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Geometrical models of interface evolution. III. Theory of dendritic growth
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We construct a theory of velocity selection and tip stability for dendritic growth in the local evolu-

tion model. We show that the growth rate of dendritic patterns is determined by a nonlinear solva-

bility condition for a translating finger. The sidebranching instability is related to a single discrete
oscillatory mode about the selected velocity solution, and the existence of a critical anisotropy is

shown to be due to the zero crossing of its growth rate. The marginal-stability hypothesis cannot
predict the correct dynamics of this model system. We give heuristic arguments that the same ideas
will apply to dendritic growth in the full diffusion system.

I. INTRODUCTION

In a previous series of papers' (hereafter referred to as
I and II) we have constructed a local geometrical evolu-
tion model for the process of dendritic crystal growth.
This model assumes that the interface x(s) between the
growing solid and the supercooled melt satisfies the equa-
tion

dx K2
n = tc+Atc B~ + [—1+icos(m8)],

dt dS

where n is the curve normal making an angle 0 with the y
axis, s is the arclength, tc=d0/ds is the curvature, and A
and B are parameters representing the undercooling and
minimum bubble size, respectively. The term proportion-
al to e is due to crystal anisotropy, reflecting enhanced
growth along the m-fold symmetry axes. In this paper we
wi11 restrict ourselves to m =4, but we have seen in II
that the results do not change qualitatively with m. For a
detailed discussion of (1), see Refs. 1 and 2.

Let us briefly review the phenomenology of Eq. (1) as it
relates to dendritic growth. By a dendrite we mean a
moving tip which exhibits oscillatory behavior connected
to the emission of sidebranches, which in turn behave as
new dendritic tips. A typical example of this type of
growth is depicted in Fig. 1. In II we demonstrated that
this model gives rise to stable dendritic growth if and only
if the anisotropy e is greater than a critical anisotropy E',

depending on A, B, and m, but not on the initial condi-
tions. We discussed how the "marginal-stability hy-
pothesis" of Langer and Muller-Krumbhaar was in con-
tradiction with our results and concluded that further
theoretical understanding of dendritic growth was re-
quired.

The purpose of this paper is to present a new and
comprehensive approach to the velocity selection and tip-
stability problems in this type of system. We will show
that the continuous family of steady-state solutions with
arbitrary velocity present in the absence of surface tension

breaks down to a discrete set of solutions, each with a
unique velocity. (A similar behavior was discovered in a
related context by McLean and Saffman, and Vanden-
Broeck. This will be discussed later. ) The largest of
these velocities is most likely to give rise to stable growth
(because it can, so to speak, outrun instabilities) and it
therefore is dynamically "selected. " Whether or not this
solution is indeed stable is then answered by a study of the
eigenvalue spectrum of the linear-stability operator. As e
crosses from below e, (A,B, m)to above, the real part of
the leading discrete complex eigenvalue becomes negative,
signifying tip stability in the moving frame of reference.

The major question raised by our work is how applic-
able our results are to more realistic solidification models
incorporating global diffusion-driven dynamics. We be-
lieve that there is an excellent chance that our selection
mechanism directly carries over to these other systems, so

50

40-

30-

20—

10—

—20—

—30-
—40—
—50

-50 -40 -30 -20 -10 0 10 20 30 40 50

X

FIG. 1. Example of dendritic growth in the local evolution
model (A =4.0, B=1.5, m=0. 15).
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that the marginal-stability hypothesis would not apply to
these cases. It would remain valid for the description of
certain one space-dimensional partial differential equa-
tions, and perhaps in other contexts as well. In the last
section of this paper we present our reasons for believing
this to be the case. We are currently attacking this prob-
lem by a combination of numerical and analytical
methods and hope to report on this subject in the near fu-
ture.

II. STEADY-STATE SOLUTIONS

In I we discussed how our local model, in the absence
of the d a/ds "surface-tension" term, exhibited a con-
tinuous family of steady-state dendritic solutions corre-
sponding to arbitrary tip velocities. To see this, note that
n.dx= Vcos8 for any uniformly translating solution.
Equation (1) then reduces to a third-order algebraic equa-
tion for lr=d8/ds. We can integrate this equation from
s =0, 8=0; a.(0) is determined algebraically and v'(0)
equals zero automatically, For large arclength, the solu-
tion approaches

VcosO
1+6' (2)

which integrates to the asymptotic shape

y =p ln cos(x/p), (3)

dP Vcos8 2 3—K —AK +8K
ds 1+e cos(m 8)

There is a fixed point at 8=m/2, ~=P=O, which the
solution should approach for large s. Linearizing about
this fixed point and assuming that the variables behave as
e ~, we find the eigenvalue equation V/(1+a) =a+a .
One root is real and positive, corresponding to the ex-
ponential approach to the fixed point. To find the other
roots, if we let cz =a,

+ibex;,

then

O=a;+a;(3a„—a; ), = —2a„(1+4a„).1+6
These roots are complex conjugate and, since a„&0, they
correspond to eigenvectors which exponentially diverge
going down the dendrite. Thus, the requirement that K, 8,
and P approach the fixed point determines a unique tra-
jectory, all the way back to 0=0, which we hereafter label
as s =0. One therefore expects, in general, that

where p=(1+@)/V. The dendrite approaches the fixed
point 8=m/2 exponentially, regardless of the value of the
velocity. This family of solutions is the model's analog of
the Ivantsov needle crystal.

When we include the surface-tension term d ~/ds, we
argued in I that, in general, there would be no steady-state
solution at arbitrary V. This comes about because of an
incompatibility of the condition a (0)=0 with the re-
quired approach to the 8=a/2 fixed point. Defining
P=dv/ds, the evolution equation can be written as the
autonomous system

d~ d8
ds ds
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FIG. 2. I3(0) as a function of velocity for steady-state solu-
tions.

P(0) =Ir'(0)&0 and so a well-behaved symmetric dendrite
does not exist. In I we showed that for A=B=e=O
there were in fact no solutions of the steady-state equa-
tion.

To further investigate the issue of steady-state solu-
tions, we picked initial conditions such that we sat exactly
on the converging eigenvector in the near vicinity of the
fixed point (i.e., Ir=10 ' ). We then integrated backward
in s 'until 8 equalled zero, and determined P. If /3 crosses
zero as the velocity is varied, we can identify a discrete set
of possible velocities for uniformly translating shapes. A
typical plot of P( V) is shown in Fig. 2. Notice that there
is, in general, a discrete set of solutions culminating in a
maximal velocity solution V*. As we will discuss later,
increasing V always corresponds to increased stability; V
is thus the most stable (but not necessarily stable) steady-
state dendrite.

In Fig. 3 we plot V" as a function of A for fixed B and
e, e for fixed A and B, and B for fixed A and e. This
graph is consistent with the idea that 3 represents the un-
dercooling. The larger the undercooling, the larger V'.
In fact, for B=@=0, V ~0 as 2 ~0. This is consistent
with the aforementioned absence of solutions in the spe-
cial case considered in I.

The key fact we wish to state in this section is that V"
is exactly equal to the average tip velocity as given by our
numerical simulations in II. We have checked this for a
wide variety of cases involving variations of all parame-
ters A, 8, and e. The velocity-selection mechanism in this
system is thus simply the solvability condition for the
steady-state equation. The maximal velocity is selected
due to its being the most stable with respect to tip-
splitting perturbations. We will see this in detail in Sec.
III.

Our results are in direct contrast to those predicted by
the marginal-stability hypothesis as it is usually applied to
dendrite-forming systems. In this approach the system
"chooses" a velocity such that the steady-state solution is
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marginally stable to small perturbations. In our theory
stability is only of concern once the velocity has been
determined by a nonlinear eigenvalue constraint. Our sys-
tem can and does operate away from the marginally stable
point. Our analysis does, however, bear some resemblance
to the ideas which underlie the work of Aronson and
Weinberger. In particular, we use a discrete "maximum-
velocity" principle, whereas previous work used a continu-
ous version of that idea. We will later present evidence
that our version stands a better chance of carrying over to
more complete solutions of the dendrite problem.

III. STABILITY ANALYSIS
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In II we showed that dendritic growth would be stable
only for E&e, In p. articular, we plotted the tip velocity
as a function of time and followed the change from grow-
ing to decaying oscillations as the anisotropy was in-
creased. We now show that our solvability mechanism for
velocity selection can also explain these results.

Let us assume that the curve x(s) is given by a small
perturbation around the steady-state solution
x=xp+n5(s). It is easy to see that to linear order,
6=Op —5', Ic =Icp —5"—Icp5 (where the Prime means
dldsp). Substituting these expressions into (I), we derive
the linear-stability equation
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with U(Ic)=Ic+AIc —BIc . We now look for solutions of
the form 5k(t)-e "5k(s). Stable dendrites require
Recpk & 0 for all eigenvalues k.

Fourth-order stability equations are a common feature
of boundary-layer problems in fluid mechanics, and our
approach to this equation will be modeled on the work of
Mack on the Orr-Sommerfeld equation. In such situa-
tions there can occur both discrete and continuous eigen-
value spectra, corresponding to different ways in which
the eigenfunctions 5 can satisfy the boundary conditions
imposed on the perturbation. We will see shortly how this
works in our case.

Let us consider the asymptotic (i.e., large s) form of Eq.
(4), which can be written in the form

Q)5 gappy gag V sln8
gg

1+@ 1+a
where sinO= + 1 depending on which side of the tip we are
on. Assuming 5-e~', we find the asymptotic dispersion
relation

0
0.00 1.50 2.00 2.50 3,00 2 Vq+1+6' 1+E

FIG. 3. Maximal velocity V" as a function of (a) 3 at
B=1.5 and @=0.15, (b) e at fixed A =4.0 and 8 =0.0, and (c)
8 at fixed A =4.0 and @=0.15.

We label the four roots in decreasing order of their real
parts and try to form a solution which satisfies two (arbi-
trary) boundary conditions at s= L(~—oo). To do—
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numerical integration of (1), and the dots are the sum of the
steady-state shape (2) and the leading linear perturbation mode.
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speculate that this is always the case, that it is impossible
for a secondary solution to be even approximately stable.
If not, a system might in general be able to support
several different modes of dendritic growth, the selection
in a given case depending on the initial conditions.

We conclude this section with a comparison in Fig. 6 of
a curvature plot generated by our numerical simulation
program described in II, with a steady-state shape plus a
linear perturbation approximated by its asymptotic form.
We fix the complex amplitude of the perturbation by
matching the first curvature minimum. Even with this
rather crude approximation for the eigenvector, the sys-
tem is clearly being described properly by our analysis. It
is quite clear, for example, how the experimentally
measurable sidebranch spacings are determined by the
wave vector Imq2. At very large values of s, additional
nonlinearities must be taken into account for a full
description of the sidebranch dynamics.

IV. DISCUSSION

even for stable (Rno* ~0) tip oscillations. This predicts
that in the laboratory fvame sidebranches continue to
grow even as the tip velocity spirals down to a constant
value (while in the reference frame of the moving tip they
are left behind). Although the velocity is selected by con-
vergence onto the steady-state solution, the asymptotic
shape always contains an infinite train of side branches.
This behavior does not quite correspond to that observed
in dendritic crystals, however, where sidebranching al-
ways exhibits neutral stability in the tip frame remaining
a constant distance behind the tip.

In the cases we have investigated so far, all of the solu-
tions with the exception of V" have velocities which lie
well below the stability point Rendu' =0. It is reasonable to

Let us summarize our findings. We have shown how
the detailed phenomenology of dendritic growth in the lo-
cal, geometrical evolution model can be understood as
originating from a solvability condition selecting a
discrete velocity and a discrete eigenmode around this
velocity controlling the stability of the solution. In conse-
quence, there is a critical anisotropy required to maintain
stable dendritic growth. These findings represent a major
success for the idea of using simplified models for growth
processes. Because of the tractability of our equations, we
have been able to propose a new approach to analyzing
the dendritic growth patterns of our model.

We would now like to argue that a similar scenario
should be valid for true diffusion-controlled evolution: an
interface coupled to a temperature field satisfying the dif-
fusion equation and the Cxibbs-Thompson boundary con-
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dition TI ——TM(1 —doe), where TM is the melting tem-
perature and do is the capillary length. Our prediction is
that the velocity is selected by the breakdown of the
Ivantsov family of steady-state solutions, under the in-
clusion of surface tension, to a set of discrete solutions.
The repeated sidebranching about a stable tip observed ex-
perimentally would be attributed to a new discrete eigen-
mode of the linear-stability operator. The stability of the
tip with respect to splitting may require a critical aniso-
tropy, depending on the magnitude of the dimensionless
undercooling or Peclet number. (Note, however, that the
detailed sidebranch behavior in the supercritical case does
not entirely correspond to that found in our local model. )

We know of no experimental data that could not, in prin-
ciple, be explained by this type of approach.

In Ref. 10 we showed that the usual demonstrations
that the Ivantsov solution could be extended to include
nonzero surface tension were in fact inadequate to answer
the question. The approach used there is reminiscent of
the situation here: the equation near the tip cannot in
general be integrated to have the proper approach to the
zero-curvature fixed point. This fact is highly suggestive
of the emergence of a solvability condition. A further in-
dication of the universality of this behavior is afforded by
the boundary-layer model of Ben-Jacob et al. " An
analysis similar to the one performed in Sec. II can be
used to show that there exists a discrete set of steady-state
solutions, ' although numerical simulations of this model
have not advanced to the stage where they could be used
to test our theory. Note that there is one aspect of dendri-
tic growth that is reproduced more accurately by this type
of boundary-layer model than by the local geometrical
model studied here. The dendritic solution here ap-
proaches its asymptotic shape exponentially as opposed to
the power-law behavior expected for the true Ivantsov
problem and the boundary-layer model. The fact that this
type of solvability constraint is also valid for the

boundary-layer system, "' as well as our earlier remarks
regarding the breakdown of the Ivantsov solution, lead us
to expect that this difference is not crucial for the selec-
tion mechanism.

Another pattern-selection problem with strong similari-
ties to dendritic growth is Saffman-Taylor fingering. ' In
that problem, when one fluid displaces a more viscous one
in a narrow gap between parallel plates or a porous medi-
um, one finds in laboratory or numerical' experiments
that the displacing fluid eventually forms a single finger
which advances with constant velocity. Theoretically,
there exists an infinite family of solutions which breaks
down to a discrete set when surface tension is included.
Recent calculations' have shown that the velocity is
determined by a solvability condition and again, the
phenomenology is quite similar to what occurs in the
geometrical model.

Finally, we would like to discuss some recent numerical
simulations of the diffusion equation in the zero Peclet-
number limit. ' The early time evolution of the system
has a finite-sized dendrite, and aside from a slow decrease
in the tip velocity with time, ' the system should behave
as a standard crystal growth system. The fact that the
system did not operate at a "marginally stable point, "but
instead underwent a transition from unstable to stable
sidebranch emission as the amount of anisotropy varied, is
further evidence for the validity of the mechanism we
propose here.
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