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Electric field distributions in strongly coupled plasmas
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Corrections to the adjustable-parameter exponential (APEX) model recently proposed by Iglesias,
Lebowitz, and MacGowan for electric field distributions in a strongly coupled plasma are defined
and discussed. The results for a neutral point are compared with those from Monte Carlo calcula-
tions for two values of the plasma parameter, and good agreement is obtained.

I. INTRODUCTION

The probability density for electric field values at a neu-
tral atom or charged ion in a plasma is an important
theoretical tool for the description of many spectroscopic
experiments.! For small values of the plasma parameter
(average Coulomb energy/average kinetic energy) there
are several accurate methods to calculate such electric mi-
crofield distributions for both classical’> and quantum®
plasmas. The diagnosis of inertial confinement plasmas
currently produced in many laboratories requires accurate
microfield distributions for strongly coupled plasmas
where the above theories are inapplicable. Recently,
Iglesias, Lebowitz, and MacGowan* have proposed a
phenomenological, but highly successful method to calcu-
late quite simply the microfield distribution function in
strongly coupled plasmas. This method is known as
APEX (adjustable-parameter exponential approximation)
and is essentially an effective independent-particle model.
Comparisons of APEX calculations with Monte Carlo
and molecular-dynamics results for the electric fields at
the highly charged points relevant for laser-produced plas-
mas are in excellent agreement even for very large values
of the plasma parameter. The results of APEX have not
been tested as critically for neutral points where, for
reasons described below, it may be expected to be less ac-
curate. It is of some interest therefore to understand
-better why APEX works so well and to provide a means
for calculating corrections to it when required. One in-
teresting discussion along these lines has been given by
Alastuey et al.,’ but their results do not strictly reproduce
APEX and are furthermore restricted to charged points.
The objective here is to imbed the key ideas of APEX in
the standard Baranger-Mozer cluster representation for
microfield distributions.? In this way some contact be-
tween APEX and standard small plasma-parameter
theories is established, while also providing APEX as the
leading term in a series from which corrections can be cal-
culated.

In the next section the Baranger-Mozer formulation is
briefly reviewed and the structure of the resulting cluster
series is discussed qualitatively. Next, the basic assump-
tions of APEX are given and motivated. Finally, a for-
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mal relationship of APEX to the Baranger-Mozer series is
established and the first two terms of a renormalized
series are given explicitly. To test APEX most critically,
the correction terms are calculated at a neutral point for
two values of the plasma parameter and compared with
results from Monte Carlo calculations. For simplicity, a
one-component classical plasma is assumed throughout.

II. BARANGER-MOZER FORMULATION

The probability density Q(e) for the electric field at a
neutral or charged point is most easily described in terms
of its generating function

dA  _a.
Q(G)Ef We AeF(}u) )
(2.1

F(A)=(e*E) |

where E is the field at a test charge arising from N posi-
tive charges in a uniform neutralizing background and the
angular brackets ( ) denote an equilibrium ensemble
average. In the limit of a formally infinite system the
average becomes translationally invariant, and the loca-
tion of the test charge may be taken as the origin without
loss of generality. The electric field then has the form

N
E= Y E(),
i=1

where E(i) is the Coulomb field due to the ith charge.

The Baranger-Mozer formulation results from two
transformations of Eq. (2.1). The first is motivated by the
fact that the required average is the product of single-
particle functions, exp[iA-E(i)], which have a value close
to one over most of the volume of the system. This sug-
gests a first transformation to the set of single-particle
functions

¢( i)Eeil'E(i)__ 1

(2.2)

(2.3)

which have the more desirable property of being zero over
most of the volume. [The spirit of this transformation to
the functions ¢(i) is similar to the use of Mayer’s f func-
tions for thermodynamic properties of gases.] Substitu-
tion of (2.3) in (2.1) then leads directly to the series
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cdr,fy(ry, . ..

(2.4)

where the Sfo(t, ..., 1,|0) are the usual equilibrium
correlation functlons representlng the probability density
for p charges at 1y, ..., 1,, and the test charge at the ori-
gin. The range of integration for each term in the series
(2.4) is now limited by the functions ¢(i). However, this
restriction is not uniform with respect to A, and particu-
larly for large values of A the functions ¢(i) can differ
from zero over a correspondingly large volume. Conse-
quently, a second transformation is desirable,

F(L)=expG(¢), 2.5

where by a standard theorem of equilibrium statistical
mechanics,6 G (¢) is determined from (2.4) as

fdl'x |0)H¢

i=1

¢)—

sdryhy(ry, ...

(2.6

Here hy(ry, ..., 1, | 0) are the Ursell cluster functions as-

sociated with the set of correlation functions
Sfp(ry, ..., 1, ]0). For example,
hl(rl |0)=f1(r1 | 0) )
2.7

hy(ry,15 | 0)=f5(r,1, | 0)— f1(r; | 0)f (12| O) .

The significant difference between the series (2.6) and that
of (2.4) is that the cluster functions 4, vanish when any
members of the p particles are sufficiently far apart,
whereas the correlation functions do not have this proper-
ty. Consequently, the range of the integrals in (2.6) is
controlled by both ‘the functions ¢(i) and the Ursell func-
tions A,(ry, ..., 1, |0). The latter restricts the integration
to volumes characterized by the correlation length which
depends on the thermodynamic-state condition but is in-
dependent of A. Qualitatively, therefore, the Baranger-
Mozer formalism provides a series representation whose
terms are controlled by the range of ¢(i) for small A and
by the range of the Ursell functions for large A. For
weakly coupled plasmas, the Ursell functions of order
p +1 are typically of the order of the plasma parameter to
the power p, and the series (2.6) may be truncated at first
or second order to good approximation.’

In spite of its success for weakly coupled plasmas, there
are some notable limitations of this formalism to be ex-
pected for applications to the strongly coupled case. For
practical purposes it is too difficult to calculate correla-
tion functions of higher order than 4,. Consequently, the
Baranger-Mozer representation must be sufficiently rapid-
ly convergent for truncation at the first two terms even
for strongly coupled plasmas. A related problem is the
occurrence of the “bare” single-particle fields E(i) in the
functions ¢(i). All other interactions (e.g., interparticle
potentials) have been removed in favor of the correlation
functions that incorporate many-body effects. For a
strongly coupled system it is expected that a proper for-
mulation would eliminate the original fields E(i) in favor

of some more representative quantity involving the corre-
lation effects of surrounding particles. The formal pro-
cedure for carrying out such a “renormalization” has been
developed® and presumably would be required here for
strongly coupled plasmas.

III. APEX INDEPENDENT-PARTICLE MODEL

If all interactions between the plasma particles, except
those with the test charge, are neglected, then the Ursell
functions 4, vanish for ps£1. The Baranger-Mozer series
(2.6) then reduces to only the leading term,

GOp)= [ drin¥(r;|0)(1)
= [ dr, f7(r | 0)(1) . 3.1)

The superscript (0) denotes the corresponding quantity
without interactions among plasma particles. The APEX
model of Iglesias et al.* retains the independent-particle
form of (3.1),

G(¢)—>fdr1ff(r110)¢*(l) , (3.2)

with the assumption that the important effects of correla-
tions can be accounted for by an effective pair distribution
function f7(r;|0) and a screened field E*(i) replacing

E(i) in (i),
P*(i)=(eME D _1) (3.3)

Two constraints are imposed to determine f] and E*(i).
The first is a requirement that the “quasiparticle” field
due to the effective charge density at r; is equal to the
corresponding exact field

Fi(r |OE*(r)=f(r; | 0)E(r,) . (3.4)

The second requirement is that the APEX microfield dis-
tribution yield the exact second moment

[ deQarex(e)e=(E?) , (3.5)

where the right side of (3.5) is known as a simple function
of the plasma parameter.* More specifically the effective
single-particle field E*(i) is arbitrarily (but physically)
chosen to have the Debye form

E*(i))=E()(14+ar)e~*"
=E({)/R(r) ) (3.6)

and the parameter « is adjusted to fit the second-moment
equation (3.5). These conditions then define the APEX
model as

[G ($)]arex= [ dr1 f1(r; |OR (r)*(1) . 3.7

In practice f1(r;|0) is calculated from the hypernetted-
chain integral equation.’

The APEX model is plausible since it incorporates the
key effects for large and small field values € (small and
large A values, respectively). The large fields are predom-
inantly due to configurations with a single-plasma particle
near the test charge. In this case correlations are less im-
portant and the independent-particle model is increasingly

. accurate. Conversely, small fields are due to the additive
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effects of many particles at large distances; the fields due

to distant particles are asymptotically Gaussian distribut- .

ed and characterized by the second moment ( E?) which
is exactly included in APEX by condition (3.5). The main
uncertainty, therefore, is how well APEX represents con-
figurations of particles intermediate between the strong-
field nearest neighbor and large-distance weak fields.
However, this uncertain region diminishes for increasing
test charge since the effect of the test charge is to exclude
plasma particles from the region around it. The excluded
region increases for large test charge so that only the
nearest-neighbor and weak-field configurations are ulti-
mately relevant. Conversely, APEX is expected to be
least reliable for the neutral-point distribution. The con-
dition (3.5) ‘is ill-defined for neutral points since (E?)
diverges in this case; however, the parameter a in (3.6) is
still well defined from (3.5) in the limit of vanishing test
charge.’

IV. RENORMALIZED CLUSTER SERIES

The comments at the end of Sec. II and the success of
APEX indicate that the Baranger-Mozer series could be
improved if the single-particle field in the functions ¢(i) is
replaced by a screened field representing the effects of
correlations in strongly coupled plasmas. In this spirit, a
new functional series is obtained in terms of the renormal-
ized functions ¢* of (3.3) by the definition

G*(¢*)=G(9) @.1)

which is readily obtained from the Baranger-Mozer series
(2.6) and the functional relationship of ¢(i) to ¢*(i),

d=—1+(1+¢*R. 4.2)

This last form is an identity that follows from the defini-
tions (2.3),(3.3), and (3.6). Elimination of ¢ on the right
side of (4.1) using (4.2) gives the desired renormalized
cluster series,

G*(A =3

p=1

ﬁfdrl'-'drph;‘(rl,...,rI,IO)

< 160 | . 4.3)

i=1

The function h; (ry, . ..,1, | 0) is recognized as the pth-
order functional derivative of G (¢),

5G () '
86* (1) + 86*(p) |40

More explicitly the first two terms in (4.3) are found to be
G*(\|¢*)= [ dr b (x| OR (r1)$*(1)
++ [ dridry{hy(r,r | OR (r)R(ry)
—8(ry—1)h(r; |O)R (#{)[1—R (r])]}
X (1) (2)+ -+ - . 4.5)

h;‘(rl, .o

1, |0)= 4.4

The first term of (4.5) is seen to be precisely APEX.
The factor R (r;) occurs automatically here from the re-

normalization and eliminates the somewhat ad hoc as-
sumption of APEX (3.4). It is also interesting to reinter-
pret the second-moment constraint of APEX (3.5), which
is used to determine the parameter « in the screened field.
In the present context it might appear more reasonable to
choose a to improve convergence of the series (4.3). A
similar procedure is used in thermodynamic perturbation
theory where the corresponding parameters of the leading
term are chosen to make the next order terms vanish.!
This is not quite possible here without making a a func-
tion of A. However, it is possible to choose a independent
of A such that all of the corrections to APEX vanish to
order A%. That is, for p >2,

82
FYel [dr - drhy(ny, .1, |01*(1) - - - 6% (p)
A=0

=0. (4.6)

It is straightforward to verify that condition (4.6) is exact-
ly the same as the second-moment condition (3.5). The
latter may be understood, therefore, as a maximization of
the independent-particle contribution relative to the renor-
malized Baranger-Mozer series.

V. NEUTRAL-POINT CALCULATIONS

The discussion at the end of Sec. III suggests that the
corrections to APEX in Eq. (4.5) should be most signifi-
cant for the microfield distribution at a neutral point. In
this case the order of all correlation functions decreases by
1, since the test charge is not present, and (4.5) simplifies
to

G*(¢*)=n [ dr,R(r))$*(1)
++ [ dridry{n®h (r;—1)R (r)R(r3)
—n8(r;—1,)R (r)[1—R ()]}
X (1)g*(2)+ -+, (5.1)

where h(r)=g(r)—1, g(r) is the radial distribution func-
tion,’ and » is the average density. The angular parts of
the integrals of the second term can be performed with a
spherical harmonic expansion, just as in the usual
Baranger-Mozer calculations, with the result that the first
two terms of (5.1) are

G*(¢*)—>[G (") ]apex+AG*(¢%) ,
" (5.2)
AG*(*)=27n [~ dr PR(N[R(r)—1]

X {[jo(2AE*)—1]—2[jo(AE*)—1]}
+4n [ dk[1-S (01 (k) .

In the last term S(k) is the static structure factor for
the one-component plasma® (OCP) and J (k) is defined by

T)=8 3 (= @I + DKL, (5.3)

=0

J,(k)EfO” dr r’R (r)j(kr)[j)(AE*)—8,,] . (5.4)
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TABLE 1. Values of AG/Gappx for several values of A at
both I" values.

: AG /G apex

A r=3.9 r=10
0.02 —0.011 —0.011
0.10 —0.039 —0.044
0.20 —0.061 —0.074

0.50 —0.094 —0.12

1.0 —0.11 —0.15

2.0 —0.10 —0.15
—0.090

5.0 —0.062

Also, j; is the spherical Bessel function of order /. In
practice it appears sufficient to terminate the sum in Eq.
(5.3) at I =3 and to evaluate S (k) from the hypernetted-
chain (HNC) approximation.’ Finally, the parameter a is
found from Eq. (4.6) to be’

2BU ¢ (T)
- al’ ’

where a=(4mwn/3)"13, T'=Be%/a, B~! is the tempera-
ture and U, (") is the excess internal energy of the OCP.
The latter may be determined either from the HNC equa-
tion or from a numerical fit due to DeWitt.!!

Equations (5.1)—(5.5) have been evaluated for I'=3.9
and 10, and Table I displays values of AG/Gspgx for
several values of A at both I" values. For the I'=3.9 case,
the relative correction to Gapgx Obtains a maximum
value of about 10% near A=1. Similarly, for I'=10 the
correction at A=1 is about 15%. Since the correction is
opposite in sign to G zppx, the microfield predicted from

(5.5)

a=

0.7

the corrected APEX theory (APXC) should have a higher
peak value and a smaller width. This expectation is borne
out in Figs. 1 and 2 which show the microfields for the
two cases (e is measured in units of €,=e?/a). In both
figures, the microfield predicted by the first two terms of
the Baranger-Mozer series is also shown. It is seen that
the Baranger-Mozer curves differ substantially from the
APEX and APXC results.

Both figures also show the results calculated from
Monte Carlo simulations on a system consisting of 50 par-
ticles of charge 1 and 50 particles of charge 10~ The
dark circles indicate the distribution of fields felt at the
“uncharged” points. This distribution seems to be in good
agreement with that predicted by APXC, indicating that
APEX does not completely account for perturber-
perturber correlations, and, therefore, overestimates the
probability of large fields.

VI. DISCUSSION

The microfields predicted by APEX for the case of
highly charged radiators, relevant to laser-fusion plasmas,
are very accurate* and its corrections are quite small. The
case of a neutral radiator considered here is of much less
practical interest, but it does help clarify the region of va-
lidity of APEX, and it gives some insight into why it is so
successful.

In particular, the plausibility arguments, given at the
end of Sec. III, for APEX as a model interpolating be-
tween the proper small and large A limits appear to be
borne out in Table I. The most significant corrections
occur in the region near A=1, suggesting a failure to
describe properly electric fields due to configurations of
particles intermediate between the nearest neighbor, and

Ple/e,)

0 | | ] ]

0 04 0.8 1.2 1.6

FIG. 1. P(e)=4me*Q(€) as a function of €, for T'=3.9.
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FIG. 2. Same as Fig. 1, for [ =10.

large distance limits. However, the usual Baranger-Mozer
series truncated at the first two terms also satisfies condi-
tion (3.5) and interpolates between the large A and small A
limits, but it does so much less successfully. Apparently,
the APEX field E* is helping to reduce the size of the re-
gion of intermediate configurations. The second-moment
condition controls errors only in the large A limit, but the
screened field of APEX reduces the small A contributions,
too, since ¢* goes to zero for the relevant configurations
more rapidly than ¢. Indeed, if the Baranger-Mozer cal-
culations are parametrized with a screened field, the re-
sults are substantially improved.*

In spite of its important role in the theory, the precise
functional form of E* remains arbitrary, except that it
satisfies (3.5). A natural alternative to (3.6) would be the
mean force field,” defined in terms of the equilibrium dis-
tribution functions [see Eq. (A5)]. However, the results
obtained using this choice are not as accurate® as those ob-
tained from the parametrized Debye field (3.6).

In summary, APEX is least accurate when perturber-
perturber correlations dominate the correlations of indivi-
dual perturbers with the central point. For a neutral
point, the corrections to APEX involving correlations be-
tween pairs of quasiparticles can be evaluated and the
agreement with Monte Carlo calculations for I' <10 is
quite good. However, it can be seen in Fig. 2 that the
Monte Carlo data seems to give a slightly higher probabil-
ity to small fields than does APXC, indicating that even
more terms in the renormalized Baranger-Mozer series
may be required if I is increased any further. Since the
microfield for a neutral point is not asymptotically Gauss-
ian for large T, it seems probable that for very large I’

both the standard and renormalized Baranger-Mozer
series will have to be summed to all orders to give accu-
rate results.
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APPENDIX: RELATIONSHIP TO OTHER RESULTS

It is straightforward to relate the Baranger-Mozer for-
malism and its renormalization to the formalism used by
Iglesias et al. from the identity

GIp1=GIp0]+ [, arPLEDL

_ ot 3g(1) 3G (1]

=Jo @ J 4T it
A AN

= [, di [ dril"B@)f(r|$(1) (A1)

with the definition
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Fir|g(D)=etEnOGISD]

) (A2)

(It may be noted that this one-particle functional is the
same as that used by Percus to derive integral equations

1

Flx]|$)=eE ny(x|0)+ 3 ‘(;jl‘l‘)‘(fdl'z"'dfphp(l'bu-,rp30)¢(2)"'¢(P) ,
p=2 )

where the Ursell functions A,(ry, ..., 1, | 0) are the same
as those in the Baranger-Mozer expansion.

The approximations discussed in Ref. 5 are based on an
expansion of In[f(r | #)/f (r|0) to order I?, leading to

f(r|¢)=f(r |0)exp[il-Eppp(r)+12A(r)]

—f(r |0 PO 4 28] (A4)
Here Eygr(7) is the mean force field defined by
Enre(n)=E(r)+ [ dr’ hy(r,r' |0)E(r') . (AS)

The expression for A(r) is also readily obtained from (A3)
and depends on &, for p=1,2,3. The result obtained by

1-E*(r) OG* (¢*)
*( *(]))= i1'E¥(r)
frelg*D)=e 550}

=B gt (r]0)+ 3 (—p—_l—l)'fdrz-'-drph;(rl,...,rp)¢*(2)'-'¢*(p) .
2 * .

p=
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for the radial distribution function of dense fluids.>®1?)

Equation (A1) is the formalism on which the discussion
of Ref. 4 is based and Eq. (A2) provides its precise con-
nection with the Baranger-Mozer formalism. More expli-
citly this is '

(A3)

T
neglecting A(r) is an independent-particle model of the
same form as that of APEX except with E*(r)=Eygr
rather than the Debye form (3.6). It may be verified also
that the second-moment condition (3.5) is satisfied.
Nevertheless, this approximation is not as accurate as
APEX, even with the corrections due to A(r).> Further-
more the A expansion is possible only for the charged-
point case. '

The formalism (A1) can be renormalized using the
identity (4.1) to give

G[¢(A)]=f0xdl J drTE*(nf*(r | 4*(D)]

with

(A6)

Truncation of this expansion to first order in ¢* and substitution in (A6) leads to the results of Sec. IV.
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