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The transition parameters for the freezing of two one-component liquids into crystalline solids are

evaluated by two theoretical approaches. The first system considered is liquid sodium which crys-

tallizes into a body-centered-cubic {bcc) lattice; the second system is the freezing of adhesive hard

spheres into a face-centered-cubic (fccj lattice. Two related theoretical techniques are used in this

evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the

theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimen-

tal information is available, the predictions of the two theories agree well with experiment and each

other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some

liquids accurately, shows a temperature dependence of the freezing parameters which is similar to
Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a

dramatic increase as a function of temperature indicating the importance of all the contributions due

to the triplet direction correlation function. Also, we consider the freezing of a one-component

liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly

unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three

lattices considered are compared and found to be strikingly. different. Finally, a new stability

analysis of the bifurcation diagrams is presented.

I. INTRODUCTION

The proper characterization of the liquid-to-solid freez-
ing transition remains an outstanding theoretical chal-
lenge. The various statistical-mechanical approaches to
the study of this transition rely on the pioneering work of
Kirkwood and Monroe, ' who investigated it by studying
the solutions of the nonlinear equations for the single-
particle distribution function, and who identified the tran-
sition with a spontaneous bifurcation of periodic solutions
(which are characteristic of the fluid phase). Broadly
speaking, the subsequent development of this method of
analysis has proceeded in two directions. The first of
these concentrates on bifurcations in the solutions of non-
linear integral equations for the singlet density expressed
in terms of either the pair correlation function or the
direct correlation function. '- These equations arise from
some form of the truncated Bogoliubov-Born-Green-
Kirkwood-Yvon (BBCsKY) hierarchy. The second ap-
proach emphasizes the use of thermodynamic criteria for
the solution of a nonlinear integral equation for the direct
correlation function. '

In the work reported here, a promising method origi-
nally suggested by Ryzhov and Tareeva and extended re-
cently by Bagchi, Cerjan, and Rice is applied to several
physical systems. Specifically, the bifurcation analysis
developed earlier to describe the hard-sphere system is ap-
plied to investigate the freezing transition in liquid sodi-
um and in the system of adhesive hard spheres; the former

crystallizes in the body-centered-cubic (bcc) geometry, and
the latter in the face-centered-cubic (fcc) geometry.

Previous studies of the freezing transition which use a
bifurcation condition have met with limited success. For
example, those approaches using the pair correlation func-
tion fail in the sense that a phase transition is predicted
for one-dimensional hard rods, but succeed in finding a
transition for three-dimensional hard spheres. Corre-
spondingly, the direct correlation function approach does
not predict a transition for the hard rods, but then fails to
predict a transition for the three-dimensional hard-sphere
system. There are clearly two major difficulties here:
First, the theories disagree with each other despite their
similar physical basis; second, they are both incorrect in
their physical predictions.

As emphasized by Kayser and Raveche, both ap-
proaches have identical ph. ysical content and produce
identical bifurcation diagrams. ' The difference in the
two theories arises from an inconsistency in the treatment
of the expansion about the solid-state singlet density func-
tion. The pair correlation function formulation mixes or-
ders in the expansion, and hence is inconsistent when trun-
cated. ' Stated another way, the replacement of the
solid-state pair correlation function by the liquid-state
correlation function is inconsistent within this approach.
In contrast, this inconsistency is avoided in the direct
correlation function formulation since it arises from a sys-
tematic functional Taylor-series expansion ' about the
liquid state.

31 1647 1985 The American Physical Society



1648 CHARLES CERJAN AND BIMAN BAGCHI

The second difficulty above still remains. Removal of
the nonphysical behavior of the direct correlation function
approach is provided in the work of Ryzhov and
Tareeva. This method explicitly includes the discontinui-

ty in the density upon freezing, and thus incorporates bi-
furcation points which are not continuously connected to
the fluid phase solution. That is, the bifurcation point
which is produced by a nonzero discontinuity in the densi-

ty change is chosen to be the physically relevant bifurca-
tion point. In this way the physically important features
of a first-order phase transition underlie the structure and
analysis of the equations.

The Ryzhov-Tareeva (RT) bifurcation technique is
similar in several respects to the thermodynamic theory.
Both start with the direct correlation function formula-
tion; both use an order-parameter expansion for the sing-
let density which may then be decomposed into a system
of coupled nonlinear integral equations; both assume that
the expansion in terms of the liquid-state functions will
converge to the solid-state partition function and that this
expansion is valid away from the transition point (the
series expansion may be analytically continued). The ap-
proaches differ in several important respects also. Al-
though the set of equations derived is the same, their sub-
sequent manipulation differs since equality of the liquid
and solid fugacities is not implemented in the bifurcation
technique. In the bifurcation theory, the compressibility
and fugacities are removed from the integral equations
and thus become derived quantities which can be used as a
test of the theory. Finally, the condition used in the bifur-
cation theory for the evaluation of the transition parame-
ters is that the lowest density should be chosen which is
consistent. with the previously evaluated bifurcation infor-
mation. This choice obviously differs from the equality
of the grand thermodynamic potential and external condi-
tion imposed in the thermodynamic approach.

It should be emphasized that the order-parameter
theory of freezing is a mean-field theory since the fluctua-
tions in the order parameters are not included. As a re-
sult, the equality of the liquid- and solid-phase grand
thermodynamic potentials must be imposed or demon-
strated to satisfy the requirements of an equilibrium ther-
modynamic phase transition. Thus, the bifurcation theory
presented in this paper cannot predict a thermodynamic
freezing transition.

On the other hand, there are compelling reasons to base
a study of the freezing transition upon a bifurcation
analysis. First, the theory may predict a transition from
the liquid to a metastable solid phase. Although care is
needed when interpreting the significance of the metasta-
ble solid, its appearance in a self-consistent theory is of
considerable theoretical interest. Second, it is well known
that a crystalline solid cannot be superheated much above
its melting temperature. The transition parameters
predicted by. the bifurcation theory and those predicted by
a thermodynamic calculation within the same theoretical
framework may provide insight into this important, poor-
ly understood phenomenon. Thus, a bifurcation calcula-
tion may complement the Lindemann criterion in the
sense that the bifurcation theory uses only liquid-state in-
formation whereas the Lindemann criterion is based solely

on solid-phase information.
In fact, our theoretical calculations seem to justify these

expectations. We find that the transition parameters
predicted by the present bifurcation theory are indeed very
close to the predictions of the thermodynamic theory of
Ramakrishnan and Yussouff.

In the work of Bagchi, Cerjan, and Rice the formalism
of Ryzhov and Tareeva was extended to include higher-
order parameters in the Fourier expansion of the singlet
density in terms of the reciprocal lattice vectors of the fcc
lattice. The improved version of the theory produces
liquid- and solid-phase densities at the transition point
which are in satisfactory agreement with computer simu-
lations for the hard-sphere system. This improvement in
the theory for the hard-sphere system leads naturally to
an examination of the theory for other systems and lattice
geometries.

Our motivation for studying the bcc structure arises
from the observation that many fluids, e.g., sodium, form
a bcc lattice. By using the experimentally determined
structure factor of the liquid phase, a freezing tempera-
ture can be predicted, in addition to a value for the solid
density. The predictions made below for sodium consti-
tute the first physical application of the bifurcation theory
in the form suggested by Ryzhov and Tareeva. Further-
more, the results for sodium are representative of the al-
kali metals in general, since it is known that the interpar-
ticle potentials, and hence their derived properties, satisfy
a scaling relationship. " This work then, is a preliminary
step in a rigorous investigation of the applicability of the
general bifurcation analysis to real systems.

The second application presented below, freezing of a
fluid of adhesive hard spheres, serves as a useful model
study. Indeed, the model was first proposed to interpret
certain discontinuities observed in computer-simulation
studies of Lennard-Jones fluids. ' This system is also of
interest in the study of the critical points associated with
the gas-to-liquid transition and it may display a triple
point. ' The model is useful for empirical fits. It has
been shown to give an accurate description of the struc-
ture factors for liquid lead and aluminum at high densi-
ty. ' Since an analytic expression for the temperature-
dependent direct correlation function is available, ' the
statistical-mechanical analysis of freezing may be
developed without the constraints imposed by limited ex-
perimental data or by approximations needed to obtain
the direct correlation function for the Lennard- Jones
fluid.

In addition to a calculation of the transition parameters
for several systems, a general analysis of the relative sta-
bilities of different crystal lattices near the bifurcation
points is given. A consequence of this analysis is the pre-
diction that no transition from a one-component simple
liquid to a simple cubic (sc) lattice structure is possible
within a two-order-parameter theory. The stability
analysis also justifies some conjectures proposed earlier by
Bagchi, Cerjan, and Rice.

The structure of the present work is as follows. Section
I contains a description of the general theoretical back-
ground necessary for the specific applications presented
later. Section II gives the results of the analysis for both
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the body-centered-cubic lattice for sodium and the face-
centered-cubic lattice for the adhesive-hard-sphere model
and the stability analysis mentioned above. Section III
presents a short discussion of these results and their phys-
ical significance.

II. THEORETICAL BACKGROUND

The notation adopted below is that of Bagchi, Cerjan,
and Rice (hereafter referred to as BCR). The equations
and their derivations are given in greater detail in BCR
and will be quoted without explicit justification below.
The elements required for the bifurcation analysis and
subsequent transition density determination for either bcc
sodium or the fcc adhesive hard spheres are the
reciprocal-lattice vectors of the solid and a density and
temperature-dependent expression for the Fourier
transform of the direct correlation function of the homo-
geneous liquid phase.

The analysis then proceeds in two distinct steps. First,
the bifurcation diagram is constructed solely from the
structure of the nonlinear equations and the geometric in-
formation contained in the reciprocal-lattice vectors.
Second, liquid and solid densities are determined from
some specific direct correlation function using consistency
conditions on the bifurcation points found in the first
step. The reciprocal-lattice vectors which are included in
the analysis are selected on physical grounds. Namely,
successive lattice vectors are chosen in terms of increasing
magnitude; if two vectors have identical magnitude, the
set with the largest number of terms which produces the
maximum value of the Fourier-transformed direct corre-
lation function is the favored choice. Retention of one set
of vectors is denoted a one-order-parameter theory, two
vector sets a two-order-parameter theory, and so forth.
The corresponding nonlinear equations for these
reciprocal-lattice vectors are solved for the one- and two-
order-parameter theories in the same fashion as that
presented in BCR.

Briefly, this system of equations arises from an expan-
sion of the density in terms of the liquid density pi and
reciprocal-lattice vectors

pi+ ~p(r) =—exp c2 rI2,pi Ap r2 dr2
+S ~l

(4)

is obtained. In Eq. (4), zi and z, are the liquid- and solid-
phase fugacities. Introducing Eq. (1) into Eq. (4), after a
few manipulations the following system of nonlinear
equations for any reciprocal-lattice vector is found:

f drgq (r)exp[B(r)]
~qJt'q. =

p, f drexp[B(r)]
(5)

with

Aq =—f dry (r),

and

B(r)=pi g c P g (r),
q (~0)

(7a)

iqa ~)2
Cq = fC2(r12)e dr2 q (7b)

~q —pscq (7c)

(Sa)

where

D (r) =P&rt1o g C3(q, O)gq gq (r),
q (&0)

That is, cq is the Fourier transform of the direct correla-
qa

tion function evaluated at the magnitude of the quoth
reciprocal-lattice vector. Equation (5) is the set of non-
linear equations yielding the bifurcation diagrams. By
truncating at the nth reciprocal-lattice vector, n simul-
taneous equations are obtained in terms of n order param-
eters. As emphasized in BCR, the solution to these equa-
tions is universal in the sense that only structural infor-
mation from the solid phase is needed and no interparticle
potential-dependent information is used at this stage.

In a first approximation, Eq. (5) is given by

f gq (r)exp[B(r)+D(r)]dr

ps f exp[B(r)+D(r)]dr

p(r) =pi+ &p(r)
a

C3(q~, O) = f e3(r»r2, r3)e dr2 q ~ q

(Sb)

with

=pi+ pig 0q.kq. (r)
qa

1
lirn — d r p(r) =p,
v~oo f v

t

1 bp(r) —iq r
e dr,qa

where 6 is the volume of a unit cell. g'q (r) represents the
qa

quoth reciprocal-lattice vector. Then, using the generating
functional expansion for the inhomogeneous singlet densi-

ty in terms of the n-particle direct correlation functions
c„,' ' and truncating after one term, the basic relation

and where the terms c3(q, q') and higher-order correlation
functions have been neglected, which constitutes the ap-
proximation. It is interesting to note that for Eq. (Sa) the
bifurcation analysis will remain unchanged, but the calcu-
lated transition densities will change. The quantity
c3(q, O) can be obtained from the relation

BC2
c3(q,O) = (q )

BpI

if a reliable estimate of the derivative is known.

A. Bifurcation analysis

After locating the appropriate bifurcation points A.
* of
&a

the diagram, application of the subsidiary conditions
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A,» =pscq (ps~pI ) (9a) order-parameter theory expression for the ratio of fugaci-
ties

~ps
(9b) Pl 1

exp
p,

Ps —Pl &q f~g' (r)
c ~ e0 dl

(p,',pi ) =A,* (9c)

produces the liquid and solid transition densities pl, p', .
Only the first two conditions are necessary for the one-
order-parameter theory, while the third condition is need-
ed for the two-order-parameter theory. The first and
third conditions are consistency conditions on the densi-
ties and bifurcation points. The second condition, Eq.
(9b), ensures that the smallest densities are chosen to satis-
fy the consistency equations. Equation (9c) is equivalent
to the graphical condition that the pair (A,», A.» ) lie onq q&

the freezing curve.
It is worth emphasizing that the condition (9b) is quite

general and is likely to be satisfied for all liquid-to-solid
phase transitions. This condition arises solely from the
convexity of the function A,» (p„p~ ), which underlies the

qa
short-range ordered structure of the liquid phase at high
density. The existence of this condition is essential to
determine unique transition densities from the bifurcation
analysis.

So far, two approximations have been introduced.
First, neglect of the triplet and higher-order correlation
functions incurred by writing Eq. (4) and, second, trunca-
tion of the order parameter expansion (1) at second order.
Because of these approximations, bifurcation analysis does
not produce solutions with equal thermodynamic poten-
tial for the two phases. This point will be discussed at
greater length below.

Ramakrishnan and Yussouff, in their calculation of
freezing parameters for the liquid-sodium bcc transition,
observed that the triplet correlation function for the liquid
makes an important contribution. In fact, for this partic-
ular system, the neglect of the triplet correlation function
introduces a more serious error than the truncation of the
order parameter expansion for the density after the second
term Theref. ore, it is worthwhile to investigate the effect
of the triplet correlation function on the results of the bi-
furcation analysis. More details will be given in a future
publication. Here, only the modifications that arise in the
above equations are quoted.

In the BCR analysis of the bifurcation diagrams for
three-, two-, and one-dimensional hard-sphere systems,
the existence of a "universal" bifurcation point at A,» =1

qa
was noted. As investigation of the physical relevance of
this bifurcation point for fcc lattices led BCR to conjec-
ture that the fcc bifurcation point at A,q

——1 is to be iden-
qa

tified with the limit of packing of the hard-sphere system.
For example, in the three-dimensional case, this bifurca-
tion point predicts densities which are very close to the
liquid random close-packed value and to the crystal
close-packed value. In one dimension, it corresponds to
the maximum achievable densities p, =pl ——1.0. In fact,
an even more definite statement about the change in the
relative fugacities of the liquid and solid phases about a
bifurcation point may be made. Starting with the one-

and using the relationship obtained in BCR
(r) PA.

e "~~ dr=e (11)

where P= b» /2, a simple expression for the derivative ofqa

(z&/z, ) with respect to A,» is found, namely

p

ax, z,
=

ax,

Pl (ps pI)eo pl 2 PP A,

e e
P, hq &a

Pl (p, —
p~ )co/pI+ e

~s~q.

a@,
X2P1tq A,»

qe

(12)

Near a bifurcation point the third term in Eq. (12) dom-
inates all others, leaving

~1
~ =const&

Zs qa qa

Bgq

q A, =A,
qa qa

(13)

0.8—

kq

0.6—

04—

0.2—

0.0—

—0.2
0.95 0.97 I.0

I

I.05

~a
FIG. 1. Three-dimensional fcc bifurcation diagram display-

ing symmetry about the A, q axis and two bifurcation pointsqa
within the one-order-parameter theory.

Since the constant term is intrinsically positive, this rela-
tion demonstrates that it is strictly the sign of the deriva-
tive near the bifurcation point which indicates the direc-
tion of the stability change in the system. Figures 1 and 2
illustrate this result for the three-dimensional and one-
dimensional fcc one-order-parameter theories, respective-

:ly. Near A,»
——1, the change in gq with respect to A,» is

of opposite sign for the different dimensions. As demon-
strated by 8CR, the one-dimensional system has no

l.0
I I
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with

0.2— hq ——54 . (14b)

0 I—

0 I

.6 0.7 0.8 0.9 I.O
—O.I—

-02—

kq (r)
re dr

54pq —— (15)

For the one-order-parameter theory, the system of equa-
tions (5) becomes

FIG. 2. One-dimensional bifurcation diagram displaying
symmetry about the A,q axis and one bifurcation point within

&a

the one-order-parameter theory.

liquid-to-solid transition, whereas the three- and two-
dimensional systems do. This comparison then suggests
that the changes in the sign of the derivative do indicate a
change in the stability of the system about the bifurcation
points. For the three-dimensional fcc system the stability
properties will reverse at the next bifurcation point,
Az

——0.973. In fact, the above analysis predicts that the
qa

upper branch of the ordered phase becomes more stable,
and the lower branch becomes less stable, than the homo-
geneous liquid phase as one moves away from the bifurca-
tion point A,q

——0.973.
It should be noted that the bifurcation diagram for one

particular three-dimensional system, the simple cubic lat-
tice, is similar to that for the one-dimensional system (see
Fig. 3) in that it does not display a transition in the first-
order-parameter theory and has the same positive deriva-
tive sign about the A,q

——1 bifurcation point. The highly

unfavorable nature of this transition has also been noted
by Ramakrishnan and Yussouff on the basis of topologi-
cal connectivity arguments.

For the simple-cubic lattice, the first set of reciprocal-
lattice vectors is given by

2' 2'
gq (r)=6 cos x +cos y + cos

qa a a

But this expression, in three dimensions, reduces to a
one-dimensional equation

Wq =

a 2m.
cos x exp 6k~ gq cos x dx

0 a qa qa a

a 2'
exp 6A,~ gz cos x

0 qa qa a

(16)

which has a bifurcation curve similar to Fig. 2. No freez-
ing transition is predicted for the one-order-parameter
theory. Likewise, a calculation with the introduction of a
second order parameter was performed and does not in-
duce a transition. Hence any transition predicted by this
theory is weak in the sense that it must occur, if at all,
with the inclusion of triplet correlation functions. This
result holds for one-component systems because of the
form of Eq. (5). In multicomponent systems, such as
molten NaC1, the basic structure of these equations is al-
tered and the analysis here must be modified accordingly.
From the bifurcation diagrams presented here and in
BCR it is clear that the bifurcation analysis alone pro-
vides useful information concerning the physical differ-
ences expected upon freezing to different lattice structures
and as a function of dimensionality. The number of bi-
furcation points, the symmetry of the diagram, and the
relative change of sign of the derivatives around the bifur-
cation points all yield qualitative information about the
nature of the transition.

(14a) B. Thermodynamic calculation

0.2

O. I—

0.0

—0 I—

Instead of applying Eq. (9b), a condition which forces
the equality of the thermodynamic potential for the two
phases may be employed. For this calculation, the non-
linear integral equations given in the form above were
used to find the order parameters. The compressibility co
must be known from an analytic expression for the direct
correlation function, or from experimental data. As men-
tioned above, this information is necessary for the
Ramakrishnan-Yussouff (RY) theory but not for the bi-
furcation analysis. The thermodynamic potential in terms
of the order parameters and densities ' '

—0.2 I

0.9

I

I

I.Q b, W=(p!CO —1)PO+ 2 COpl!t!0+ 2 p!g 0q
qa

(17)

FIG. 3. Three-dimensional sc bifurcation diagram displaying

symmetry about the kq axis and only one bifurcation point
qa

within the one-order-parameter theory. This diagram is qualita-

tively similar to the one-dimensional bifurcation diagram.

was used and the lowest values of the densities that pro-
duce A8'=0 were sought. These values provide another
prediction for the transition densities. The thermodynam-
ic calculations were carried out by solving Eqs. (Sa) and
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(17) simultaneously. Equation (Sa) provides the entire
order-parameter plane (Po, A,o) while Eq. (17) is the
Maxwell construction in this plane. Thus the liquid den-
sity at transition predicted by this method must be higher
than or equal to the transition density predicted by the bi-
furcation analysis.

This thermodynamic theory is similar to the RY
analysis, though not equivalent to it. It differs from that
theory in the choice of the density constraint and the
self-consistent determination of the reciprocal-lattice vec-
tor used to calculate the order parameters. In the strict
RY analysis, the values of these reciprocal vectors are
fixed at their maximum values. The procedure above is
an extension of previous thermodynamic calculations be-
cause it relaxes this constraint.

by the set

or

gq (r)=8 ms
4'

cos
277 2'

COS Z
a a

2% 4m 2&+cos x cos g cos z
a a a

2m 2m 4m
X COS g COS Z

a a a
(19)

277 (+2, +1,+1), (+1,+2, +1), (+1,+1,+2).

III. RESULTS

Before proceeding to the specific systems it is perhaps
worthwhile to mention the general calculational scheme
employed. Once the number of order parameters to be
used is fixed and the associated reciprocal-lattice vectors
formed, the nonlinear system of equations is solved using
a modified finite-difference Levenberg-Marquardt' algo-
rithm for the root search. The required integrals over the
unit cell were evaluated by a 20-point Gauss-Chebyshev
quadrature in each of the three spatial dimensions. This
procedure produced a stable root search; the solutions ob-
tained were as accurate as the integration scheme.

A. Body-centered-cubic systems

As outlined above, the application of the bifurcation
analysis requires the reciprocal lattice vectors and the
density-dependent direct correlation function of the
liquid. The first reciprocal-lattice vector (smallest magni-
tude) of the bcc lattice is characterized by the set of vec-
tors

(+1,+1,0), (+1,0, +1), (0, +1,+1) .

with magnitude

(20)

with

f gq (r)exp[Aq Pq gq (r)+Aq gq jq (r)]dr

f exp[A, q fq gq (r)+kq gqgq (r)]dr

(21)

I qpl =, ~~=~&
I q I

.

The corresponding values for b,~ and b,~ are 12 and 24,qa q&

respectively.
The two-order-parameter theory yields two equations

from the system in Eq. (5)

f kq (r)exp[~~ 4q 4q (r)+ ~~&fqjq (r)ldr

f exp&~ Wq kq (r)+~~ gqjq (r)ldr

or ~q =ps&q

gq (r) =4 cos

+cos

2& x cos

2&
X COS

a

2%
3'

qp ps qp

4q =Pl~p~~q

0q, =p~~p, 4,,

(22)

2'+cos g cos
a

2'
Z

a

V'2 =2~&2(p, n)'"
a

Likewise, the second reciprocal-lattice vector is described

which has 12 members. Here, a is the lattice spacing so
that the volume of a unit cell is a . Since there are two
lattice points in each cell, the solid density p, is 2/a so
that a =(2/p, )'~ . The magnitude of the first reciprocal-
lattice vector may then be expressed as

The simpler one-order-parameter theory is obtained from
Eq. (19) by setting gq

——0.
At this point, the bifurcation diagram for the bcc sys-

tem may be calculated. Figure 4 displays the two-order-
parameter-theory results, and Fig. 5 depicts the freezing
curve obtained. It is immediately apparent that the bcc
bifurcation curves differ from the corresponding fcc
curves since the symmetric displacement of the curves
about the A,q axis is lost in the bcc system. As Kirkwoodqa
and Monroe pointed out, ' the symmetry in the fcc case is
due to a translational invariance in the lattice. By displac-
ing the origin from (0,0,0) to ( —,, —,, —,

'
), gq (r) changes sign
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FIG. 4. Th ree-dimensional bcc bifurcation diagram in the
two-order-parameter theory. Th d'e &agram is asymmetric and
only possesses one bifurcation point.

so that a compensating change in sign for 1tq leaves the

system (5) mvariant. This feature is also obviously shared

No tran
by the simple-cubic structure, but not b the b 1

o translation of the origin preserves the system of equa-
tions. igure 4 shows this asymmetry graphically. Note
that there is no bifurcation point at A,q

——1.
Thhe one-order-parameter theory possesses a bifurcation

point at A,q
——0.673 which signals the onset of the freez-

e ~

ing transition. The two-order-parameter th eory again
yie s a amily of similar bifurcation curves, all of which
are coincident at A, =1, ~rq

——0. The freezing curve con-

structed for the two-order-param t the er eory gives the
functional relationship between A, d A, . Th'an q

. is infor-

mation and Eq. (9b) are sufficient to evaluate the densities
. at the transition.

Two different three-dimensional bcc systems were ex-
amine in this fashion: hard spheres d 1' 'd d'

P
n e irst ease, the Wcrtheim-Thiele' 1 t'iee soution of the

rec corre ation functionercus- Yevick equation for the dir t 1
' i

is used, while x-ray diffraction data reported for the sodi-
um structure factor is used for the second. I b h

~ ~

stances it is possible to apply the subsidiary conditions of
Eq. (9) to determine the densities, since both direct corre-
lation functions are monotonicalla y increasing unctions of
pI. The Wertheim- Thiele solution i 1n is an ana ytic unction,
so t ere is no difficulty in its application. However, the

en en irect correlationconstruction of the density-dep d t d'

unction from the
lem.

experimental data presents a new b-ew pro-

Thce experimentally observable quantit is thi y is e structure
ac or, q, ), as a function of momentum q and tem-

temperature-dependent direct correlation function c( T)oncq,

( )
S(qT) 1—
piS(q, T)

(23)

The required values of S(q, T) as a function of
obtained b usi

unc ion o q were

oints. On
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TABLE I. Freezing transition parameters for liquid sodium.

One-order-
parameter theory

Two-order-
parameter theory

Two-order-
parameter theory with
thermodynamic
constraint (68 =0)

Thermodynamic
consistency check

RY (one order)
RY (two order)
Experimental

0.672

0.595

0.606

0.65

0.69
0.67
0.677

0.106

0.117

0.17

0.07
0.123

0.490

0.690

0.754

0.88

0.700
0.630

0.414

0.485

0.68

0.310
0.340

0.0245

0.0236

0.0237

0.0242

0.0254

0.0262

0.0256

0.0256

0.0267

0.0261

0.072

0.084

0.08

0.103

0.048
0.029
0.026

71.2

210.5

190.0

100.0

99.26

the original RY technique. ' The increased accuracy
arises from our retention of the solid density dependence
of the reciprocal-lattice vector magnitude and to our full
treatment of the liquid-state information.

As is obvious from Table I, the predicted transition
densities for both theories are in very good agreement
with the experimental results. There are, though, two un-
satisfactory features. First, the predicted transition tem-
perature worsens upon inclusion of the second-order pa-
rameter. The wide variation in temperature is due to the
very weak dependence of the liquid-sodium structure fac-
tor upon the temperature. Large variations in tempera-
ture have little effect upon the density, as is readily seen
in Eq. (24). One interesting feature of the results is that
the predicted transition densities and temperature are al-
most identical for the bifurcation analysis and thermo-
dynamic analysis within a two-order-parameter theory.
We believe that this agreement is due to the small meta-
stability of the solid phase.

As a consistency check on these results, the temperature
was fixed at the experimental value, 100'C, and the tran-
sition densities then evaluated. The predicted densities are
shown in Table I.

The second unsatisfactory- feature of our results is the
overly large fractional density change. In fact, the frac-
tional density change increases from 7.2% to 8.5% upon
inclusion of the second order parameter. This trend indi-
cates that th'e level of theory employed here is insufficient;
the triplet correlation function and a few more order pa-
rameters should be added. We found that inclusion of the
triplet correlation function reduces the fractional density
change from 8.5% to 4.5%. Though the improvement is
substantial, it is still not accurate enough.

+a), r &O

P(r) =u(r)= —in[(a/12m)(a —cr)], cr &r &a
0, r~a

(26)

1 ~

i

1.0—

0.6—
0.5—
Q4

Q, 3

0.2—

where ~ is a dimensionless measure of temperature. A
thorough discussion of the properties of this system, in-
cluding the solution of the Percus-Yevick equation, is
given by Baxter. ' The necessary details of the Fourier-
transformed direct correlation function appear in the Ap-
pendix. It is important to note that this system has a tri-
ple point, though we are unaware of either theoretical
analysis or computer simulation that has addressed this
feature.

The study of the adhesive-hard-sphere system was re-
stricted to the fcc lattice structure. Previous bifurcation
results for this lattice were used. The solution of Eq. (9)
was performed to several fixed temperatures. The tem-
perature dependence of the structure factor is given in
Fig. 6. The predicted transition densities as a function of
temperature ~ are noted in Table II. The results using the

B. Adhesive hard spheres
0

0
I

0.4 0.8 1.2 1.6 2.0 2.4

1/~

The second set of results arises from a study of the
adhesive-hard-sphere system. This model incorporates
some features of the more realistic Lennard-Jones system
and shows a gas-liquid transition. The potential has the
form

FIG. 7. Scaled temperature variation of the fractional density
change. Solid line indicates the thermodynamic result; dashed
line is the bifurcation result.
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TABLE II. Three-dimensional (fcc) adhesive-hard-sphere freezing transition parameters as a func-
tion of scaled temperature v..

pi ps

0.3
0.4
0.5
1.0
5.0

0.643
0.626
0.625
0.654
0.710

0.246
0.253
0.Z53
0.242
0.220

0.513
0.706
0.767
0.865
0.885

1.388
1.335
1.297
1.209
1.110

1.706
0.940
0.710
0,400
0.260

(Hard-sphere
limit)

0.720 0.217 0.884 1.085 0.227

RY theory are collected in Table III.
The single most interesting feature of the results

displayed in Tables II and III is the pronounced tempera-
ture dependence of the fractional density change $0. This
change is a decreasing function of r. It is noteworthy that
the computer experiments on the Lennard-Jones system
show a similar trend in the fractional density change on
freezing. The decrease is less dramatic for the Lennard-
Jones system, though, from a value of about 13% at
T' =0.75 to about 5% at T*=2.75. In a separate calcu-
lation, BCR found that the use of Weeks-Chandler-
Andersen (WCA) perturbation theory in the present
theoretical framework fails to reproduce the "experimen-
tal" fractional density change of the Lennard-Jones sys-
tem. These workers attributed the failure to the inadequa-
cy of WCA theory. Thus it is interesting to find that the
adhesive-hard-sphere calculation reproduces the expected
temperature dependence of $0. This temperature depen-
dence is chiefly attributable to the attractive part of the
potential.

The temperature variation of Po with r is plotted in Fig.
7. It should be noted that $0 reduces to the hard-sphere
values at large values of w. The rapid increase in $0 as r
is decreased below a value of 0.75 is rather puzzling.
Since the lowest value of ~ examined is much higher than
the triple-point value (which must be less than the critical
temperature r, =0.1), the only consistent explanation is
that the neglect of the triplet correlation in Eq. (4) is too
drastic an approximation.

In order to rectify this deficiency, we tried including
two triplet contributions, c3(0,0) and c3(Ci,0), but

neglecting c3(Cx,Cx') since it could not be evaluated. It
should be emphasized that we do not know the relative
importance of the c3(Cx,o') term, so the approximation

generated by retaining these two terms and ignoring the
third is uncontrolled. Indeed, including just two of the
triplet contributions produced an even larger value of $0
at small values of w. It appears then that all the triplet
terms must be included. The magnitude of this contribu-
tion, though not totally unexpected, implies a serious
inadequacy of the present theories of freezing.

IV. DISCUSSION

Let us first summarize the basic results of this work.
We have considered crystallization of liquid sodium into a
bcc lattice and of an adhesive-hard-sphere fluid into a fcc
lattice. In each case two separate calculations were per-
forrned. The first of these attempted to calculate the
lowest liquid density at which a periodic solidlike solution
can first appear. At this density, the liquid is therrno-
dynarnically more stable than the solid phase so that the
predicted solid density is a metastable extension of the

'

solid phase. Despite this phenomenon, this approach has
the advantage of predicting the freezing transition solely
from structural information independent of any subsidi-

ary thermodynamic constraint. The second, thermo-
dynamic, calculation presented is a careful implementa-
tion of the freezing theory of Ramakrishnan and Yus-
souff. The predicted transition densities for the liquid-
sodiurn bcc transition are in excellent agreement with the
observed results, but the predicted transition temperature
is not correctly reproduced. Another failure is the predic-
tion of the fractional density change which is too large.
One interesting result that arises is the agreement of the
bifurcation and thermodynamic theories with a two-
order-parameter calculation. This close agreement be-
tween the two theories may be due to the fact that the

TABLE III. Three-dimensional (fcc) adhesive-hard-sphere freezing transition parameters from the

thermodynamic constraint condition as a function of scaled temperature.

pI ps

0.4
0.5
0.75
1.0
2.0
5.0

0.567
0.587
0.591
0.629
0.633
0.636

0.278
0.284
0.275
0.282
0.265
0.257

0.815
0.865
0.842
0.883
0.856
0.837

0.600
0.666
0.631
0.689
0.643
0.614

0.58
0.81
0.92
0.94
0.93
0.90

1.19
1 ~ 12
1.06
1.07
1.02
0.97

1.050
0.383
0.152
0.143
0.090
0.080
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metastable branch of the solid phase is quite small because
a solid cannot be superheated much above its melting
point without destroying its long-range order. Thus, the
"van der Waals" loop in the coexistence region is quite
narrow for the freezing transition. Caution is warranted,
though, in the identification of this agreement with exper-
iment because of the approximations made in both of the
calculations.

Interesting results for the adhesive-hard-sphere liquid-
fcc transition are also obtained. The main result is the
temperature dependence of the fractional density change
Po upon freezing. This dependence is similar to that in a
Lennard-Jones system. At small values of r, Po becomes
abnormally large. We attribute this result to the impor-
tance of the triplet direct correlation function.

A consideration of a one-component liquid freezing
into a simple-cubic lattice is found to predict no transition
simply on the basis of the bifurcation diagram. This dia-
gram is similar to that found for a one-dimensional sys-
tem in that there is no jump discontinuity in the order pa-
rameters. We conclude that a first-order phase transition
from any one-component liquid to a sc lattice is highly
unfavorable. Physically, this may be attributed to the
poor connectivity of the sc lattice, as noted previously by
Ramakrishnan and Yussouff. In the bifurcation analysis,
no explicit use is made of liquid-state information other
than translational invariance.

Finally, we suggest the possibility of applying the
order-parameter theory above to describe the coexistence
of all three phases: gas, liquid, and crystalline solid. Re-
cently, Imry and Schwartz have considered this problem
in the context of a modified lattice-gas model and have
found that by coupling the crystalline order parameters
(the Po s above) to the usual liquid-gas transition, it is
possible to produce phase diagrams with the correct quali-
tative features. The adhesive-hard-sphere system would
be a natural system to study in this fashion for coex-
istence of the three phases for two reasons. First, this is a
simple system which displays a gas-liquid transition.
Second, an accurate analytic expression for the direct
correlation function is available. The work above indi-
cates, though, that information about the triplet direct
correlation functions is necessary to achieve this goal. We
feel that further study of this aspect of the problem will
be worthwhile.
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APPENDIX

where

1 —Q(k)Q( —k)

P
(A2)

Q(k)=1 —2mp f dr e' 'Q(r) . (A3)

This form is more convenient to manipulate since Q (r)
relates c(r) and h (r) over finite ranges despite the long-

range nature of h (r). The function Q(k) must satisfy cer-
tain regularity conditions: it may only possess roots in the
lower half of the complex plane. This condition on the
roots is used to distinguish the physical and nonphysical
domain of the solution.

The function Q (r) may be shown to have the form'

i, 2

Q (r) = (r a—)+aP—(r —a)+
2 12

where

a =(1+2' —p )/(1 —q)

P= —,(p, —3q)/(1 —g)

(A4)

(A5)

and q is the usual package fraction g =vrpa /6 and where
p. =k,g(1 —g). Once the parameter A, has been evaluated
the Fourier transform for Q(r) and hence c(r), follow im-
mediately. At this point the Percus- Yevick approxima-
tion is used to establish a condition between the dimen-
sionless temperature ~ and the parameter A,

1+rI/2
(1—g)' (1—g) 12

+

Since this equation is simply a quadratic it is trivial to
solve for A in terms of g and r, the only remaining diffi-
culty is the choice of physical roots. As Baxter argues by
using the regularity conditions, the physical root is the
value which satisfies

p&1+2' . (A7)

If both roots fulfill this condition, then the smaller one is
the correct choice, by thermodynamic arguments.

Using the physical value of p above, all the required
variables may be evaluated. The final form of the Fourier
transformed direct correlation function becomes

c(k) =2vr[Q(k)+Q( —k)] —(2') pQ(k)Q( —k),
where

(A8)

The development and notation in this appendix are due
to Baxter. ' More details may be found in his review arti-
cle. By use of a factorization theorem, the Fourier
transform of the direct correlation function

a
c(k)=4~f drcos(kr)c(r) (Al)

0

for the adhesive-hard-sphere potential in Eq. (26) may be
decomposed into the product
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2

Q(k)+Q( —k)=2 +a p+D +[2a(a+p)cos(ka) —2ap]/k —2m sin(ka)/k
2 k

(A9)

Q(k)Q( —k)=
2

+a p+D D—(2D+a a+2pa )cos(ka) k +(2aaD —a ap —2a p )sin(ka)/k

+[(2p a 4aD—)+(4aD —2a p +a~a )cos(ka)]/k —2aa sin(ka)/k +2a [1—cos(ka)]/k, (A1())

where D=(A, /12 —a/2 —p)a . These expressions provide the necessary density- and temperature-dependent function for
transition density evaluation.
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