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Canonical dynamics: Equilibrium phase-space distributions
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Nose has modified Newtonian dynamics so as to reproduce both the canonical and the
isothermal-isobaric probability densities in the phase space of an X-body system. He did this by
scaling time {with s) and distance (with V' in D dimensions) through Lagrangian equations of
motion. The dynamical equations describe the evolution of these two scaling variables and their two

conjugate momenta p, and p„. Here we develop a slightly different set of equations, free of time

scaling. We find the dynamical steady-state probability density in an extended phase space with

variables x, p„, V, e, and g, where the x are reduced distances and the two variables e and g act as

thermodynamic friction coefficients. We find that these friction coefficients have Gaussian distri-

butions. From the distributions the extent of small-system non-Newtonian behavior can be estimat-

ed. We illustrate the dynamical equations by considering their application to the simplest possible

case, a one-dimensional classical harmonic oscillator.

I. INTRODUCTION

Classical "constant-temperature" calculations have been
pursued for over a decade. ' In this sense, "temperature"
is a measure of the instantaneous kinetic energy in a sys-
tem. Thus the corresponding dynamical equations include
non-Newtonian accelerations designed to keep the kinetic
energy gp /2m constant. The non-Newtonian iso-
thermal accelerations are useful in dissipative systems in-

volving viscous flow, or heat flow, far from equilibrium.
Such systems would heat rapidly in the absence of con-
straints. By now, many distinct sets of differential
equations of motion have been devised to keep the kinetic
energy constant.

A somewhat different kind of constant-temperature cal-
culation strives to reproduce the canonical phase-space
distribution, so that the kinetic energy can fluctuate, with

a distribution proportional to exp( gp /2mkT—). Ob-

taining the canonical distribution is desirable, at least in
equilibrium work, in order to correlate the results of
many-body simulations with Gibbs's and Jaynes's statisti-
cal mechanics. Andersen has used occasional discontinu-
ous "stochastic" collisions to induce the canonical distri-
bution in many-body simulations.

Nose achieved a major advance by showing that the
canonical distribution can be generated with smooth,
deterministic, and time-reversible trajectories. To do this
he introduced a time-scale variable s, its conjugate
momentum p„and a parameter Q. Nose's augmented
Hamiltonian

HN„; ——@(q)+gp /2ms

+(X+1)kTlns+p, /2Q,

contains a nonlinear collective potential in which the
time-scale variable s oscillates. Thus the system, with X
degrees of freedom, is coupled to a heat bath (described by
the variables s and p, ). Nose proved that the microcanon-
ical distribution in the augmented set of variables is
equivalent to a-canonical distribution of the variables q,p',

II. CANONICAL DISTRIBUTION FROM
NON-NE%'TONIAN DYNAMICS (REF. 10)

The equations of motion from Nose's Hamiltonian (1)
are

q=plms, p=F(q), s=p, /Q,

p, =gp /ms —(X+1)kT!s .
(2)

where the p' are the scaled momenta p/s. Thus the Ham-
iltonian (1) generates the canonical probability distribution
independent of the values chosen for H&„e and Q.

During the canonical-ensemble calculations just
described, the volume V and temperature T are held fixed.
Nose demonstrated the usefulness of these ideas by carry-
ing out several dense-fluid simulations using the Hamil-
tonian HN„;.

By allowing length to vary, as well as time, Nose gen-
eralized this work to include the isothermal-isobaric en-
semble. These methods and ideas forge a remarkable link
between the ensembles of statistical theory and atomistic
dynamics. They suggest promising approaches for the in-

vestigation of nonequilibrium systems.
Here we exhibit steady-state (equilibrium) distributions

for the new variables which play the role of thermo-
dynamic friction coefficients. Our equations of motion
are very much like Nose s, but differ in that scaling of the
time is not required. The new results for distributions
make it possible to estimate finite-size effects on dynami-
cal averages. In Sec. II we review Nose's canonical equa-
tions of motion and introduce a version of them free of
time scaling. In Sec. III we formulate the phase-space
evolution of the many-body probability density

f~~(q,p, g, Q) and exhibit a steady-state solution. We in-

dicate the straightforward extension to include the isobar-
ic case. With some additional effort, it seems likely that a
stress-tensor version of this ensemble could be constructed
along the lines pioneered by Rahman and Parrinello. In
the final section we illustrate the equations of motion with
some representative trajectories for a single classical oscil-
lator.
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These coupled first-order equations take a simpler form if
the time scale is reduced by s, so that dt, &d

=—s dt„, . All
of the rates given in (2) can then be expressed as deriva-
tives with respect to t„, (for which we will still use the
superior dot notation)

q =p/ms, p =sF, s =sp, /Q,

p, =gp~/ms~ (X+1)—kT . (3)

The somewhat inconvenient variable s can then be elim-
inated from the equations (3) by rewriting the coordinate-
evolution equations in terms of q, q, and q'.

q =p Ims —(pIms)s Is =F/m qp—, /Q =F(q)/m —gq .

(4)

The thermodynamic friction coefficient g—:p, /Q which
appears in the second-order equations (4) evolves in time
according to a first-order equation

gmq —(X+1)kT (5)Q.

Nose showed that the phase-space distribution resulting
from the equations (2) is canonical in the variables q,p/s.
In the next section we show that the distribution resulting
from equations (4) and (5) can be made canonical too, and
in such a way as to avoid time scaling. To do this we

, redefine p=—mj and replace Nose's X+1 by X obtain-
ing'

q=p/m, p=F(q) —gp, g= gp'I m XkT—Q . (6)

Berendsen has just suggested a close relative of (6) in
which g rather than g is proportional to
AEk;„=—gp /2m XkT/2. —Notice that Berendsen's
equations are not reversible in time. The equations (6) are
much less severely damped than Berendsen's. An extreme
opposite limiting case, in which AEk;„ is identically zero
and time reversibility is retained, has been achieved by set-
ting the friction coefficient equal to (QFp/m)/(gp /m)
or, equivalently, by "velocity scaling. "'

III. PHASE-SPACE EVOLUTION OF furr(q, p, g)

Because the variables q, p, and g used in (6) are in
dependent, we can easily calculate the components of the
flow of probability density f ( q,p, g) in (2X + 1)-
dimensional space. The equations governing the motion
in this space are not Hamiltonian. Therefore the deriva-
tives Bq/Bq and Bp/Bp do not generally sum to zero.
Thus the analog of Liouville's equation, expressing the
conservative flow of probability with time, including flow
in the g direction, is

The nonvanishing terms in (7) obtained from this density
function are as follows:

q af/aq =(flkT)QFplm,

paf /ap =(flkT)g( F—+gp)plm,

af I'ay=(f/kT) gp—/m+XkT Q PQ

f ap/ap =(fIkT)( XkTg—) .

x=p/mV', p=F —(e+g)p, (Q=+p Im XkT, —

e= V/DV, e=(P P,„,)V/dkT, —
(1O)

have the steady equilibrium
cc V ' exp( +IkT), wher—e

4—=&b(xV' )+gp /2m+Qg /2

+De'HkT/2+P, „,V .

solution f&t z.

IV. CANONICAL HARMONIC OSCILLATOR

To illustrate the changes in viewpoint discovered by
Nose we consider a one-dimensional harmonic oscillator
with the mass, force constant, and initial values of q and
p all taken to be unity. We consider equations for which
the values of q and p have averaged values of unity.
The microcanonical equations of motion

Inspection shows that these terms sum to zero, provided
that the coefficient of kT in the dynamical equation (6)
for the friction coefficient is chosen equal to the number
of independent degrees of freedom in the set q,p. In the
usual molecular dynamics simulation, with periodic boun-
daries, the center of mass and its velocity are fixed so that
this number of degrees of freedom is D (N —1) for a D
dimensional X-body system. Thus the canonical distribu-
tion (8) is a steady equilibrium solution of the flow equa-
tion (7) and satisfies the equations of motion (6).

In commenting on an earlier draft of this manuscript,
Brad Holian pointed out that the phase-space distribution
(8) can be used to deriue the equation of motion for the
friction coefficient g. To see this, note that the canonical
distribution (8) satisfies (7) if, and only if, g follows the re-
laxation equation (6) of Nose. Thus Nose's canonical
equations of motion are unique Oth. er relaxation equa-
tions, such as Berendsen's, cannot lead to the canonical
distribution (8).

To extend these ideas to the isothermal-isobaric case is
straightforward. Reduced coordinates x—:q / V' are in-
troduced, as is also a fixed "external pressure" P,„, and
relaxation time ~. The equations of motion

af Iat+q af/aq+p af!ap+gaf Iag

+f[aq/aq+ ap/ap+ aj/ag] =o . (7) 9'=p~ p= —0 (12)

Consider a density function fzvr proportional to the fol-
lowing exponential:

r

f&~ ~ exp —@(q)+gp /2m+Qg~/2 . kT . (8)
q=p/s, p= —q, s=p, /Q, p, =p /s —1/s . (13)

generate closed elliptical trajectories in the two-
dimensional qp phase space. See Fig. 1(a). For this same
oscillator Nose's canonical equations [with X in (2) taken
to be zero and s initially unity] take the form
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(e)

FIG. 1. (a) Elliptical orbit for an oscillator described by Eqs.
(12}. The abscissa is q, the ordinate is p. The major-to-minor
axis ratio of unity has been increased in plotting to fit the Tek-
tronix hard-copy screen area symmetrically. This same increase
applies to each figure. All data were obtained on the Digital
Equipment Corporation VAX 11/780 computer at the Physics
Department (Lausanne) using a fourth-order Runge-Kutta in-
tegration in double precision with time steps in the range 0.01
down to 0.001. (b) Long-time qp trajectory for Eqs. (13) or (14)
with initial values q =1, p =1, s =1, p, =0, and Q =1. (c)
Same as (b) with Q =0.1. (d) Long-time qp trajectory for Eqs.
(15) with initial values q =1, p =1, /=0, and Q =1. (e) Same
as (d) with Q =0.1.

For large Q these equations simply reproduce the micro-
canonical behavior shown in Fig. 1(a). In Figs. 1(b) and
l(c) we show trajectories for Q =1.0 and 0.1 using the
same initial conditions. For the larger Q, the trajectories
in qp space gradually fill in a region between two limiting
curves. For the smaller Q the trajectories develop more
nearly singular turning points and the size of the filled re-
gion diminishes. When a new time is introduced, with
dto1d =sdtnew and

q =p /s, p = —qs, s =sp, /Q, p, = (p /s) 2 —1,
exactly the same trajectories are produced, but at different
rates. This is a good check of the numerical integration.

Finally, if we abandon time scaling and redefine p =q
we have

q=p p= q —SS» —P=(p' —1)/Q. (15)

Solutions for these equations appear in Figs. 1(d) and 1(e).
The small-Q limit of (15) can be inferred from these fig-
ures. The oscillator moves between widely-separated turn-
ing points at velocity +1.

These examples illustrate that a single oscillator is not
sufficiently chaotic to reproduce the canonical distribu-
tion from a single initial condition. The trajectories are,
however, stable and cover a relatively large part of the os-
cillator phase space for reasonable values of the parameter
Q. For unreasonable values of Q (either very small or
very large) it is not at all clear that even large systems will
behave in a canonical (as opposed to microcanonical) way.
A study of the number dependence and Q dependence of
the phase-space density for a series of small systems
might help to clarify this point.
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