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Low-frequency electric microfield distributions in plasmas
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We evaluate the low-frequency component electric microfield distribution at a charged point, i.e.,
the field distribution due to ions, possibly of different species, which interact through an electron-
screened potential. The method employed is an adaptation of the adjustable-parameter exponential
(APEX) approximation previously developed for the high-frequency component and involves a
noninteracting-quasiparticle representation of the electron-screened ions designed to yield the correct
second moment of the microfield distribution. The APEX results are compared to Monte Carlo
simulations, and we find good agreement.

I. INTRODUCTION

The profiles of spectral lines emitted by atoms and ions
immersed in a plasma provide diagnostic tools for infer-
ring the state of plasma. ' For a wide class of spectral
lines, the observed frequencies (measured from line center)
are sufficiently large that the ions in the plasma are effec-
tively stationary over the corresponding radiation times.
Consequently, the perturbing ions may be treated by the
statistical broadening theories of Holtsmark and Mar-
genau. The basic picture in this theory is that the radia-
tor finds itself in a statistically fluctuating electric field
produced by the configurations of the perturbing ions.
Thus, the problem is reduced to determining the probabil-
ity distribution of the perturbing electric field.

Recently a method was proposed for calculating electric
microfield distributions which provides numerical results
in excellent agreement with computer simulations for
strongly coupled plasmas. In these works the plasma
consisted of point charges moving in a uniform neutraliz-
ing background which models the high-frequency com-
ponent of the field. ' However, spectral line calculations
primarily require the so-called low-frequency component
distribution. The latter is approximately determined by
considering a gas of ions interacting through electron
screened potentials. The electron screening of the ions is a
way to incorporate into the statistical broadening theory
the total static electric field at the radiator due to the plas-
ma that is, it includes static contributions from both
ions and electrons.

The objective of this note is to extend the "adjustable-
parameter exponential" (APEX) approximation to the
low-frequency component microfield distribution in ion
mixtures. The model for the low-frequency component
distribution is described in Sec. II, followed by a state-
ment of the second-moment condition. The necessary
modifications of APEX are presented in Sec. III. Numer-

ical results are compared with Monte Carlo simulations
and other approximate theories in Sec. IV. Concluding
remarks are given in Sec. V.

II. LOW-FREQUENCY COMPONENT

We consider the electric microfield distribution 8'(e),
defined as the probability density of finding a field E
equal to e at an ion of charge Zpe, located at rp, due to an
ionic mixture where ions of species o. carry a charge Z e.
Here, e is the magnitude of the elementary charge and Zp
and all the Z 's are positive. As usual, ' we assume that
the electron screening is described by a Debye-Hiickel for-
mula. " This can be justified only for plasma conditions
such that the electron-electron and electron-ion coupling
are both weak and the plasma may be described by classi-
cal mechanics. ' For situations where these conditions are
not met, more realistic screened potentials have been pro-
posed in recent papers by Rogers' and Dharma-%ardana,
e~ al. '4

The system is assumed to be described by classical
equilibrium statistical mechanics with temperature T and
number densities p,

I

p =N /0 and N = g N (2.1)

where N is the number of ions of species a', N the total
number of ions, and Q the total volume. We have then, in
the limit of a macroscopic system,

e —Pvg(& E)
drp drj, 22

where Q ( IN I,Q, T) is the configurational partition
function, rj the position of the jth ion, and P=(k~T)
For notational convenience the thermodynamic limit, i.e.,
I N I and 0 tend to infinity with Ip I fixed, has not been
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Vo+ Vp (2.3)

explicitly specified. The potential energy V is given by (E E) =(Z«e'g) ' «'V« —4«Z«e' g Z 5(r« —r, ))j=1

where Vp describes the interaction between the ionic mix-
ture and the charge at rp,

ZpZ 8
Vo —g '

exp( —~Iro —r, I), (2.4)
j=~ Iro —r, I

0
QZ~P g (x),

where

P~(~) =~ dr rg (r)exp( Irr)—
0

(2.13)

(2.14)

Vp describes the interaction between the ions in the mix-
ture

Z~Z~ 8
exp( —~Ir; —r, I ),

f «j(z I rt —rj
(2.5)

and o.j denotes the species of the jth ion. The quantit&y ~
appearing in Eqs. (2.4) and (2.5) is the inverse Debye
length for electrons

~ =4me Pp, (2.6)

with p, the electron number density. The total system is
required to be neutral so that

pe g Z~pe . (2.7)

The electron-screened ion electric field at ro is given by

E= g Z ef(
I
ro —rj I

)(r. o—rJ) I ro —rJ Ij=1
where

1f(r) = ( I+~r )exp( ~r ) . —
p

2

(2.8)

(2.9)

P(e) =4~e W(e) = I dk ksin(ke)T(k), (2.10)

where

T(k) = (exp(E'k. E) ) . (2.1 1)

We now consider the second moment of the distribution
W(e). For the high-frequency component, the second
moment is given explicitly by a simple expression in-

volving the charges, temperature, and set of densities

Ip~ I. Unfortunately, no such simple result holds for the
low-frequency component. Instead, the second moment
may be determined from the radial distribution functions
which themselves are only known approximately but are
much easier to calculate than W(e).

Following the procedure in Ref. 4, we write

It is convenient to introduce the Fourier transform of
the distribution 8'(e). In the thermodynamic limit the
system is isotropic, so that after setting e=

I
e I,

lim P (~)= 1+0 (x ),
sc—+0

(2.15)

and therefore, Eq. (2.13) reduces to the high-frequency re-
sult ' in the limit of no screening.

III. MODIFICATIONS OF APEX

The method presented in this section is based on the
APEX formalism developed in Refs. 4 and 5. We indi-
cate the modifications necessary to apply that theory to
the low-frequency component distribution.

The original formulation of APEX involved replacing
a one-component plasma by a system of noninteracting
quasiparticle, each producing a parametrized electric field
at the charge Zpe. The quasiparticles had a distribution
about ro, which was different from that of the fully in-

teracting point charges, and was determined by satisfying
a "local-field constraint": The field produced at rp by the
quasiparticles contained in a volume element dr located at
r must be equal to the field produced by the interacting
point charges contained in the same dr for all r.

The extension of APEX to ionic mixtures with bare
Coulomb interactions in a uniform neutralizing back-
ground introduced a parameter set Ia J (one parameter
per species) characterizing the quasiparticle fields. In or-
der to solve for the t a I and the quasiparticle distribution
about rp, it was assumed that both the second-moment
sum rule and local-field constraint were valid species by

0.6

0.4

0.2

and g (r) denotes the distribution of ions of species cr a
distance r from the charge Zoe. In obtaining Eq. (2.13)
we used the fact that the delta functions only contribute
when the positions of the two particles coincide, which
has zero probability. We remark that the expression in
Eq. (2.13) is the high-frequency result modified by the
factor P~(a) which has the property

(E'E)=(Z e) (V V V V)

= (Zoe P) '( Vo V), (2.12)
0 0.8

I

1.6
I

2.4 4.t'

where Vp is the gradient with respect to rp. Substituting
Eqs. (2.3)—(2.5) into Eq. (2.12) yields

FIG. 1. Comparison of P(e) curves in units defined in Eq.
(4.1) for plasma with a single-ion species of charge Zo ——Zi ——9
and I,=0.053.
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FIG. 2. Same as Fig. 1 with Zo ——Z~ ——17 and I,=0.053.

FIG. 3. Same as Fig. 1 with Zo ——Z~ ——35 and I,=0.053.

p G (r)Z eF (v) dr =p g Z ef (v) dr, (3.1)

species. Here, we follow the same procedure but with
modifications due to the electron screening of the ion-ion
interactions.

Let us now introduce the quantities G (r) and
Z eF (r) which denote the distribution of quasiparticles
of species o., a distance r from the charge Zoe, and the
magnitude of the electric field at ro due to one such quasi-
particle, respectively. Assuming that the local-field con-
straint is valid species by species, then we have

or equivalently,

G (v) =g (r)f (r)/F (r), (3.2)

for all o. The choice for F (r) is a parametrized Debye
f ld4 —6

(1+a r)F (r)= exp( —a r) .
r

(3.3)

The noninteracting quasiparticle picture together with the
distributions G (r) in Eq. (3.2) may be used to obtain the
expression,

T(k)=exp 4m. gp f dr r g (r) [jo[kZ eF (r)]—1I
f(v)
F (r) (3.4)

where jo is the spherical Bessel function of order zero.
Values for the parameters Ia I are obtained by com-

paring the second-moment expression from Eqs. (2.13)
and (3.4),

eo ——e /a, ,
2

where a, is the electron sphere radius

(4.1)

I

are for P(e) versus e with the electric field in units of eo,

gZ p e f dr r g (r)f(r)F (r) 4~
3

peae = I . (4.2)
= QZ p p (~) pZO (3.5)

which if assumed valid species by species leads to

ZOZ /3e f dr r g (r)f(r)F (r)=g (v). (3.6)

Equation (3.6) together with knowledge of the distribu-
tions g (r) provide a scheme for evaluating the parameter
set [a I and hence the low-frequency component micro-
field distribution.

The plasma state is defined by the electron coupling pa-
rameter

0.3

UJ 0.2
CL

IV. NUMERICAL RESULTS

For simplicity, we restrict the calculations to plasmas
with either one or two ion species. Also, the results are
limited to cases where Zo is set equal to one of the plasma
ion charges since computer simulations are impractical
otherwise. The required radial distribution functions were
evaluated in the hypernetted-chain approximation general-
ized to multicomponent plasmas. ' The plots presented

0.1

0
0

E
FIG. 4. Comparison of I'(e) curves in units defined in Eq.

(4.1) for a binary mixture with charges Zo ——Z& ——9 and Z2 ——1,
number fractions x~ ——x2 ——0.50, and I,=0.013.
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FIG. 6. Same as Fig. 4 with Zo ——Z& ——17 and Z2 ——1,
x) ——x2 ——0.50, and I,=0.13.

FIG. 5. Same as Fig. 4 with Zo ——Z l ——9 and Z2 ——1,
x~ ——x2 ——0.50, and j. , =0.21.

I,=Pe /a, (4.3)

V. CONCLUSION

The simple APEX method, although phenomenological
and based on an independent quasiparticle model, has

along with the sets {Z I and I x I, where x is the num-
ber fraction for species cr,

(4.4)

In Figs. 1—3 the APEX results are presented for plas-
mas with a single-ion species. These are compared with
Monte Carlo (MC) data and the results of Tighe and
Hooper (TH). ' It is important to note that in Figs. 2 and
3 the so-called a plateau of the Hooper formalism is not
well defined. ' This has been interpreted as a lack of
self-consistency in the Hooper method and indicates an
application of that method outside its range of validity.

In an attempt to extend the reliability of the Tighe and
Hooper calculations, the free parameter in that theory was
selected to satisfy the second-moment condition and the
results are presented in Fig. 3 (modified Hooper). It is
clear from the figure that the second-moment constraint
greatly improves their agreement with Monte Carlo data,
an indication of the importance exact-moment relations
have in computing microfield distributions.

In Figs. 4—6 the APEX results are given for plasmas
with two ionic species. These are compared with MC
data except in Fig. 4 where the plasma is too weakly cou-
pled for computer simulations to be reliable. In that fig-
ure the comparison is the TH and recent calculations by
Held et al. (HDG). ' Although the three theories agree in
the Debye-Huckel limit, ' for the plasma conditions of
Fig. 4 only APEX and TH are in close agreement. For
more strongly coupled plasmas, as in Fig. 5, neither TH
nor HDG are in agreement with APEX which, however,
is in good agreement with MC data. As' in Figs. 2 and 3,
the TH results in Fig. 5 are known to be outside their
range of validity.

been shown to provide results in excellent agreement with
computer simulations for both high-"' and low-frequency
component distributions. The reasons for its success are
not entirely clear but it is possible to give a partially satis-
factory a posteriori justification. For small fields the con-
tributions from many ions are important and these are
well characterized by the second moment of the micro-
field distribution which is exactly included in APEX
through Eq. (3.6). On the other hand, large fields are
predominantly caused by a single ion near the test charge
and such a situation is accurately described by an indepen-
dent particle model.

It should be emphasized that the cluster expan-
sions ' ' ' also contain single-particle contributions, for
example, the first term in the Baranger-Mozer series.
However, in APEX many-body effects are included by in-
troducing the screened quasiparticle fields (fields are only
partially screened in the Hooper formalism ' and not at
all in the Baranger-Mozer methods). ' Furthermore, the
quasiparticle distributions in APEX are modified through
the local-field constraint in Eq. (3.1). This latter con-
straint is numerically important (see Fig. 3 and Ref. 4)
and physically plausible. Its apparent effect is to extend
the single-particle picture toward intermediate field values
by imposing a self-consistency condition between the
screened electric field and density distribution of the
quasiparticles.
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