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Generation of squeezed states via degenerate four-wave mixing
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A microscopic model of degenerate four-wave mixing including the quantization of the medium is

given. Thus the full effects of loss and spontaneous emission on the squeezing attainable are
analyzed. We examine separately the squeezing in the output fields for counterpropagating four-
wave mixing, copropagating four-wave mixing, and four-wave mixing in a single-ended optical ring
cavity. Good squeezing is possible only in certain limits of atomic parameters.

I. INTRODUCTION

There has been much recent interest in the generation
of squeezed or two-photon coherent states. ' Such states
have less noise than a coherent state in one of the field
quadratures and can exhibit a number of distinctly quan-
tum features, such as sub-Poissonian statistics. They have
potential applications in optical communication systems
and gravitational radiation detectors. Potential schemes
for producing squeezed light include the degenerate
parametric amplifier, ' degenerate four-wave mix-
ing, " ' resonance fluorescence, ' ' and two-photon op-
tical bistability. ' ' More recently Collett and Walls'
have suggested squeezing to be possible in an output mode
for dispersive optical bistability and second-harmonic and
subharmonic generation.

Degenerate four-wave mixing was first proposed as a
way to produce squeezed states by Yuen and Shapiro. "
Their analysis assumed an ideal 7' ' nonlinear polarizabil-
ity and made assumptions such as nondepletion of the
pump modes and zero loss. The work of Bondurant
et aI. ' and Milburn, Levenson, and Walls has con-
sidered the effect of quantization of the pumps and sug-
gests this to be, in appropriate limits, no real barrier to
squeezing. The effect of loss has been studied by Reid
and Walls' and Bondurant et al. ' and has been shown to
significantly reduce squeezing. It has recently been sug-
gested by Kumar and Shapiro ' that one can attain good
squeezing even in a lossy medium by using a forward or
copropagating beam geometry. Their work, however, as-
sumes an ideal polarization and does not include addition-
al atomic fluctuation terms present at higher pump inten-
sities. The recent treatments of the quantum statistics of
four-wave mixing by Perina et al. and Jansky and Yus-
kin also neglect these terms.

In this paper we present a unified treatment of degen-
erate four-wave-mixing systems in which the effects of
loss and spontaneous emission on the squeezing are ac-
counted for. The medium is modeled as an ensemble of
two-level atoms characterized by an electric dipole Ino-
ment, transverse and longitudinal relaxation times, and an
atomic resonance frequency. Thus we develop a micro-

scopic model enabling calculation of squeezing in terms of
atomic variables. This is in contrast to the macroscopic
model of the nonlinear polarization used in the work of
Bondurant et al. ' and Kumar and Shapiro ' and which
we show to be valid only in certain limits. In Sec. II we
follow the approach of Reid and Walls' to derive an ex-
pression for the phase-matched polarization including
quantum fluctuation terms. The pump modes are treated
classically and are assumed nondepleting.

In Sec. III we restrict attention to the original four-
wave-mixing scheme proposed by Yuen and Shapiro" in
which the two pump waves and two probe waves are
counterpropagating. The squeezing in the appropriately
combined output waves is calculated. Only in a certain
limit (henceforth referred to as the ideal-noise limit) corre-
sponding to large detuning and low pump intensity is the
quantum noise that derivable from the idealized macro-
scopic model. If we assume ideal noise but include the
loss, our results coincide with those of Bondurant et al. '

and indicate good squeezing only if the absolute value of
loss is suitably small. However, the additional atomic
fluctuation terms destroy squeezing prematurely at higher
intensities and further requirements are placed on atomic
parameters. We provide numerical values for parameters
to attain good squeezing.

In Sec. IV the forward or copropagating type of four-
wave mixing suggested by Kumar and Shapiro ' is
analyzed. Once again, in the limit of ideal noise, our re-
sults agree with Kumar and Shapiro and one can improve
squeezing in a lossy medium by increasing the pump in-
tensity. However, bemuse the effect of additional
nonideal atomic fluctuations is to destroy squeezing at
higher pump intensities, the validity of the Kumar and
Shapiro claim is sensitive to the nature of these terms.
We present a solution including atomic fluctuations and
thus analyze the true upper limit of squeezing possible for
a given detuning.

Alternative schemes to produce squeezed states have in-
volved interaction of the medium with the steady-state
field in an optical cavity. Studies by Milburn and Walls
and Lugiato and Strini of the degenerate parametric am-
plifier in a cavity showed a maximum squeezing of only
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50% at threshold in the internal field. However, recent
analyses by Yurke, Collett and Gardiner, and Gardiner
and Savage of the field outside a single-ended cavity- re-
veal ideal squeezing to be possible in the resonant mode at
threshold. See also Reynaud and Heidmann for a dis-
cussion of four-wave mixing in a cavity. In Sec. V we ex-
amine the four-wave configuration in a single-ended ring
cavity and compute the squeezing in an appropriately
combined mode outside the cavity. As in the degenerate
parametric amplifier, if one assumes a macroscopic polar-
ization model with zero loss, ideal squeezing is possible at
threshold in the appropriately filtered resonant mode out-
side the cavity. The effect of spontaneous emission on the
squeezing in this mode is also analyzed.

II. ATOMIC MODEL OF THE MEDIUM

Consider four modes of the same frequency and polari-
zation interacting with a nonlinear medium. The quan-
tized modes of frequency co and propagation vectors kJ.
are described by boson operators aj (j= 1, . . . , 4). The
medium is modeled as S two-level atoms uniformly dis-
tributed, with density n, throughout a total volume V.

- The atoms are assumed stationary, Doppler broadening
being ignored in this treatment. Following the approach
of Reid and Walls, ' we consider a microscopic volume
element 5V containing Xo atoms at position r in the
medium. The Hamiltonian for this element in the electric
dipole and rotating-wave approximations is, in the
Schrodinger picture,

4 ) 0 Qpo
N

H, = g Ra)a, a,.+ g A' o.„.
j=l i=1

Zl

+iong g (cr;a, —cr;a, )+ g (o;I t+o;I ),

of the field is much larger than the mean distance between
the atoms.

We wish to derive first an expression for the field-
induced polarization at position r of the atomic medium.
Since we are interested in the quantum statistics of the fi-
nal field, a quantum-mechanical derivation of the atomic
polarization is required. We follow the approach
developed by Haken for laser theory and later adapted
for a quantum theory of optical bistability by Drummond
and Walls.

To summarize briefly, a master equation for the density
operator p is derived using standard techniques. A nor-
mally ordered characteristic function P is defined as

X=Tr(Op),

where

0 =el' S el'gS~elCS~ re risa~ ipa

N0

S= ga;,
N0

S,= go„.

J~ iu'V iDn iu'+cia Peia'Pd2 d'2 td2 d213d213t

(4)

Because the standard representation used in laser theory
does not in general provide a Fokker-Planck equation
with a positive-definite diffusion matrix, we use a general-
ized representation in which the pairs (u', u' ) and
(a ', a '") are independent complex variables (not complex-
conjugate) and D can be complex. Thus one establishes
a correspondence between c numbers and operators as fol-
lows:

A distribution function f is the Fourier transform of the
characteristic function

4 ik. r
a~ =

ajarj=l
cr, o., and a.z are Pauli spin operators and ~0 is the atom-
ic resonance frequency. g describes the electric dipole
coupling between the atoms and field. I and I are
atomic reservoir operators describing radiative decay or
spontaneous emission. The total Hamiltonian for the sys-

tem is found by integrating over r

(2)

The averaging over a volume 6V at position r allows us to
consider a high-density medium for which the wavelength

U ~S,

D~S, , (5)

Operator rules enable us to derive an equation of motion
for f. The initial equation involves infinite-order deriva-
tives, With No reasonably large one can use a scaling ar-
gument to ignore all but first- and second-order deriva-

. tives. After substituting a=cY'e' ' and u =u'e '"', the fi-
nal equation is

a a a
gu — ( —yu+gDa) [yll(D+Ko—) —2g(u a+a u)j

dt gO BU BD

+ — (2gua)+ — [2yll(D+No) —4g(u a+ua )]+c.c. f,1 a'
2BU 2BD
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where 5=(coo—co)/y~ is the normalized detuning from
line center and y=yz(1+i5). yz and y~~ are the atomic
transverse and longitudinal relaxation parameters, respec-
tively. c.c. refers to the previous terms repeated but inter-
changing a ~= =a, v~~v.

The equation derived is for a nonactive medium. To
describe a lasing medium, one allows for a nonzero transi-
tion rate from the lower to the upper atomic levels due to
incoherent pumping. The result is an additional fluctua-
tion term which destroys squeezing. ' For this reason we
do not include the possibility of a pumped medium in this
work.

The next step is to write equivalent c-number Langevin
equations and to obtain an expression for the polarization
v. If one may assume that the atomic variables relax at a
much greater rate than the field variables (y z, y

~ ~

~& y F
where yz is the field damping rate), it is possible to adia-
batically eliminate the atomic variables by setting
v=LanI =0 and solving for the steady-state polarization v.
Such a procedure is valid for the case we are considering
provided we can safely ignore all field loss except that due
to absorption via the interacting two-level atoms. The
elimination procedure will also be valid where the medi-
um is enclosed in a high Q optical cavity. In this case one
cannot ignore an additional cavity damping rate which
describes loss through the cavity mirrors, but one can still
adiabatically eliminate provided the above condition
(yF ((yJ y~~) holds.

Considerable simplification is obtained if one is able to
write the field in terms of large and small components as
follows:

where we have assumed for simplicity pure radiative
damping (y~~ =2yz). The effect of collisional damping on
the squeezing is presently being investigated.

The expression (8) is to first order in a but includes all
orders of

I

e
I

and thus accounts for saturation and relat-
ed effects of the medium. I, is the detuning-dependent
pump intensity at which saturation effects in the drift be-
come important. Also contributing important effects at
larger pump intensities are the additional noise terms, of
order higher than e, in D

&
and D2.

The next step is to describe the behavior of the indivi-
dual field amplitudes aj. The field interacts with the en-
tire medium (X atoms) and thus we use the Hamiltonian
(2) to derive the Heisenberg equations of motion for aj ..

Thus the equation for the amplitude is of the form

3
7 —ik .r

aJ(t) = e ' gu, (t) .
6U

It is readily seen that terms in the integrand which are
perfectly phase matched (independent of r) will contribute
more significantly to the integral than terms which have a
phase mismatch hk (i.e., a e' "' dependence), at least for
the situation where the interaction lengths i. are much
greater than 2'/b, k. Thus one arrives at the phase-
matching condition

k)+k2 ——k3+k4 . (12)
ik).r ik2.rE'= E)e +E2e

ik3 r ik4'r
O. =a3e +O'.4e

The pump fields a~ and a2 of Eq. (1) are of large intensity
and are assumed to be nondepleting, their intensities tak-
ing on constant values

I
e&

I

and
I
e2 I, respectively. The

fields n3 and a4 are of smaller intensity. We are thus able
to expand our steady-state polarization to first order in a.
The final expression for the atomic polarization at r is
derivable from results obtained in Drummond and Walls
and is

To evaluate the pump saturation terms relating to H one
writes (assuming e~ ——eq is real for convenience and

I
e

I
=2I [1+cos(k2—k]) r] (13)

and notes the integrals may be approximated, provided
the interaction length is much greater than 2'/(kq —k~),
by computing the cycle average of H

The integrated noise force is of the form
r

%o (eta+ea )
u, = —g (e+a) 1— +I, ,I, II (8) —ik r

F, (t)= f d3r .I,(t) . (14)
where no ——pity~~/4g is the line-center saturation intensi-
ty, I, =no(1+5 ), and Il= 1+

I

e
I

/I, .
The nonzero noise correlations are (taking the dominant

terms depending on e only)

(I,(t)I,(t') )=D, 5(t' t), —

(1—i5) +
ygi, (1+5 ) II' 2no

( I",(t)I,(t') ) =D,5(t' —t),
&o

I

&I' 2, Ie I'
I

I'+
y~i, (1+5 ) 11 no 2nD

Assuming the noise terms at different r are uncorrelated
we obtain

( I',(t)I, (t ') ) =&&5(t' —t)5 (r —r'),
6v 6U

( I ,(t)l , (t') ) =&25(t' —t)5 (r —r'),
6U 6U

&;=D;/5u .

To determine noise correlations consider
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(F (t)F ( P) ) f d3 d3, —ik& r . —ik& r' (~r(t)l r'(t ) )
5U 5U

= f d r d r'e '""e '""'ui5 (r —r')5(t' —t)

= f d re ' ' ~(5(t' —t).

Thus only terms for which kz
———kJ. will contribute significantly after integration. Similarly, one may calculate

(FI(t)FJ'(t') ).
The final phase-matched coupled equations for a3 and a4 are

d3 —1 +3+Xa4+ I 3(t)

a4 y'a4——+Xa3+ I 4(t),
(17)

where

—2C' 1+ 2I
I,

3/2 7R +i7I
(1+i5) 1+ 4I

I,

C, 2I
I,

- 3/2 =gg +i+I,
(1+i5) 1+ 4I

S

2
g N

Xj.

(corresponding equations hold for a 3 and a 4). The nonzero noise correlations are

(I (t)I (t'))=R 5(t t'), —

( I t(t)I,(t') ) =R5(t t'), - (18)

=A5(t t'), —

where

R =Rg+iRI,
' 5/2Cl

(1—35 ) 1+—+(1+5 ) —1+
2 I, 2 I,

(1+5 ) 1+ L

I,
—2C'(35 —5 ) 2I I

-5/2 I 1+
I,

(1+5 ) 1+
S

15I
I2

S

12(1+5 ) 2 +(1+5 ) 1+
(1+5')' 1+ I,

5I 15I~
I2
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III. DEGENERATE BACKWARD F(OUR-WAVE
MIXING

The first type of four-wave-mixing system to be pro-
posed as a squeezed-state generator was the backward de-
generate four-wave mixer. This particular system has
been studied classically in some depth for its phase conju-
gation properties. It was first suggested as a pos'sible
ideal squeezer by Yuen and Shapiro. " To describe the
backward four-wave mixer, we follow the geometry of
Yariv and Pepper (Fig. 1). One has two counterpro-
pagating pump waves of frequency co and propagation
vectors k~ and —k&, described by amplitudes e~ and e2,
respectively. The weak fields o.3 and a4 are also counter-
propagating, with propagation vectors k3 and —k3 (dif-
ferent from k&), respectively, and also of frequency co.

The fields interact with a nonlinear medium and, using
the two-level atomic model presented in Sec. II, the ex-
pression (8) derived for the polarization is directly applied.

%'e wish to describe the slowly varying spatial behavior
of the field amplitude aj, as the waves propagate through
the medium, keeping the full polarization expression (8).
Classically, this has been done by Abrams and Lind via
Maxwell's equations by writing

2I
eo 1+

S

3/2

(1+5') 1+

2I
ap (1—i5)I,

3/2

(1+&') 1+ 4I
I,

and ap ——2C'/c is the line-center small-signal-field at-
tenuation coefficient. The equations include loss, satura-
tion, and dispersive effects due to the medium. In the
idealized limit of zero loss and on making the substitu-
tions a3 ——a3exp( t'yiz—/c) and a4 ——a4exp( ty—lz/c) one
could write

da3(z) =lK a4 (z),
dz

(21)
da4*(z)

= i~a3(z),
dz

BE BI'~ E —Po~o =Po
BI; Bt

(19) ~= —iX*/c,

d
a3(z) = a — a3(z) —Xa4(z),

dz c
r

d
a4(z) = —a-

c&
a4(z) +X*a3(z),

(20)

where

where I' is .the polarization. One substitutes the strong-
weak —field approximation (7) into (19) and assumes the
strong pump fields e~ and e2 to be nondepleting. The z
direction is taken as that of k4, and we introduce the
slowly varying envelope approximation

~

d a; /dz
«

~

k;(da;/dz) ~. Further simplification is possible by
noting that upon integration over the medium only the
phase-matched terms for each amplitude as derived in
Sec. II will give significant contributions. The final cou-
pled equations for the weak-field amplitudes take the
form

da3
(z) =i~*a4(z),

dz

da4
(z) = iraq(z) .

dz

(22)

which are the coupled equations first analyzed by Yariv
and Pepper.

Because of the large number of modes involved, the
quantized treatment of the four-wave propagation prob-
lem of Abrams and Lind becomes much more complex.
However, in order to indicate how atomic parameters will
affect the field statistics, we approximate the quantum-
mechanical problem by deriving temporal differential
equations for each c-number amplitude a~ (as described in
Sec. II) and replacing t = —z/c and t =z/c for a3 and a4,
respectively. This amounts to solving the classical equa-
tions (20) of Abrams and Lind, but with additional fluc-
tuation terms present to describe the quantization of the
medium. The original quantized treatment by Yuen and
Shapiro" followed a z=:ct analysis as applied to Eq. (21),
the amplitudes o.3 and a4 becoming boson operators a3
and a4, respectively:

a3(o)—
ag (p)

z=L

a (L}
= a„'(L)

These equations may be solved for the output waves a3(0)
and a4(L) in terms of the inputs a3(L) and a4(0). If one
considers the squeezing in the following combined mode
(as may be produced by the mirror arrangement described
in Ref. 11),

FIG. 1. Backward degenerate four-wave-mixing scheme.

e =[a3(0)—ta4(L) j/V 2=X')+iX2,
one finds, with the assumption of coherent inputs,

AX) ——[sec(
~

~
~

L)—tan(
~

~
~
L)] /4.

(23)

(24)
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assumptions outlined above, the equations we wish to
solve are

0.2

i/1
a3(z) = a — a3(z) —Xa4(z) +63 (z)

dz c
(25)

d
a4(z) = —a-

dz
a4(z)+X 'a3(z)+ 64(z),

680 1020 1360 1700

FIG. 2. Backward degenerate four-wave mixing: the low-loss
limit. Variance V =~~ vs normalized pump intensity
S =

~

e
~

/no 5=. 100, aoL=2000. A, ideal limit of zero loss
and ideal noise; B, loss included but ideal noise assumed; C,
zero loss but nonideal noise included; D, both loss and nonideal
noise included.

Clearly, ideal squeezing ( bX
&

—+0) is predicted as

~

ir
~

L ~vr/2 (Ref. 11) (Figs. 2 and 3).
It is our aim to quantize the treatment of Abrams and

Lind, keeping the full atomic saturation and loss terms
and thus accounting for the effect of nonideal atomic
noise and loss on the squeezing (24) predicted. With the

0.3

0.2

where

( G3(z)64(z') ) = —R *5(z —z'),
( 63(z)64(z') ) = —R5(z —z')

63(z)G3 (z') ) = ( G4(z)G4(z') )
=A5(z —z'),

u4 ——O.4e z
C

Provided one is in the limit of nondepleting classical
pump fields, it does not change the maximum squeezing
attainable. It does, however (in the backward four-wave
mixing case), alter the relative phase difference required
between the outgoing fields to attain this maximum. Of
more interest is the effect of the loss parameter a which
has been shown to reduce the magnitude of squeezing at-
tainable. ' '

The coupled linear stochastic differential equations (25),
subject to boundary conditions at z=O and I., may be
solved using standard methods. The final solutions for
the outgoing amplitudes a3(0) and a4(L) in terms of the
ingoing amplitudes a3(L) and a4(0) are

a3(0) =Te ' a3(L)+rXa4(0)+F3,
(27)

a4(L) = Te a4(0)+rXa3(L)+F4,
where

and R =RR+iRz —R/c and A=A/c. On taking the ex-
pectation value of each term in (25), one reproduces the
classical equations (20) derived by Abrams and Lind
[(G3(z))=(64(z)) =0]. The noise terms 6;(z), however,
are essential to describe the quantum effects (squeezing)
present in the system. The term in yl relates to the
intensity-dependent refractive index of the medium, as
may be seen by considering the substitutions

i/I
a3 ——a3e z,

c
(26)

and

F3 — 63 z a z +G4 z b z dz
L

F4 ——J [G3(z)c (z)+ G4(z)d (z)]dz,

FIG. 3. Backward degenerate four-wave mixing: the high-
loss limit. V=~] vs S: 5=100, aoL =10. 3, ideal limit of
zero loss and ideal noise; B, loss included but ideal noise as-
sumed; C, zero loss but nonideal noise included; D, both loss
and nonideal noise included.

a (z) = —Tf2(L —z),
b (z) =Tf t (L —z),
c (z) =re ' Xf(L z)+ft(L —z), —
d(z)=re ' Xf t (L —z)+fz(z L), —
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where

A, cos( A,L ) +a sin( A,L )

sin(A, L)
A, cos( kL ) +a s111(AL )

f1(x)=—sin(Ax),x

C —(FF ) —(FF )

C13=&F3F4&

Thus, to calculate C~2, for example, consider

C12 ——(F4F4 )
I. L= f dz f dz'([c(z)G3(z)+d(z)G4(z)]

(29)

f2(x) =cos(W)+ —sin(M),

Our c-number equations and solutions are identical in
form to the operator equations examined by Bondurant
et al. "

The covariance matrix

X [c*(z')G3(z')+d*(z')G4(z')] ) .

(30)
Recalling the correlations (25), we find

C„=A f dz[~c(z) ~'+ ~d(z) ~'] —R f dzc(z)d*(z)
L—R* f dzc*(z)d(z) . (3l)

One calculates C» similarly. The final solution for the
covariance matrix is

C =(&a;ar &
—(a; ) (a, ) ), (28)

where (a1,a2, a3, a4)—:(a3(0),a3(0),a4(L), a4(L)) is deriv-
able directly from the correlations of G3(z) and G4(z).
Assuming the initial states to be coherent states, with
negligible intensity, and assuming the initial state to be in-
dependent of the noise sources G, (z), we find

0 C)2 C)3 0

C)2 0 0 C)3
C —

C 0 0

0 C» C)p 0

where

(32)

2

C12 = A (
I
&

l
+a )+2T' (&RRR KIRI ) Il +AT I2+ A a+ (~RRR KIRI) I3

A2 k2

sy, l.ye
C13 e C13

C'
i2 Tag(ar —l)+ Tj'(r ~g

~

—a)+ a(a r~X
~

)( R—R+—iRI)+ 7 (I —ar)( RR iRI) I—1—
A,

2

AT — T —
2

— .— T —
2+[ATrX+T(RR iRr)]I2—+ &ar+ l&

l
r(RR 1RI)+ X—r(RR+iRI) I3,2k 2X

I1——f sin [A,(L z)]dz =———2 L sin(2AL)
0 2 4A,

I2= f cos [A,(L —z)]dz =—+L sin(2AL)
0 2 4A,

I3 ——f sin[2', (L —z) ]dz = sin (AL)
0

The squeezing in the combined mode

C13
~

and sing= ImC13/
~
C13 ~, in which case

AX, ——,= —,(C12+ C13
~

) .
2

(35)

a=yg ——0

and ideal noise

(36a)

At this stage it is convenient to present the idealized
limits of zero loss

a3(0)+e' a4(L)
=X) +iX2V'2 (33)

A=gg ——Rg ——0,
(36b)

is given by

b X1 ——,———,[C,2+(cosfReC'13 —sing ImC'» )],
2

The latter ideal-noise limit (36b) holds only for large de-
tuning

where g=e+yrL/C. The value C12 is positive and real,
and optimal squeezing is attained for cosg= —ReC'13/ and low saturation

(37a)
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S/52«1 and 10S /5 «1, (37b)

where S =I/no .The second low-saturation condition
10S /5 «1 ensures that the second bracketed term in
R~ and A

5/2

(1+5 ) —1+—1 4I 1 5I
2 I, 2 I,

15I
I2

g

(38) 0.2

is small compared to Ri. It is an additional condition re-
sulting from the nature of the quantum fluctuation terms
(9) and could not have been predicted from the drift part
of the polarization, which requires S/5 «1 only. The
ideal-noise limit (36b) is equivalent to deriving the polari-
zation part of the equations from the following Hamil-
tonian often used to describe four-wave mixing systems:

Hq ——bc~(a 3a4+ a 3a 4 ) . (39)

With the simplifications (36), the equations (25) reduce to
I

0.2
I

0.0
I

0.8

—i/I
a3(z) = a3(z)+ iraq(z)+ 63(z)

dz C

d
a4(z) = a4(z)+isa3(z)+ 64(z),

dz c

and the nonzero correlations are

(40)

FIG. 4. Backward degenerate four-wave mixing: full loss
and noise solutions. V=~~ vs R =(aoL/52)(S/5): 5=10 .
A, aoL = 10'; B, aoL =8 X 10; C, aoL =5 && 10; D, aoL = 10;
E, aoL=8x10'; I', aoL=Sx10'; 6, aoL =3x10'; H,
aoL =10.

( 63(z)G4(z') ) =is5(z —z')

( G3(z)G4(z') ) = is5(z ——z'),

where we have taken s =
~

X
~

. These c-number equations
are equivalent to the operator equations (22) (apart from
the term in yl ), and the solution may be shown to reduce
to (24) (thus giving perfect squeezing) in the ideal limit
(36) being considered.

To simplify the analysis of the full solution (35), we ex-
amine in the first instance the effect of loss in yz alone.
That is, we relax condition (36a) but still assume the
ideal-noise result (36b), regardless of whether the require-
ment (37) is satisfied or not. This approach is equivalent
to deriving the polarization part of the equations from the
phenomenological Hamiltonian (in the interaction model)

H =Hl+Hg,

Hg ——a 3 I 3+a 3 I 3+a 4I +a4I"
(41)

where I are reservoir operators and Hz models the loss
mechanism. The Heisenberg equations of motion may be
derived for a3 and a4, and the spatial differential equa-
tions are obtained by the change of variable z~—ct
( z = ="t) for a 3 ( a4 ), respectively. This is the procedure
used by Bondurant et al. ' to describe the effect of loss in
backward four-wave mixing. As shown in their work,
even moderate values of loss will markedly decrease the
squeezing attainable. With saturation negligible, values of
attenuation coefficient aoL such that aoL/5 & 1 imply
values of loss aL ~ 1, which reduces the best squeezing at-
tainable by at least 60% (Fig. 2). It is possible to decrease
the loss nL by, for a fixed 6, decreasing Op. Fof
cxL/6 ——,, one obtains only a 20% reduction in squeez-

ing (Fig. 3).

Unfortunately, while the loss becomes insignificant for
relatively low values of a*, the normalized pump intensi-
ties S required for the maximum squeezing are increased,
and it is no longer justifiable to assume the ideal-noise
conditions (36) and (37). Upon increasing S, it is the con-
dition 10S /5 «1 which breaks down first, enabling A
to be nonzero, and hence determining the maximum
squeezing achievable. This transition in behavior going
from high to low aoL values is shown in Figs. 2 and 3.

The solution (35) including both loss and complete
atomic fluctuations has been analyzed, as a function of S,
for various values of detuning and attenuation coefficient
aoL. As described above, the maximum squeezing at-
tained is always a compromise between the desqueezing
effects of loss (at low S) and nonideal noise (at higher S}.
The best possible squeezing attainable, at favorable aoL,
and the value of intensity S for which this value is at-
tained is critically dependent on the detuning 5. We de-
fine a detuning-dependent pump intensity parameter as
R =(aoL /5 )(S/5) ( —

~
7

~

/2). For 5= 10 the minimum
variance ~t is -0.18 (for ao/5 -0.8) at a value of
R -0.4. For 5= 100 a minimum variance of 0.12
(aoL/5 -0.3) is possible at R-0.5. Increasing the nor-
rnalized detuning to 5= 10, ~

&
drops to 0.4

(aoL /52-0. 1) at R =0.7 (Fig. 4}. Thus our model
developed to show the effect of a nonideal atomic medium
in a backward degenerate four-wave mixer shows good
squeezing to be possible only in very large 5, aoL, and S
limits.

IV. DEGENERATE FORWARD FOUR-%AVE MIXING

It was shown in Sec. III that the effect of loss is to pos-
sibly minimize the squeezing attainable in backward
four-wave mixing. Recently Kumar and Shapiro ' have
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suggested that the effect of loss will be less substantial in
forward degenerate four-wave Inixing. Their model, how-
ever, like that of Bondurant et al. ' for the backward
case, does not include the full effects of atomic quantum
noise. It is our objective to calculate the squeezing in for-
ward four-wave mixing, including full atomic loss and
noise effects.

The geometry of a forward degenerate four-wave mixer
is as described by Kumar and Shapiro ' (Fig. 5). One has
two pump waves, amplitudes e~ and e2, with propagation
vectors k~ and k2, respectively, and frequency co. The
waves copropagate at small angles +P/2 to the z axis.
The weak fields cx3 and a4 are described by propagation
vectors k3 and k4 and are also of frequency co. The
geometry of the k3 and k4 vectors may be found by rotat-
ing the plane of k1 and k2 about the x axis. The choice of
propagation vectors is such to satisfy the phase-matching
condition (12).

As with the backward case, we aim to describe the
slowly varying spatial amplitudes a3 and a4. With similar
assumptions, the classical equations analogous to the
Abrams and Lind equation (20) may be derived. Once
again, to model the system quantum mechanically, we
make the change of variable z~ct (for both a3 and a4) in
the temporal differential equations. Our final equations
are

d
a3(z) — aa3(z) +Xa4(z) + G 1 (z)

dz
(42)

dt
a4(z) = —aa4(z)+X*a3(z)+G2(z),

0

0 0

—X

0 0
(43)

0 AR* 0
A 0 0 R

R* 0 0 A

0 R A 0

One diagonalizes the drift

S 'A S=diag()I. 1,A. 1,A2, A2),

where

(44)

and

A, , =a+ fX f

2

1 0 1 0
0 a
0 1

a 0

0 —a
0 1 x—a 0

The covariance matrix in the new variables is

0 m)2 0

classical so that the initial system is assumed to have the
statistics of a coherent state. The drift A and diffusion D
matrices are

where

( GI (z)G2(z') ) =R '5(z —2'),

( G1(z)G2(z')) =R5(z —z'),
( G1(z)G1(z') ) = (G2(z)G2(z') ) =A6(t t'), —

and the definitions of a, 7, R, and A have been modified
slightly from those given in Sec. III to become

a yR /=cn cos(P/2), X=X/cn cos(P/2),

A =A/cn cos(P/2),

R =RR+iRI ——R/cn cos(p/2) .

0 ~23 0
rt=S 'D(S ') =

~23 ~34

7T23 0 7T34 0

where

1
F12—— (2aA+R+a R*),

2a

7723 — ( —R +a R )
1

2a

1
1T34— ( —2aA+R +a R*) ~

2a

(45)

The imaginary term relating to yI has contributed to an
intensity-dependent refractive index n and does not [as
may be seen by considering the rotations a,'
=a;exp(iyt/c)z] affect the squeezing attainable.

A solution to the linear equation (42) may be obtained
using standard methods. The input probe waves are

0 C)2 CI3 0

C)2 0 0 CI3

C)3 0 0 C12

0 C)3 C(2 0

(46)

On transforming back to the original variables, the solu-
tion for the covariance matrix is as follows:

kz

FIG. 5. Forward degenerate four-wave-mixing scheme.

where

a
C12 ( ~12 ~34)

2
1

13 —
2 ( 12+2X32+ 34) — 13 + 13
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and

X;J = [1—exp(A. ;+AJ.)L],J+ J

rotated mode

a, +e'a,
=X) +iX2

2
(47)

where L is the length of the medium. If we consider the

I

the final result for squeezing in e is

1 (1—eAX —
4
———

41 4—
—2A, )L (1—e ')—2A.2L

[am ~a+(cosORen. ~z
—sinO Imm &2)]+ [am3q+(cosO Re7r34 sinO Imm34)]

A2

—2aL
)+ 2 (cosO Rem. z3 —sinO 1m+23)

cz
(48)

1
AX) —

4
———

4 a+ IXI
where

(49)

+R+R +I+IA=A—

The term 3 reflects the quantum atomic fluctuations,
while a represents the atomic loss.

If one considers the ideal-noise limits described in Sec.
III by Eq. (36), one can write

A = —fxI (50)

This ideal-noise result is subject to the conditions (37) and
corresponds to deriving the polarization from the Hamil-
tonian HI of (39). If one additionally chooses to neglect
atomic loss (a=0), the solution indicates perfect squeez-
ing (~f—+0) to be attainable. We now wish to examine
the full atomic loss and noise effects on the squeezing.

To examine the effect of atomic loss a alone it is con-
venient to assume, in the first instance, the ideal-noise
conditions while including a. As pointed out in Sec. II,
this is equivalent to deriving the polarization from the
phenomenological Hamiltonian (41). This was the pro-
cedure used by Kumar and Shapiro ' to analyze the effect
of loss on the squeezing in forward degenerate four-wave
mixing, and our solutions agree with theirs in this limit.
One finds for the ideal-noise case

Unlike the backward mixing which shows sinusoidal
behavior, the forward solutions are of an exponential na-
ture. For simplicity, we consider the large-L limit, for
which exp( —2A, &L) «1. In this limit the optimal choice
of g is to avoid divergence (and hence no squeezing) in the
solution due to the last two terms dependent on A, 2 and o,.
One obtains as a final expression for squeezing [with

XR /
I
X

I »nO =XI/ I
X

I
(Ref' »)]

1+ 2I
S

2IV1 52
'

+
(52)

0.3

0.2

which is of the order 5/2S if the ideal-noise requirements
(37) are satisfied. Threshold occurs at

I
X

I
=a. Below

threshold, IX I
&a, the loss dominates and squeezing is

minimal. At threshold, the squeezing is 50% (~~ ———,
' ).

Further squeezing is obtained by increasing the pump in-
tensity above the threshold value. In fact, in the ideal-
noise limit, one could obtain arbitrarily large squeezing by
appropriately increasing S. This has been pointed out by
Kumar and Shapiro ' and is why squeezing in the for-
ward propagating model would seem to be less sensitive to
loss than the backward system. The effect of loss a alone
on the squeezing is shown in curve 8, Fig. 6, which plots
expression (51).

Unfortunately, as discussed in Sec. III for the backward
example, as one increases the pump intensity S the condi-
tions (in particular 10S /5 «1) for ideal-noise break-

bX) ————1 1

4
4 1+

(51)

and we see that there is a reduction in the amount of
squeezing present determined by the ratio

S

FIG. 6. Forward propagating degenerate four-wave mixing.
V=~& vs 5=

I eI /no 5=100. A, lo. ss ignored; 8, loss in-

cluded but ideal noise assumed; C, both loss and nonideal noise
included.
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down. For such values of S, the A term becomes signifi-
cant and contributes a positive term to 3, thus destroying
squeezing. This effect is shown in curve A, Fig. 4, where
the full expression for A is retained but loss ignored.

The total solution (curve C of Fig. 6) shows the com-
bined result of the two desqueezing effects discussed
above. Thus for very low values of normalized pump in-
tensity satisfying S«5, the amount of squeezing is re-
duced because of the dominance of loss. For high values
of S satisfying 10S »5, squeezing is destroyed because
of atomic fluctuations. Thus for a given large detuning
5» 1, there exists a middle range of saturation S, satisfy-
ing

S&)5, S«6, 10S (&6 (53)

giving optimal squeezing. Figure 7 shows the full solu-
tions for various values of detuning 6. In fact, the best
squeezing attainable in the forward four-wave mixing is
not significantly improved over the backward example.
The values of normalized pump intensity S required for
this minimum are of the same order in both the forward
and backward cases, although the former is less sensitive
to the attenuation coefficient aoL.

However, we require
~

X
~

L large to attain good squeez-
ing and there is thus an implicit lower limit on the at-
tenuation coefficient given by aoL/5 » t5/2S (R=0.5),
as for the backward case [the value S already being deter-
mined by the loss and ideal-noise conditions (53)]. Be-
cause the lower limit implies very high atomic densities
anyway and is likely to be the important factor limiting
squeezing in an experiment, we conclude that the copro-
pagating example does not offer any significant advan-
tages over the counterpropagating configuration. Howev-
er, because the squeezing in the forward ease does not de-
pend directly on the absolute value of loss (aDL /5 ), there

is no upper limit (as in the backward case) placed on the
parameter aoL for good squeezing.

Finally, we point out that because in the forward-
mixing case the best squeezing occurs above threshold, the
results may be sensitive to pump depletion. Recently
Scharf and Walls ' have considered the effects of pump
quantization and depletion in parametric amplification.
Studies to investigate the effect of pump depletion in for-
ward four-wave mixing are in progress.

V. FOUR-WAVE MIXING IN A SINGLE-ENDED
CAVITY

(a3OUT+~ a4OUT)/~ 2=XI +iX2,ip (54)

and we wish to examine the squeezing possible in this new
mode.

If one describes the medium via a third-order nonlinear
susceptibility, the idealized Hamiltonian for the internal
modes is written

The analyses in Secs. III and IV of the propagating con-
figurations have indicated good squeezing to require a
very high g N/yz value. One possible way to decrease
the value of g K/yz required, for the same amount of
squeezing, is to place the medium inside a high Q optical
cavity. In this section we examine the squeezing in the
output field for a four-wave-mixing system inside a
single-ended cavity.

Consider the experimental scheme as illustrated in Fig.
8. We will use the methods of Collett and Gardiner ' to
analyze the output fields. One has two input fields a3;„
and a4;„, separated from the outputs by a circulator out-
side the cavity. The internal cavity modes are designated
a3 and a4, respectively. In addition, there are the two
pump waves, classically treated and assumed nondeplet-
ing, of amplitudes el and e2. These fields interact in the
ring cavity with a medium in the manner described in Sec.
II. The output modes a3QUT and a4QUT are combined, us-
ing a mirror scheme, to form the new mode

0.2

H =HI+H~,
III ——h (X a3a4+Xa3a4),

H, =a3I +a3I +a4I +a4I

(55)

The amplitudes eI and ez have been absorbed into X. This
Hamiltonian corresponds to the zero atomic loss and
ideal-noise limits of Eqs. (36). The reservoir Hamiltonian

OUT

FICx. 7. Forward degenerate four-wave mixing: full loss and
noise solutions. V=LUf& vs 5/5. . 2, 5=1; B, 5=10; C,
5= 100; D, 5=10; E, 5= 10 .

FIG. 8. Degenerate four-wave mixing in a cavity with a sin-
gle input/output port.
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H, describes the coupling of the internal modes to the in-
put (reservoir) modes outside the cavity, represented by
the operators I . One may derive the master equation for
the density operator p using standard techniques. Upon
expanding p in terms of a generalized P, one can write
the Fokker-Planck equation for the P function P. The
equivalent Langevin equations are

a3 ——y, a3 l
~

X
~
a4+ I 3(t)

a4 —— y, a—4 i ~X—
~

a3+I 4(t),

and the nonzero correlations are

( I 3(t)I 4(t ) ~ = i
I
X

l
5(t —t')

( r3(t) r4(t') ) =i
~

X
~

5(t t'), —
where we have ignored thermal noise. y, is the cavity
damping due to loss through the cavity mirrors.

If one made the assumption that the output modes are
the same as the internal modes, the final squeezing in
mode e (cosP=X~/~X

~

and sing= —XI/~X
~

) in the
steady state is identical to that derived for the degenerate
parametric amplifier with classical pump field inside the
cavity:

a4 ———(yR +y )a4+Xa3+ I"4,

where

( I,(t)I,(t') ) =R "5(t t'), —

(I (t)I „(t')) =R5(t —t'),
( r,(t)r,'(t') ) =(l,(t)I t(t') =A5(t —t') .

(61)

The final solution for the spectrum outside the cavity in-
cluding full atomic effects (valid below threshold

~

X'
~

& 1+yz ) gives for the resonant mode

:S»„,(0):=
(1+y,'+ iX'i )'

where

[:S2oUT(0):=——,
'

] to be possible, with appropriate filter-
ing, in the resonant mode at threshold (

~
X

~

=y, ).
We now extend the calculations to include the nonideal

effects of the full atomic polarization (8). The Langevin
equation (55) becomes

a3 ———(yz+y, )a3+Xa4+I 3,

bX2 ——' —— (57) 2C 1+—2I
I,

4 1+

+[e '~S22(co)+e '~S~~(co)]I,

where Sz(co) are the matrix elements of the spectrum S of
the stationary two-time correlation matrix G, (r) in the P
representation,

S(~)= J e '"'G, (r)dr . (59)

The final result for the squeezing spectrum is

[X[
:S2oUT(co ):=

(y, +
~
X

~

)'+co'
(60)

The solution is identical to that derived for the degenerate
parametric amplifier and predicts ideal squeezing

The situation is almost analogous to the traveling-wave
case with high loss (51). Below threshold (

~
X

~
& y, ) loss

y, dominates, a minimum variance ~2 ———,
'

being
achieved at threshold (

~
X

~

=y, ). Unfortunately, one
cannot further improve squeezing by increasing

~

X
~

above threshold, as would seem to be the case from solu-
tion (57), since the assumption of a classical nondepleting
pump is no longer valid in this cavity case above thresh-
old.

Of more interest outside the cavity where one has trav-
eling modes is the normally ordered spectrum of squeez-
ing. To calculate this we use the methods developed by
Gardiner and Collett and Collett and Walls

:Si (co):=(:Xi (co),Xi ..)
2OUT 2OUT 2OUT

=2y, —,{S)2(co)+S2t(co)

3/2

(1+5') 1+
S

2C (1—i5)
I,

3/2

(1+5') 1+ I,

:S2oUT(0):=
4(1+yg )

(63)

Clearly the loss decreases the squeezing possible at thresh-
old. To minimize this effect, we want

2C
2 &(l.

$2
(64)

We also must ensure that the threshold value of
~

X'
~

is
possible without increasing S, the normalized pump inten-

sity, to such an extent that the noise conditions are no
longer satisfied. Since [with (64) holding) at threshold

iX'i = 2S=12C
$3

(65)

and we want 2S/5 small, 2C/5 will have to be large to

and C, the cooperativity parameter, is 2C =g N/yzy, .
To obtain best squeezing we will require the ideal noise

and loss conditions of (53). In addition, there will be re-
strictions on 2C. With the ideal-noise conditions (37),
A'= —

~

X' ~, and the best squeezing is attained .for
~

X'
~

as large, as possible, that is, at threshold ~X'~ =1+y~,
where



1634 M. D. REID AND D. F. WALLS 31

0.3 D. 3

0.2 0.2

O. .o o
I

30
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60
S

FIG. 9. Degenerate four-wave mixing in a single-ended cavi-
ty: squeezing in the external field. The high-loss case.
:S2oU&{0):+0.25 vs S. 6=100, 2C=10. A, loss included but
ideal noise assumed; B, loss ignored but ideal noise included; C,
both loss and nonideal noise included.

allow this:

FIG. 11. Degenerate four-wave mixing in a single-ended cav-
ity: squeezing in the external field. Full loss and noise solutions
vs S/5. 5=10 . A, 2C =50X10; 8, 2C =100X10; C,
2C =200X 10; D, 2C =300X 10; E, 2C =400X 10; F,
2C =500X 10; 6, 2C =600X 10; H, 2C =700X 10; I,
2C =800X 10; J, 2C = 1200X 10 .

(66)

Thus there is a middle range of values 2C satisfying (64)
and (66) for which an optimal squeezing is obtained. In
fact, the conditions on 2C are directly analogous to those
on aoL for the backward traveling case discussed in Sec.
rII.

The various limits are illustrated in Figs. , 9 and 10.
Figure 9 illustrates parameters for which loss is the sole

reason for not attaining ideal squeezing. The value of
2C/5 is large and the effect of nonideal noise is negligi-
ble, even at threshold. However, 2C/5 —1 and loss
reduces at threshold the squeezing by 50%%uo. At the other
extreme, Fig. 10 illustrates parameters for which nonideal
atomic fluctuations are the sole reason for destroying
squeezing. The value 2C/5 is small and atomic loss
plays no significant role. However, 2C/5 is not large and
the effect of the nonideal noise is present even though
threshold is not reached due to saturation.

The maximum squeezing achievable, for the optimal
value of 2C, is sensitive to the detuning 5. In fact, this
maximum and the value of pump intensity S required
coincide with those obtained in the propagation examples
considered in Secs. III and IV (in particular Fig. 7). Fig-
ure 11 plots (62) for 5=10 and shows good squeezing to
be possible as one approaches threshold for a suitable
choice of 2C-10 . For a sufficiently high Q cavity, this
means a lower g X/yz value is required for the medium
than in the propagating examples.

VI. CONCLUSION

o.o o
I

200 300
S

FIG. 10. Degenerate four-wave mixing in a single-ended ca'v-

ity: squeezing in the external field. The low-loss case. 6=100,
2C=500. A, loss included but ideal noise assumed; B, loss ig-
nored but nonideal noise included; C, both loss and nonideal
noise included.

We have presented a treatment of the quantum statis-
tics of degenerate four-wave mixing in which the quanti-
zation of the medium is taken into account. Our model
thus enables study of the effect of both loss and spontane-
ous emission on the squeezing attainable.

The significance of this work is that we have shown the
ideal nonlinear polarization to hold only in certain ideal-
noise limits of normalized detuning 5 and pump intensity
5 (given approximately by 5 && 1, 2S/5 « 1, and
10$ «5 ). Otherwise, spontaneous-emission terms will
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act to counter squeezing. Previous treatments by other
authors have not included these effects.

Also countering squeezing is the effect of loss or ab-
sorption from the medium. One requires for good squeez-
ing that the loss be small compared to the magnitude of
the nonlinearity parameter. The result is to provide the
additional requirement between S and 5 (S/5)) 1, in the
ideal-noise limit). Thus while it is possible to ignore
nonideal noise by (for sufficient large detuning) reducing
S, this is in general where loss effects need consideration.
The conditions for both small loss and ideal atomic fluc-
tuations are compatible only in the very large normalized
detuning limit (5-10 ). The range of S required for
maximum squeezing and the amount of squeezing at-
tained has been illustrated for various detunings (for
S—10, 2S/5-14 is required).

We have analyzed three types of four-wave mixing
separately, namely the counterpropagating, copropagat-
ing, and cavity examples. The maximum squeezing possi-
ble and corresponding value of 5 are approximately the,
same in each case, for a given detuning. The squeezing is
additionally sensitive to the weak-field line-center attenua-
tion coefficient parameter aoL and the cooperativity pa-
rameter 2C for the propagating and cavity examples,
respectively. For good squeezing one must be able to at-
tain a .reasonable nonlinearity parameter [ ~

X
~

L
-(aoL/5)(2$/5 )-1 and ~X'

~

=(2C/5)(2S/5 )-1 for
the propagating and cavity cases, respectively], with the
value of S already optimized according to the loss and
ideal-noise conditions above. Thus we require a minimum

aoL and 2C of order 5 /2S. The counterpropagating and
cavity examples are additionally restricted by the require-
ment that the absolute value of loss be small
(aoL /5, 2C/5 « 1) and thus have an upper limit of aoL
and 2C for good squeezing. In fact, for 5=10, best
squeezing is attained at aoL, 2C-10. Because of the
very high aoL and 2C values required (and consequently
very high atomic densities) we do not see the latter upper
limits required in the backward and cavity examples as
particularly restricting to squeezing. Thus we do not see,
because of the effect of atomic fluctuations, copropagat-
ing four-wave mixing as particularly advantageous over
the backward configuration. Because a high value of 2C
is more easily achievable (in a high Q cavity) than a high
aoL, the cavity example is more likely to be advantageous.

In conclusion, then, the effects of loss and atomic fluc-
tuations in an atomic medium mean that a careful selec-
tion of atomic parameters is necessary if one is to achieve
squeezing in degenerate four-wave mixing.
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