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Attractor structure on the real line is represented as a mass function M(x) defined as the fraction
of attractor points to the left of x. For Feigenbaum attractors, M is a devils staircase which
possesses both orbit and mass scaling features. The attractors W~ for maps with a pth-order ex-
tremum are discussed in terms of this scaling, which leads to a hierarchy of bounds for the corre-
sponding mass M~. Both W~ and M~ transform in a characteristic way under power-law conjuga-
cy; this gives rise to two kinds of global scaling. A further intermediate scaling for the quartic at-
tractor which underlies vector scaling in two-extremum maps is discussed in this context. As p
tends to infinity, the capacity dimension D tends to 1 and the information dimension a to 0. The ef-
fects of this trend on the appearance and observability of attractors are discussed.

I. INTRODUCTION

One of the most studied chaos-producing mechanisms
involves an infinite cascade of subharmonic bifurcations
resulting in an aperiodic orbit. Quantitative investigations
on the nature of the chaotic attractor are usually carried
out through studies of the properties of discrete-time
maps, extracted from the flow by various techniques.
These maps typically possess quadratic extrema and it is
the quadratic character of the extremum that determines
many of the attractor's properties, such as its scaling
features' and its dimension.

Although the (Feigenbaum) attractors which appear at
the subharmonic cascade limit are not generic, i.e., they
are replaced by finite or banded attractors under small pa-
rameter perturbations, their structure governs empirical
estimates of dimension at finite resolution in the
parameter-space neighborhood that contains them. This
is so because finite (orbit) scaling imitates its fractal limit,
thus, these attractors acquire greater practical importance.

The attractors associated with maps having (differenti-
able) nonquadratic extrema have been less well studied but
they do arise in physical problems. It is not necessary
that a map derived from a flow explicitly exhibit a non-
quadratic extremum since the interaction of several
lower-order extrema can yield behavior characteristic of a
higher-order extremum. Examples are provided by the
Rossler flow near the transition from spiral to screw
chaos ' and the circle and related maps above criticali-
ty. ' In both cases the maps have two quadratic extrema
and quartic scaling behavior is observed in part of the pa-
rameter plane. Interaction of more extrema (as for the
Rossler flow in the screw-chaos region) can give rise to yet
higher-order scaling behavior. These observations have
stimulated the present investigation on the nature of the
Feigenbaum attractors arising from maps with a pth-
order extremum.

The organization of the paper is as follows. In Sec. II
we discuss the scaling properties of the attractor through
a study of its "mass" curve M~(x), i.e., the fraction of
points on the attractor lying on a specified x-dependent

interval. Scaling exponents for the centers and edges of
the attractor clusters on Mz(x) are introduced and global
attractor scaling is defined in terms of these exponents.
In Sec. III M~(x) for p =4 is examined since this pro-
duces a new scaling (under power-law conjugacy) which
underlies the behavior of two-parameter maps. The struc-
ture of the attractors for arbitrarily large p is considered
in Sec. IV. The orbit scaling factor a and its powers are
shown to play a central role: they are directly related to
formulas for the capacity and information dimensions.
The singular limit p= oo is examined in the context of
mass distribution and dimension. Finally, we discuss the
experimental and theoretical implications of our work in
Sec. V.

II. MASS CURVE AND ITS SCALING PROPERTIES

Vfe investigate the structure of the Feigenbaum attrac-
tors mfa arising from map functions with a single pth-
order extremum. A quantitative, global, scaling theory
for such attractors may be developed by considering the
functions g~( ~

x
~

~), which obey the doubling transforma-
tion'

g~(x) =a~g~(g„(x la~)) .

The attractor associated with g (Ref. 7) will be denoted by
Wz(g); it possesses exactly self-similar scaling features at
all levels of its Cantor-set structure. Clusters of points in
Mz(g) scale by a at the origin and its preimages and by
at' at images of the origin due to the focusing effect of the
extremum. Since the orbit itinerary is independent of p (if
gz has only one extremum), the basic organization of
these attractors is the same for all p.

The structure of the attractor is conveniently discussed
using the decimation scheme of Grassberger. Starting
from the origin xo ——0 and defining xj+ i ——g (xJ ) one may
easily deduce the scaling relation x2&

——a 'xj. Further-
more, for all odd j, x1 & 0. A number of properties follow
from the itinerary starting from the origin: letting
Mt J. ——Wz[xt, x1] be the attractor on [xt,xj] we observe
that the entire attractor is M2 ~ and that
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M2, =M2 4 U M3 ] Also (formally) M2 4 ——a 'Mz
~ and

4, —g ( s3f 3 ~) ~ Repetition of this argument permits the
construction of sets of exactly self-similar attractor frag-
ments (see the inset of Fig. 1).

Certain aspects of the attractor's structure are revealed
by examination of its mass curve, which we define as

Mz (x)=M(x; W~(g) ), (2.2) M2

the fraction of points of Mz(g) contained in
[g(1)=a ', x]. This function has the form of a "devil' s
staircase, " which increases continuously on the set Mp
and clearly exhibits many of the scaling properties of Mz.
A graph of M2(x) is shown in Fig. 1. Several features of
this curve hold for all mass curves M~(x). The clusters
on W2 are represented by steps on Mq(x) and cluster scal-
ing by e ' in width and 2 ' in height is evident in the
figure. The cluster width scaling is the same as the scal-
ing of W2 at x =0 and its preimages.

The distribution of mass on Mp follows directly from
the decimation procedure for constructing the attractor.
In particular, we may show that mass to the left of the
origin is —,

' while that to the right is —', (cf. the Appendix).
Self-similar features on M~ (x) may be located by

bounding curves through the point (x =O,M= —,) in the
(x,M) plane. Referring to Fig. 1 for M2(x) the right-
hand upper bound Bz(x) to M2(x) obeys the constraints

M(a J) —M(0)=Bz(a ~) —, =2' ~—/3 (j=0,1, . . .),
(2.3)

which are just the conditions for the touching of Bz(x)
and M(x) at the points x=a J. Letting j be continuous
and x= a

l

J we find

2

0
~~-l -3P p ~

—2
2 &2 2

5 751

FIG. 1. Top part of the figure shows the mass curve
M2(x) =M (x;M2). Center bounds bL ~ (lower) and BL ~
(upper) to the left (L) and right (8) of the origin 0 depend on
quadratic exponent g, (see text) and indicate global scaling of
M~ about 0. Bounds meet the point (x =O,M = —,) with infinite

derivative. Labeling of axes indicates scaling of cluster masses
by 2 ' and distances by a2 '. Bottom part of the figure shows
the decimation of the interval [u2, 1] generated by the trajecto-
ry xo ——0, x

&

——1, . . . , xj. Numbers 0,1, . . . are indices j. At
the nth level of decimation 2" new points define the excised in-
tervals (see text).

Bz(x)= —,
' + —,

'
l

x
l

with

t), =ln2/ln
l
a

l

(2.4)

(2.5)
h (x)=x' q (2.7)

&~«)= —,'+ 6 [g"'(o)1

bL(»= 3
—

3 lx
I

'

BL(x)=—, ——,[g' '(0)] ' lx
l

(2.6)

Here b refers to a lower bound and B to an upper bound
while I. and R denote bounding curves to the left and
right of the origin, respectively. This global center scaling
is imitated by a local scaling about the centers (preimages
of the origin) of clusters on the attractor.

We have just presented the standard description of glo-
bal attractor scaling about the origin when the universal
function g possesses a pth-order extremum there. A com-
plementary global theory exists for attractor scaling about
cluster edges using power-law conjugacy.

We define functions hq(x) and hq '(x) by

Near x=0, B~(x) touches M(x) infinitely often. Curves
with the same exponent g, but different amplitudes (&—', )

connect other sets of self-similar features on M. Along
with Bz(x), three other universal bounds emanating from
this origin confine M(x):

and

h» '(x)=xq. (2.8)

%»gal(x) =a~~&qgp(&»A(x/a~~)) . (2.10)

Let W~«denote the attractor of Hqg~. (In this notation
M~—:W~~~. ) Taking q =p we see that Hzg~ is a function
which behaves like 1+C lx

l

at the origin and l5x l~ at
the conjugate image of the zero of gz (in [O, l]). H~g~
looks like an inverted, reflected version of gp. Geometri-
cally, x = 1 in gp corresponds to x =0 in Hpgp, so the
origin becomes the edge of the attractor Wp/p and the ex-
tremum of Hpgp is mapped into the origin in one step.
Because Hpgp obeys the doubling transformation the at-
tractor Mp/p possesses global edge scaling by ap about
x =0. Edge scaling is obeyed locally for Hpgp at the im-

Then there is a power-law conjugate universal function
Hqgp of gp defined by

%»gal
——hq 'ogqohq, (2.9)

which obeys the doubling transformation [Eq. (2.1)] with
scale factor o.pq, i.e.,
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Mph(g)=Mp(g'~~) Mp( ——g'~&) . (2.12)

The mass M2&z for the quadratic attractor Mz&2 is shown
in Fig. 2. Since scaling at the origin of Mz goes as az,
scaling at the origin of M2&2 goes as az.

Consider Mz for a moment: 'assuming that the mass at
the origin behaves as

I
x

I

', use of the Perron-Frobenius
equation leads to an edge-scaling exponent g, =g, /p.
The exponent g, corresponds to the scale factor a~~ in the
doubling transformation. However, this local relation is
globally true for Hzg~ where the attractor edge appears at
x=0. Figure 2 shows the corresponding global bounds
bo and Bo for %2g2, which emanate from the origin with
infinite derivative corresponding to the edge (origin) ex-
ponent g, =g, /2.

The upper Bo and lower bo bounds are given by

Bo(x)= Ix I

bo«) =
2 I ~~2( I

~
I

(2.13)

The amplitude for bo in Eq. (2.13) is the case p =q =2 of

ages of the origin (cf. center scaling for gz).
This functional and attractor scaling corresponds to a

scaling law for the mass M: for even integer q &p the
formal transformation from Mz to M~~~ can be written

Mz~~ ——h~ '(Mz), which can be restated in terms of at-
tractor elements. Starting from xo ——0 under g~(x), and

go ——0 under H~g~, the g~ time series I xJ I and the H~g~
time series I/J I are related by gz ——

I xJ I

~. The transfor-
mation of the mass curve (M~ ~M&~~) under power-law
conjugation follows from this relation. The mass of Wz
on [—x,x] is equal to the mass of Wz&~ on [O,g] giving

Mp)q(g) Mp(g ~~) Mp( g ~~) . (2 11)

For q =p this be,comes

the general formula quantity,

2 I ~qs', (
I

~
Just as Mz touches the global bounds BL z and bL z in-

finitely often near x =0, so Mz&z touches bo and Bo in-
finitely often there also. From Fig. 2, on the curve M2~q
the principal clusters within Mz itself scale in width and
separation from the origin by a and in height by 2
This one-sided edge scaling follows automatically from
the appearance of a in the global scaling law, i.e., Eq.
(2.10). A similar statement with a2 ' replacing a2 de-
scribes the global scaling in Fig. 1, where attractor frag-
ments appear on both sides of the origin since hz~0.
These global scalings are of course reflected in the local
edge and center scaling of the asymptotically self-similar
clusters in either Mz « ~zyz

Because of the geometrical inversion of %2gz with
respect to gz, on Mz&z —,

' of the mass lies to the right of
the extremum of Hzgz and —', to the left; denoting the
preimage of xo ——0 by x ~ (the zero of g2) we therefore
have for Wz the mass distribution

this 1.e.,

M[a ',0]=M[Ox ~]=M[x &, 1]=—, (2.14)

While the attractors Mz and Mz&z are not geometrically
identical they are very similar: "almost global" edge
bounds exist for W2 and almost global center bounds exist
for Mz~z.

Grassberger' has recently noted that generalized di-
mensions which may be used to characterize the attractor
are invariant under conjugation by differentiable, inverti-
ble maps. Power-law conjugacy possesses this property
except at the origin. Thus, for general q (p, the attrac-
tors Mz and Mz&z have exactly the same dimensions as
we have verified by calculation. Hence, distinct p-type at-
tractors Wp Mp/q etc. belong to the same equivalence
class with respect to the entire set of their dimensions,
which, therefore, does not distinguish or completely
characterize them.

III. MASS CURVE FOR THE QUARTIC ATTRACTOR

M2i2

p I

2 2

FIG. 2. Mass curve Mq/2 ——M(x;M2/q) corresponding to glo-

bal edge scaling by a2. The bounds bo and 80 to M&~2 depend

on the quadratic edge exponent g, =
~ g, . The bounds meet at

(x =O,M =0) with infinite derivative. M2/2 contains cluster
scaling in mass by 2 and distance by a2 as indicated by the
axis labeling.

We devote this section to a study of the properties of
the quartic attractor, as reflected in its mass curve, in
view of its relevance to a number of dynamical systems,

The functions gq, obeying Eq. (2.1) and %4g4, , obeying
(2.10) with p =q =4, give rise to attractors M4 and M«&
with the respective mass curves M4 and M4~4. These two
quartic attractors correspond directly to the quadratic at-
tractors W2 and W2&2 discussed above. M4, (:—M&~~)
shown in Fig. 3(a) possesses global center scaling with ex-
ponent g, =ln2/ln

I
a4

I

=1.3205. Since g, & 1 the
bounds BI R and bL z emanate from the origin with zero
slope. " M4&4 given by Eq. (2.12) with p=q =4 is shown
in Fig. 3(b), it is a folded, scaled version of M4', the edge
exponent g, =ln2/4 ln

I
a4

I
=0.3301 governs the (quartic)

bounds bo and Bo through x =0 that confine M4~4. At-
tractor and mass scaling under g4 and %4g4 are formally
similar; on M4&~ (q =1 or 4) the principal M4 component
clusters scale in height by 2 ' and in width and separa-
tion from the origin by a4 as shown in Figs. 3(a) and
3(b). (In Ref. 12 g4 was called q4. ) Like the quadratic
case the hierarchy of subclusters of M4~q scale asymptoti-
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3/

'/i6

I/~

0

Ok&-s~~-4
4

FIG. 3. (a) M4(~) (cf. Fig. 1). Scaling clusters on left (x &0)
of masses 4, —,6, . . . are matched with (inverted) clusters on

right (x )0) with masses 2, 8, . . . (see ordinate M) as described

in text. Note scaling of cluster distances by a4 . Left and right
clusters meet at (x =O,M= —,). Global bounds bL, ~ and BL, ~

are labeled as in Fig. 1; they meet at (x =O,M=
3 ) with zero

derivative. (b) Mass curve M4/4 ——M(x; M4/4) with edge-scaling
property is shown (cf. Fig. 2). Bounds bo and Bo dependent on
quartic edge exponent g, indicate global scaling of mass. Clus-
ters on M4/4 scale in height (mass) by 2 ' and distance by a4"
as indicated by labeling of axes.

possessing two interacting quadratic extrema, where a sin-
gle step links the extrema. In particular, we have previ-
ously carried out a detailed study of the sine map
x, + ~

——x, +a +b sin(2+x, ), which displays quartic
behavior along certain lines in the (a,b) plane. Maps with
two such interacting extrema actually exhibit more com-
plicated vector-scaling features ' there are two relevant
vectors in the renormalization-group theory.

The properties of %2g4 are formally like those of the
other quartic universal functions and the local cluster
scaling of W4/2 shows the features present in M4 and
Mz/4. However, the origin possesses a new, intermediate
exponent go ——1n2/21n

~
a4

~

corresponding to the global
scaling by a4 about x =0 and the appearance of a4 in
the doubling transformation [Eq. (2.10)] for %2gq. Be-
cause a single step links the minimum of %2gz to its
maximum at x =0 (global) scaling by aq appears only at
the origin in %4&2 and not at any image or preimage of
this point. The corresponding mass M4/2, which is relat-
ed to M4 by Eq. (2.11) with p=4, q =2, is shown in Fig.
4. Thus the main M4 clusters on M4/2 scale in height by
2 ' and in width and separation from x =0 by o.4

This separation of dynamically quartic behavior into
contributions from two quadratic extrema, in %2g4 for
example, underlies the vector scaling mentioned earlier.
In two-parameter, multiextremum maps many steps may
link any two extrema; in the parameter plane the number
of such iterates labels the branches and end vertices (tri-
critical points) of an infinite binary tree of subharmonic
cascades. ' On the infinitely bifurcated orbits . associated
with tricritical points the first extremum visited supports
M4 locally and all iterates along the link including its ter-
minus support M4&2 locally. (The function %2g4 pro-
vides the simplest case of this global structure. ) Each
M4/2 possesses one n4-scaling end vertex, which is an ele-
ment of the link. Finer M4-like fragments are of course
embedded in the main clusters along the link.

Just as two quadratic extrema produce quartic
behavior, three coupled quadratic extrema produce octic
behavior, potentially a co-dimension-3 scenario. (Howev-
er, conjugation at two origins is required to decompose an
octic into three quadratic extrema. ) Thus coupling extre-
ma is an important mechanism whereby high-order
behavior may be built up in both maps and flows.

IV. MASS AND DIMENSION OF ATTRACTORS
FOR ARBITRARY p

The structure of the attractors for arbitrary p was stud-
ied by considering the class of functions

f~(x)=1+a ~x ~~ (p)0, a (0) . (4.1)

cally like M& with respect to their centers (preimages of
x =0) and edges (images of x =0).

However, for the quartic attractor another (natural)
possibility arises from power-law conjugation, namely
p =4 and q =2 so p/q =2. This gives the universal func-
tion %2gq with scale parameter a4 about the origin. (In
Ref. 12 %2g& was called q2 and a4 was a2. ) Functions
hke %2g4 appear frequently in physical applications
where quartic behavior results from an underlying map

The dependence of a and 6 on p is shown in Table I,
which extends previous results. ' ' These data were ob-
tained empirically from the scaling properties of the su-
perstable subharmonic orbits as a tends to a, the value
of a at the subharmonic limit. The results strongly sug-
gest that

~

a
~

~1 and 6~oo as phoo.
The decrease in

~

a
~

results in a rise in the center ex-
ponent g, and produces a flattening of the mass M& in
the middle of the interval [a ', 1 j which contains the at-
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TABLE I. Data for the first subharmonic limit (period 2") for functions f~(x)=1+a
~

x ~~ are
shown in columns 2—4 to maximum accuracy obtainable from double-precision arithmetic. a and 6 are
the Feigenbaum universal exponents for index p. The capacity D (see text) of the attractors M~ was es-
timated from the slope of lnlV(e) vs ln(1/e) for bin size e, with e between 1 and 10, from time series
up to 4X 10 points. The information dimension g and correlation dimension v (Refs. 20 and 21) were

estimated in the same way for the same e range from 8192 points. The errors in these estimates are
shown in Fig. 6.

2
2.8
4
6
8

10
12
14
16

1.401 155 189092 01
1.502 954 633 550 13
1 ~ 594 901 356 228 81
1.683 260 198204 63
1.736 452 374 752 32
1.772 643 726 066 98
1.799 123 137925 2
1.819465 494 920 4
1.835 653 773 333

2.502 908
2.000000
1.690 303
1.467 756
1.358 057
1.291 584
1.246 757
1.214072
1.189 346

4.669 200
5.822 887
7.284 698
9.296 778

10.951 105
12.348 360
13.565 497
14.597 546
15.560 688

0.539
0.583
0.630
0.674
0.683
0.705
0.744

0.531
0.551
0.543
0.547
0.539
0.528
0.522
0.500
0.484

0.524
0.531
0.520
0.504
0.465
0.450
0.441
0.417
0.409

tractor. Thus the attractor mass becomes concentrated
near x =a ' and 1. The flattening of Mz with increasing

p is shown in Fig. 5 where 5(a) represents M8 and 5(b)
M~6 [cf. Mq, Fig. 3(a)]. We have indicated the principal
self-similar clusters of M, 6 in Fig. 5: much of the mass of
this attractor is concentrated near the ends at f~6(1)=a~q'
and x =1. For large p (~8) the attractors M~(f) and
Wz(g) are visibly different so that the b and 8 bounds for
Wz(g) depart from those of Wz(f) by a few percent. We
have looked at other p values, which confirm this flatten-
ing effect.

From the scaling properties of M~ a decrease in a
~

also implies a "thickening" of attractor elements
throughout [a ', 1] in the sense that the largest gap in
this interval becomes arbitrarily small. These distinct ef-
fects have implications for the various dimensions charac-
terizing these attractors. We consider, in particular, the
capacity dimension' D,

lnN (e)D=lim
o 1n(1/e)

where N (e) is the number of segments of length e needed
to cover the attractor, and the information dimension'

N(~)
o =lim g p;lnp;

o inc,

4I2

T

0
p +—4

4 d, 2
4

X

where p; is the probability of an attractor point falling in
the ith segment of the partition. The capacity dimension,
which depends only on the largest distance between the at-
tractor elements, increases while the information dimen-

sion, which depends on the probability measure, decreases.

M& clearly becomes less homogeneous with increasing p
and we might expect M~ to behave in a singular way at

p = oo. We now investigate these trends in more detail.
The large-p behavior of D and o. is partly accessible

through lower-bound formulas. Grassberger has shown
that a first lower bound DI to D for the attractors Mz(g)
is given by the solution of the equation

1

D D
1 (4.2)

It is easily shown that g'(1) = —
~

a
~

~ ', so that Eq. (4.2)
becomes

FIG. 4. Figure shows mass function M4~~(x)=M(x;M4~2).
Global bounds bo and Bo depend on intermediate quartic ex-

ponent go ——2q, . Clusters on M4~2 scale in mass by 2 ' and

distance by u4. (cf. Fig. 3). Only the origin possesses scaling
features with exponent go.

D/

1 =1. (4.3)

In terms of the exponents q, and g, this lower-bound for-
mula becomes
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ln20= 11m k
k —+oo . 2

1 ! ! +,Qln! g'(x2; ~)!
i=1

(4.5)

MB
1

Noting that ! g'(1)
!

is greater than any

!
g'(xz, , ) ( ~ 1) in Eq. (4.S) we obtain a lower bound o I

to o where

!

0
X

2 ln2
o )o.i(g)=-

(@+l)ln! a! (4.6)

We note that the values of g'(1) and g(1) and the cur-
vature of g imply 1 —x

&
)

! a! ~. Assuming ! o.'!
tends to 1, the ordering of the elements
x4 —(x (x 3 Q x ] & 1 then implies that as p tends to in-
finity !

a!~ also tends to infinity. Equation (4.6) then
predicts that o~(g) tends to zero as p tends to infinity.
The expression for a in Ref. 16 confirms this conclusion.
From the expression for g, =ln2/(p ln! a! ) we can then
write for large p

oI(g) =2rj, . (4.7)

0
X

—Dyq, —D/q,
(4.4)

FIG. 5. (a) The mass function M8 for M8. Note flatness of
1M8 near (x =O,M =
3 ). Half the attractor mass is contained in

the interval A (and half in W); M8 is inhomogeneous. Hatched
regions indicate similar clusters scaling a8 in width and 2 in
height. Note inversion of structure to left and right of origin 0.
(b) The mass curve M~6, which is very flat near x =0. A con-
tains half the mass of M~6. ! o.'~6! =1.19 so gaps in W&6 (hor-
izontal segments on M&6) are not large; cf. M~ for p &16.
Hatched regions emphasize cluster scaling as in (a).

This expression indicates the dependence of o. on the edge
exponent g„which determines the mass clustering for
large p; compare the underlying connection between o. and
probability measure. Unfortunately we have not been able
to construct a rigorous upper bound to o., but estimates
suggest it is zero. Heuristic arguments based on succes-
sive estimates, at decreasing e, of the quotient defining o.

imply that the upper bound to o. also tends to zero as p
tends to infinity; however, no rigorous upper bound is
available for all e.

The predictions of Eq. (4.3) for D~ and (4.6) for cr~ us-
ing the o. values from Table I are shown in Fig. 6 together
with numerical estimates of D and cr, which are given in
Table I. These results and the discussion of the depen-
dence of D and o. on M& suggest that D —+1 and o.—+0 as
p~ op. In estimating D and o. for large p even very small
values of the bin width e are typically larger than the larg-
est gap in M~ so that the "support" of M~ is effectively
[tr ', 1], i.e., a one-dimensional continuum, and D =1.
But in the sum defining o terms pjlnp~ vanish except at
x=a '= —1 and x =1, so that at any finite resolution
the probability distribution of W~ behaves as if it has
point support: o., which is the sca1ing exponent of the in-
formation entropy, vanishes.

The vanishing of o. at large p is important ' because it
suggests that M has a simple structure. This is evident
from the singular limit of the doubling transformation
Eq. (2.1) at p = ae and its corresponding attractor and or-
bit.

For a= —1 no single function obeys Eq. (2.1) but we
can define a pair of functions g"' and g' ' which do and
when taken together have even symmetry, like f (x):

which indicates the way in which D~ (or D) depends on
the scaling of mass at both the center and edges of the at-
tractor clusters.

Procaccia and Cirassberger give the following formula
for the information dimension o of Mz(g):

g' '( —1)=—1, g' '(x)=l for xH( —1, lj .

For a = —1 the doubling transformation is

(4.8)
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1.0 r(~ (0) ) P
—»«~

I
~

I (4.1 1)

0.8—

0.6—

For any e&0 this expression diverges as
~

a
~

~1+.
represents a periodic recurrence because at finite resolu-
tion, regions of configuration space are visited periodical-
ly.

Since D(M„)=0 this singular limit at p = oo fails (by
construction) to represent the thick (almost gapless) but
almost massless set in Wz (p » 1) lying between jumps of
nearly —, at x =a ' and nearly —, at x =1. However, the
above discussion shows how recurrence connects proper-
ties of the time series of Mz to its mass Mz for p » 1.

0.4— V. DISCUSSION

0
0

l

16

FIG. 6. Estimates of D and o. with error bars {estimated
from noise in slope of binning plot). o. was obtained from 8196
points and D from up to 4X10 points along trajectory. Con-
tinuous curves DI and o.i show simplest analytical lower bounds
to D and 0., which agree with numerical data.

g())(g())( )) (2)( )

g(2)(g(&)( x)) g())(x)
(4.9)

under g"' and g' ' consists of the points x = —1 and
x=1. To be consistent with the limiting behavior of
Mz(x) for large p, M (x) must have the following prop-
erties: M jumps to —,

' at x = —1, M „(x)= —,
' for

x C ( —1, + 1), and M (1)= 1, i.e., a jump of —', at x = 1.
This behavior of M also follows from the scaling

properties of the orbit for a = —1, i.e.,
x2 ———xz for all j,

(4.10)
xj =1 for all odd j .

Starting from the origin we generate from Eq. (4.8) the
aperiodic orbit 0, + 1,—1, + 1, + 1,+ 1, —1,+ 1,
—1, . . . I. The (g ",g' ) sequence required to generate
this time series is uniquely determined. M„ thus has
point support implying o.=0. However, in this singular
limit D=O since the orbit never revisits ( —1, +1), i.e.,
never returns to the origin. This property reflects the in-
finite recurrence time for return to the origin at p= Oo

and the exponentially large, periodic recurrence time for
return to the origin at large p.

Denote the e neighborhood of the origin by ~,(0); the
recurrence time to the origin ~(~,(0) ) is given by

In this paper we have examined the structure of Feigen-
baum attractors Mz for functions in

~

x
~

~ using a
devil' s-staircase representation of the attractor mass. Or-
bit scaling can be described in terms of bounds for this
mass curve. Power-law conjugacy determines this global
attractor scaling. It is also evident that for large p the at-
tractor mass is very small except at the edges of its com-
ponent clusters and the nonuniformity of the probability
measure on Mz together with small separation of its ele-
ments forces the capacity D up towards 1 and the infor-
mation dimension o. down to zero. The representative
point on such an attractor spends most of its time at the
cluster edges, only infrequently encroaching into the
centers. Although the orbit is aperiodic it visits (fixed)
neighborhoods of configuration space in a periodic
fashion with arbitrarily long recurrence for large p.

Power-law conjugacy explains how clusters or bands of
the kind just described exhibit intermediate scaling phe-
nomena when a large-p attractor is built up from several,
lower-order (quadratic) extrema. This mechanism is par-
ticularly important in dissipative flows and in the maps
that imitate them: these attractors should have a sharp-
edged banded appearance, i.e., a spiked probability distri-
bution. The fact that the generalized dimensions for all
attractors related by power-law conjugacy are equal gen-
erates a wide equivalence class for Feigenbaum attractors,
but also shows that the set of dimensions does not com-
pletely characterize attractor structure.

Finite or banded attractors whose parameters lie close
to those of Mz look almost fractal. For these parameters
practical estimates of attractor dimension are also close to
those of Mz, thus extending its empirical importance.

The mass curve Mz displays many scaling features for
Mz in a vivid way and demonstrates clearly connections
between their structure, time evolution, and dimension.
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APPENDIX

We noted in Sec. II that the attractor Mz ——W2 I and
consists of a left part M2 4——ML which contains the ori-
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gin, and a right part M3 ~
——Mz'. Since these parts are

mapped cyclically into one another under g each part con-
tains half the mass, M(&It')=M(WL ')= —,'. We call
this the j =0 level of decimation. Clearly Mz' is invari-
ant under g' ' for k = 1,2, 3, . . . . Next consider ML '

under g' ' and y( ' at the j=1 level of decimation. We
may write Mi ——~L, U ~z where ~L ——~2 6 and( ) (&) (&) (&)

Mz ' ——M8 4. ML" and M~' map cyclically into each oth-
er under g' ' and are invariant under g' ', thus,
M(Wtt ) =M(WL") = 4. The left part is invariant under
g' ' for k =2,3,4, . . . and the argument may be repeated
for MIt', which contains the origin. Consideration of the
general case yields the following results: At the jth (j
even) level of decimation the part of the attractor contain-
ing the origin is W2, +, 2,

——MIt'U Mj' with

Wg =W2,.+& z, +2 and Mg =M~j+2j+1pj. WL and Mp
(') (')

are mapped cyclically under g' ' and are invariant under
g' ', thus, M(Mg') =M(ML') =2 J '. The origin
now lies in Mg'. Similar arguments apply to the odd-j
case. The part of the attractor containing the origin is

~t 2J+i =M/'U MIt' with Wg'=M. . .+, and
( )

2J 2J+2J+
WJI =W, +2;+&. We again find for the masses
M(~g') =M(~It') =2 J '. Thus, moving inward from
g (0)= 1 towards x =0 there are clusters of mass
—,', —,', 3', , . . . on the right of x =0 and these are matched
by mass clusters ~, —„,—,4, . . . on the left of the origin
moving inwards from g (1)=a ' to x =0. Consequently
the mass on the left of the origin is —, while that on the

. right is —,. This result is true not only for the universal
function g, but for any single-extremum map supporting a
Feigenbaum attractor.
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