, t)(i, ii» )cos8, —0=koz coot—
to propagate along Bp——Bpi„with the linear wave propa-
gation relation
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laser intensities occur at a rate too rapid for the ions to
participate in them. Therefore, we consider the ions to
remain immobile and to form a neutralizing background,
and consider only the electron response. Further, we shall
neglect the thermal motion of the electrons in comparison
with the directed motion. We then have the following
equations governing the motion of the electron fluid:

Bn +V.(nU) =0,
at
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where
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where

Using (7) and (8), Eq. (2) can be written as
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from which it follows that (Aliev et al. , and Rao et al. )
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Equations (17)—(20) give
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Using (16), (21), and (22), Eq. (15) becomes
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Next, assuming that p /mpc && 1, we obtain from (12),
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III. NONLINEAR SCHRODINGER EQUATION

We obtain from Eqs. (3), (4), and (6) the wave equation

8 A —c V A= —4mnecV .
Bt

(14)

Using (9) and (10) and noting that A(Z, t) is a slowly-
varying function of Z and t, we obtain from Eq. (14),

and Eq. (13) has been obtained by ignoring the electron
momentum in the wave propagation direction in the low-
frequency plasma response.

For the case of an unmagnetized plasma (with a=0, Eq.
(23) can be seen to arise through the familiar nonlinear
frequency shift due to the relativistic effects (Sluijter and
Montgomery ).

Upon transferring to a frame moving with speed
kpc /cop, Eq. (23) reduces to the standard form of the
nonlinear Schrodinger equation (Hasegawa ):

BA BA ~6'
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IV. MODULATIONAL INSTABILITY

Here,

n =np+5n (16)

and the density perturbation 5n can be calculated from
the dynamics of the plasma motion parallel to the wave
propagation direction,

In order to investigate stability with respect to low-
frequency modulation, let us rewrite Eq. (25) as follows:
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dt 2cop ~g 4cop

and set (Hasegawa )
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and linearize in P &,o &, and consider
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so that the modulational instability arises if
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The maximum growth rate is given by
2 2
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Equations (30) and (31) show that the larger the exter-
nal magnetic field (so that q will be smaller) the larger
will be the threshold value for the wave intensity to cause
modulational instability, and the smaller will be the max-
imum growth rate. Actually, if the external magnetic
field is sufficiently strong (so that q (0), the modulation-
al instability will not arise at all!

Physically this can be understood as follows. The

modulational instability arises because the group velocity
of the wave increases in the direction of the increasing
wave field intensity so that there is an energy transport
from the region of small field intensity to the region of
large field intensity. It is seen that the effect of an exter-
nal magnetic field is to diminish this trend and even re-
verse it if sufficiently strong.

The results corresponding to the right circularly polar-
ized wave can be obtained simply by letting a be negative.
Because of possible gyroresonance, however, the validity
of the fluid model becomes then questionable (Dimonte,
Lamb, and Morales' ).
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