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Initiation of superfluorescence in a large sphere
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We investigate the early stages of superfluorescent emission from a large spherical volume con-
taining atoms all initially in the same excited state. The electric polarization fluctuations that
characterize a fully inverted atomic system, and which trigger superfluorescence, are found to cause
field amplification only in vector spherical-harmonic multipole modes of limited order. The field
and polarization fluctuations obey Gaussian statistics, a result that has been used to calculate the
angular correlation of intensities radiated in any two directions. Components of the electric field ra-
diated in two arbitrary directions and circularly polarized in opposite senses are found to be uncorre-
lated. They thus have no intensity-intensity or higher-order correlations. Field components which
are circularly polarized in the same sense, however, are shown to be correlated over an angular range
that is proportional to the ratio of the wavelength to the radius of the sphere.

I. INTRODUCTION

Superfluorescence is a spontaneous emission process in
which a large number of atoms, all initially in the same
excited state, radiate coherently. Several theoretical pa-
pers' have studied this phenomenon in detail for the
cylindrical geometry in which measurements have thus
far been made. Nearly all of the calculations which have
been carried out analytically, and most of the numerical
ones, have assumed the problem to be spatially one dimen-
sional. They have thereby described the radiated pulse as
propagating and amplifying in a single direction. The
simplifying feature of cylindrical geometry is that nearly
all of the superfluorescent radiation is confined to the
end-fire modes. It is worth emphasizing, ' however, that
superfluorescence is a three-dimensional phenomenon; it
is capable of producing pulse fields with interesting corre-
lation properties over a continuum of propagation direc-
tions. The simplest geometry with which to investigate
these is probably the spherical one to which we shall de-
vote the present paper.

Because the radiation rate varies as the field depletes
the atomic excitation present, the equations which
describe superfluorescence are intrinsically nonlinear. In
the early stages of the emission process, however, before
the field has become intense enough to influence the
atoms appreciably, the equations are still in effect linear
and can be solved analytically. Much can be learned from
exact calculations which cover this linear phase since it
lasts for most of the time interval prior to the pulse peak.
The linear regime indeed contains all the quantum Auc-
tuations and amplification phenomena which characterize
the initially slow buildup of the superfluorescent pulse.
Statistical predictions for the field strengths which hold in
this appreciable interval should be quite accessible to ex-
perimental verification.

Two greatly simplified analyses of a similar collective

radiation problem have been carried out by Ernst and
Stehle and by Rehler and Eberly. Although these analy-
ses do address the nonlinear aspects of the problem, they
are based in effect upon mean-field approximations which
do not accurately represent the time dependence of the
process or the polarization properties of the field.

The vector nature of the electromagnetic field plays a
more central role in the analysis of the spherical problem
than the cylindrical one. We shall find it convenient to
regard the field as an expansion in vector spherical har-
monics of both the electric and magnetic types and shall
calculate the amplification rates for each of these. We
shall show that only spherical harmonics up to a certain
limiting order undergo significant amplification and their
intensities increase with time t as t ' exp(const X t '

), a
result rather different from the time dependences found in
Refs. 6 and 7. Those of higher order never become appre-
ciably excited.

The linearity of the problem we discuss makes it possi-
ble to analyze some statistical aspects of the emission pro-
cess. The atomic polarization fluctuations in the initial,
fully inverted state of the atoms will be shown to have a
Gaussian distribution. The electromagnetic fields radiat-
ed at early times may be expressed as time-dependent
linear combinations of the initial polarization variables.
The field amplitudes therefore tend also to have a Gauss-
ian quasiprobability dist'. bution. Components of the ra-
diation field which are circularly polarized in opposite
senses will be shown to be uncorrelated and therefore to
have no intensity-intensity or higher-order correlations.
Components which are circularly polarized in the same
sense, on the other hand, show nonzero correlation. For
them we calculate an expression for the angular depen-
dence of the intensity-intensity correlation function. The
angular range of such a correlation is found to be propor-
tional to the ratio of the wavelength to the radius of the
radiating sphere.
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Since in the linear domain the fluctuations of field am-
plitude have a Gaussian probability distribution, it follows
that the angular range of correlation must likewise be
small for the entire hierarchy of intensity correlation
functions. In other words, the initial radiation from a
large sphere in any single experiment tends to be concen-
trated along a single ray that points in a random direction.

II. THE ATOMIC MODEL AND EQUATIONS
OF MOTION

~J+ = (
I

~ &, , &p I I
s &, , &p, I, I

~ &, , &p. I
)

=(oj )

so that there are three equal dipole matrix elements

i =J&s lx lp. &, =,&s ly lpga&, =J&~ lz lp. &J

(2)

(3)

By appropriately fixing the phases of the states
I p, & we

may determine p to be real.
The polarization density P(r, t) in the sample is easily

expressed in terms of crz . If we write

The radiating system we discuss consists of X identical
atoms, each with two energy levels separated by an energy
%coo. We take the atoms to be uniformly distributed over
a spherical volume of radius R. To secure a simple
description of the initial atomic state we may for definite-
ness take the upper of the two energy levels to correspond
to an orbital S state

I

s &. Then if, for example, the lower
of the two states is a P state, the radiation will proceed as
an electric dipole transition. The P state must, however,
be triply degenerate to preserve rotational symmetry (Fig.
1). (An alternative initial state could be the spherically
symmetrically excited triply degenerate P states that lie
above the nondegenerate S state to which transitions
occur. Later in this section we shall show that the linear
equations that describe the early stages of this alternative
type of radiative process are essentially the same. ) To
describe transitions between the S state and the three P
states we introduce the electric dipole moment operator
for the jth atom

p'J'=i'(~j +~J ) . (1)

The Cartesian components of oi~ may be regarded as the
raising and lowering operators connecting the upper state

I
s & with the three lower states

I p, & (a =x,y, z), i.e., they
are defined as

P+(r, t)=[P (r, t)] =@go.~+5' '(r —rj) .
J

The Hamiltonian H of the system is given by

H =(Hp) t +(Hp) d+H

in which (Hp)„, and (Hp)„d are the free Hamiltonians
for the atomic and the radiation systems, and H;„, is the
interaction Hamiltonian which is given in the dipole ap-
proximation by

H;„,= —'pg [o+J. E'+'(r
J, t) +cr~ E' '(rj, t)] . (7)

The operators E'—+ '(r, t) are the positive- and negative-
frequency parts of the electric field. In obtaining Eq. (7)
we have neglected the antiresonant terms oj+.E' ' and
o.j E'+' which oscillate at frequencies close to 2~0 in the
interaction picture.

For completeness, we also introduce the atomic inver-
sion operator o.j, defined as

,'=(I.&,-, &.
I

——,'),
and the corresponding inversion density operator

N

R3(r, t)= g cr~5' '(r —rj) . (9)
j=1

The commutation rules for cd
—and oj may be obtained

from their definitions, (2) and (8), and are
+ 3 +

[CTJ,CTJ ]—+6JJ O'J

[,+. , ]=&,,'(&.
I &, , &

I

—lp &, , &p. I)

(a,b =x,y, z) .
With the aid of these commutators the Heisenberg

equations of motion for the polarization and population
inversion densities P (r, t) and R3(v, t) are readily found
to be

P+(r,—t) =i~pP+(r, t)+ E' '(r, t) R,(r, t)+

2
E' '(r, t).R(r, t),

R3(r, t)= —[P+(r r) E'+'(r, t) —P (r, t).E' '(r, t)] .

(13)
P(r, r) =P+(r, r)+P (r, t),

we may let

(4)
In these equations n, o is the number density of atoms in
the sphere, and R(r, t) is a 2nd-rank tensor operator with
components

fl ump

Is&

O

R..= g lp. &, , &p, l~'"(.—;). (14)

These equations are supplemented by the field equation

FIG. 1. Atomic-level structure. The strictly degenerate p or-
bitals are sho~n as nondegenerate for ease of visualization.

VX VXE' +—'(r, t) = — [E' +—'(r, t)+P*(r, t))
C2 C)t2

which completes the system of equations that describes
the general atom-field interaction. Specification of the in-
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itial state (complete atomic inversion, photon vacuum)
and the Sommerfeld radiation condition (outgoing waves
at infinity) are then sufficient to determine both E' —'(r, t)
and P +—(r, t) and the expectation values of all their prod-
ucts uniquely.

The superfluorescent radiation process evolves via
linear equations as long as the population inversion can be
assumed to be only insignificantly depleted. Specifically
then, for such early times

no
R3(r, t)=R3(r, O)=, R(r, t)=R(r, O) =0 .

2
(16)

This approximation reduces Eq. (12) and its conjugate to
the form

Bt
P +—(r, t) =+it@OP—(r, t)+(ip no/A)E(+'(r, t) . (17)

III. THE SOLUTION PROCEDURE
AND DETAILS OF SOLUTION

In view of the spherical symmetry of the problem, we
can solve the coupled equations (15) and (17) by expand-
ing all operators in spherical harmonic modes, Y~, each
specified by the type (electric or magnetic multipole) and
the indices (i,m). The smallest value of 1 that occurs in
the expression for radiation fields is 1=1, which corre-
sponds to dipole radiation. For a sample of radius
R »A, o ——2~c/coo, as we shall see, many higher values of l
are just as important.

Another type of atomic transition, as we have noted
earlier, one in which the triply degenerate P states lie
above the 5 state, can be treated by means of the same set
of equations. Formally the same linearized equation (17)
is then obtained if the system is initially in the spherically
symmetric condition in which an incoherent mixture of
equal amounts of the three P states is present. It is only
necessary in that case to make an appropriate interchange
of the roles of S and P states in the definition of o +—and
to replace p by p /3. This initial state is represented by
the atomic density operator po given by

p() = —,
'

( p. & (p. + py & & py ~
+

~ p. & (p.
~

) .

In this case only two-thirds of the atoms are capable of
radiating in any given direction. Specifically, if the z axis
is chosen to be along the direction of observation then
only transitions from the l =1, m =+1 states to the
l =0, m =0 states may occur giving rise to equal
amounts of left- and right-circularly polarized radiation.

the right-hand side of which does not vanish in general.
A convenient method of solution proceeds by transform-
ing away locally at every point the V(V.E) term, thereby
reducing Eq. (15) to a simple wave equation which can
then be solved by using scalar Green's-function tech-
niques.

There are two useful and convenient linear differential
operators that can accomplish this transformation, viz. L.
and L V X where L= ( I/i )r X V is the angular momen-
tum operator. These operators both yield zero when ap-
plied to a gradient. Since they also commute with V,
both L E' +—' and L.V X E' —+' satisfy the same scalar wave
equation:

1 () (+) 1 ()

c2 gt2 c2 c)t2
(18)

where

g' —'=L.E' —' or L'VXE

and correspondingly

y+=L P' or L VXP'" .

(19a)

(19b)

In view of the Maxwell equations V XE'—+ '

=+(icoolc)B' +', V X 8'-+-'=+(icoo/c)E'-+', we note that
L E' +—'-r V XE' +—'-r B' —+'. We likewise have L.V
XE' +—'-r VXB' +—'-r.E'—+ '. We are thus in fact solving
for the radial components of B' —' and E' +—'. A knowledge
of the radial components r E and r B uniquely deter-
mines the electric and magnetic multipole coefficients and
therefore according to a theorem demonstrated later in
this section determines the full vectors E and B in the
free-space exterior to the spherical volume. We now
proceed to the actual solution.

We consider first L. or L VX acting on Eq. (17). We
may write the result for both cases as

2

Bt +iso P +(r, t)=+ g—(+)(r, t) . (20)

We next solve Eq. (18) with appropriate initial and boun-
dary conditions. We may write the retarded solution as

Equation (15) does not take precisely the form of a
wave equation due to the presence of VX V XE rather
than —V E. The difference V X V XE—( —V E)
=V(V.E) is nonzero, for one of the Maxwell equations
implies

V(V E)= —V(V P),

(+) (+) g 2 —I

r —r' (21)

in which rt„',+,'(r, t) is the solution of the scalar wave equation (18) in vacuum (P
+—=0). We may note here that g„'+„' (and

g(+) in general) contain no remnants of the longitudinal part of E„',+,' (and E'+'). This is because the operator VX an-
nihilates any longitudinal fields expressible as gradients. In other words, g„, is expressible entirely in terms of the freely
evolving transverse photon annihilation and creation operators.

By removing the rapidly oscillating factors exp(+icoot), we can define more slowly varying amplitudes II —and Y(+
for ())

+—and g(*':
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P+ (—r, t) = II+(—r, t) exp(+icoot),

g~ + (r, t) =& + '(r, t) exp(+i coot) .

If we then make the slowly varying envelope approximation by assuming

(22)

+ 2 +
2 ()g.

(23)

(24)

etc. , we see that Eqs. (20) and (21) assume simpler forms when written in terms of II+—and Y'+'. These can then be com-
bined into the single equation for II +—

,
~ 2 ~ 2 2

+ ipo&o ~~~ 'P "oko +, ~
r —r'

~
t I 3 I

4m'
II+—(r t) =+ Y (r, t)+ II — r', t — exp(+iko

~

r —r'
~

)/
~
r —r'

~

d r' .

It is sufficient to solve Eq. (24) for the lower sign only; the solution for the upper sign is just the Hermitian conjugate.
We begin by resolving Il and Y'+' into the normalized spherical-harmonic modes Y'I (8,$):

I, m

Y'+'(r, t)= get'~ '(r, t)Yt (8,$),
I, m

(25)

where gt stands for gt" op t and r =
~

r
~

. Substitution of these expansions in Eq. (24) and use of the ortho-
gonality property of the Yt functions immediately yield

(o)

Bt
ct (r, t)+iAoei (r, t) =—

I', m'

fr —r'/

c

X Y(* (8,$)YI (8',p'), (26)

where

noP
2

Ap ——

where r ~'~ =smaller (greater) of r, r', and j&(x),hI "(x)
are the spherical Bessel functions of order I. The equa-
tion for the transforms of the coefficients is then

d 0, d 0' are elements of the solid angle, and et' '(r, t)
are the coefficients of g„',+, '(r, t) in the sense of Eq. (25).

We can rewrite Eq. (26) in terms of the Laplace
transforms

c t~(r, s) = cI~(r, t) exp( st)dt, —
0

(28)

sc ~~(r,s) ct~(r, 0)+—i Aoe P~'(r, s)
R

=AokoPs f dr'r' c t (r', s)jl(Psr )hi (Psr ),
(30)

e I~'(r, s) = fe~~'(r', t) exp( st)dt . —

Since ct (r', t') vanishes for t'&0, the Laplace transform
of

/r —r'/
cI r', t—

C

1s

c t (r', s) exp( —s
~

r —r'
~

/c) .

In terms of Laplace transforms, Eq. (26) simplifies con-
siderably, for we may now carry out the Q, Q' integrations
explicitly. This we do by using the addition theorem

exp(i p, [
r —r'

[ )/ [
r —r'

[

=4vri P, gjt(P, r ~ )hi'"(P, r ~
) YI (8,$)Yt* (8',P'),

I, m

(29)

in which we have written

P, =ko+is/c . (31)

[V +P, —l(l+1)/r ][Jt(P,r ~) h't(P, r~)]
=i5(r r')/P, r', (32)—

which is easily derived from the relation

(V +P, )[exp(iP,
~

r —r'
~
)/

~

r —r'
~ ]= —4~5' '(r —r')

together with Eq. (29). We now apply the operator
V +P, —l(l+1)/r to Eq. (30) and thereby obtain

We note that in the passage from Eq. (26) to Eq. (30)
the different angular momentum (l,m) modes have be-
come decoupled. The spherical symmetry of the problem
ensures that the different spherical-harmonic modes
evolve independently.

We can solve Eq. (30) by using the Green's-function re-
lation



31 INITIATION OF SUPERFLUORESCENCE IN A LARGE SPHERE 1587

nition to construct for Eq. (33) the solution

Q [sc ~ (v, s) —ct (r, O)+iAoet (r,s)]

=i Aoko[c~ (r,O) i—Aoe t~'(r, s)]/s,
in which we have written

y, =P, i A—oko/s .

(33)

(34)

sc ~ (v,s) —ct (r, 0) +l AoeI (v, s)
R

=Aoko f [ct~(r', 0) i—Aoe I '(r', s)]

~Lt(r ~,r ~;s)r' dr', (35)

We may regard Eq. (33) as an explicit equation for the
unknown c~~(r,s) If. P, in the definition (32) of the
Green's function is replaced by y„we may use that defi-

where the Careen's function is written as

LI(r,r;s) =y,j t(y, r )ht' "(y,r )/s . (36)

The Laplace inversion of Eq. (35) is formally straightforward. It leads to
R

ct~(v t)= i Aoe~~'(—r t)+Aoko cr~(r', 0)LI(r ~, r ~;t)r' dr' i AO dr—'r' dt'eI'~'(r', t')L~(r ~,r ~;t t')—
Bt 0 0 0

(37)

in which

Lt(r, r;t)=2' '(L~(r, r;s)}, (38)

where W denotes the inverse Laplace transform. Equation (37) is the formal solution for the time derivative of the
polarization coefficient operator cI~ (r, t) for r & R. But since from Eqs. (20), (22), and (25)

(39)

we obtain an explicit expression for the electric field variable et~ (r, t) inside the sphere ( r & R). It is given by
R

e&'~+'(r, t) =et' '(r, t)+iko f c~ (r', 0)Lt(v ~, r ~;t)r' dr' i Ao f d—r'v' f dt'et' '(r', t')Lt(r, r;t —t') (40)

(42)

where we have once again used the identity (29). With the aid of Eq. (35), Eq. (42) may be expressed as

Equations (37) and (40) embody the physical mechanism of the linear initiation process. The fluctuating initial polari-
zation and vacuum field specified by the coefficients cI~(r', 0) and eI'~'(r', t'), respectively, act to induce the cooperative
quantum decay of the atomic excitation. They are both needed to describe correctly the dynamics of the operators

ct (r', t) and e~'+'(r', t). In expectation values of normally ordered products of the coefficient operators, however, the
vacuum field operators et' '(r', t') make no contribution, for the initial state has no photons present. We shall employ the
normal-ordering scheme, since it is the one most naturally adapted to the description of the usual forms of photon detec-
tion by absorption. Inasmuch as the vacuum field operators do not contribute to the expectation values which interest

us, we shall take the liberty of dropping them from Eqs. (37) and (40) and the others that follow. Their omission entails

no error apart from the consideration of vacuum fluctuations. With this understanding we obtain
R

e('~+ (r, t)=iAO '(B/Bt)ct~(r, t)=iko f ct~(r', 0)LI(v~, r ~;t)r' dv'. (41)

From Eqs. (21)—(23) we can also calculate eI'~+'(r, t) outside the sphere ( r & R). Its Laplace transform is given by

R
e t~ (r s) =tkoP, dr'r'c

&~ (r', s)J', (P,v') h,"'(P, r),
0

e lnt (r~s) = f dr'r' ct (r', 0)+Aoko f ct (r",0)LI(r ~~, r ~~;s)r" dr" j I(p, r') hj "(p,r),
S

(43)

where r ~~'~~=smaller (larger) of r', r".
The first term in the large parentheses in Eq. (43) represents the independent-atom spontaneous emission (intensity

proportional to K) whereas the second term represents the evolution of the cooperative radiation process (intensity pro-
portional to N ). We expect the intensity contributed by the cooperative emission to dominate the independent-atom ra-
diation at all save the earliest times. In studying the asymptotic behavior of intensities at large times in the linear regime
we may therefore drop the first term of Eq. (43). We assume further that detection takes place in the far field (r »R),
for which we have

ht'"(P, r)=( i) +' exp(iP, r)/—P, r =( i)'+'exp(ikor) exp( sr/c)—/P, r . —
The Laplace inversion of Eq. (43) is now easily carried out for r »R and we obtain
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( i—) kpAp
et'+ ( r, t)=

r
exp(ikpr) f dr'r' dr "r" ct (r",0)LI (r,r;t r/—c),

0 0
(44)

where Lt (r, r &;t) is the Laplace inverse of s 'Lt(r «, r»;sj)i(l3,r'), i.e.,
6+1 ao

L/ (r, r;t)=(27ri) ' f s 'exp(st)Li(r «, r»;s)J'i(p, r')ds .
E' —t oo

(45)

Lt ( r &,r &;t) =kp(27ri)
E+i oo

JI /sr

Xht' "(y,r &
) exp(st)ds, (46)

We must now evaluate the evolution kernels LI and LI
in order to obtain quantitative predictions. Their
transforms LI and L I have a rather complicated struc-
ture [Eqs. (36), (34), and (45)] which precludes exact inver-
sion. We note, however, that simplification occurs if
P, =kp+is/c is replaced by kp in Eqs. (34) and (45).
Such an approximation amounts to the neglect of retarda-
tion manifest in Eqs. (24) and (26) and is justified if the
time scale of change of Lt(r «,r»;t) and Lt (r «, r»;t)
is much larger than the maximum retardation 2R/c. It
may help in considering such retardation effects to recall
that we have assumed all the atoms to be in the same ex-
cited state at the initial moment. Any practical scheme to
excite the atoms would be likely to involve retardation ef-
fects which are implicitly ignored in specifying the initial
state. We shall thus assume that the sphere is small
enough that retardation effects can safely be neglected.
With this simplification we have

I

LI (r,r;t) =kpj t(kpr')(27ri)

X hi'"(y, r &) exp(st)ds,

1.e.,
t

L/ (r, r &;t)=jt(kpr') LI(r, r t')dt'
1 ~ r (48)

with

y, =kp(1 i A—p/s)'/ (49)

It is now straightforward to evaluate the integrals in
Eqs. (46) and (47) for kpR»1 by asymptotic techniques.
We shall assume for the moment that in the long-time
limit the major contributions to the integrals in Eqs. (41)
and (44) come from the r ', r"=R regions and then
demonstrate that to be true. With this assumption the
Bessel functions j t(y, r & ), ht "(y,r ), etc. , can be expand-
ed asymptotically into exponentials of the Debye form.
The details of this evaluation are presented in Appendix
A. Here we just give the results which can be classified
according to the value of l.

Case (a). (l+ —,') &kpr « kpr & &kpR:

Lt(r &,r &;t)= i (87rr &r &) ' I2—p(a& —1)(a&—1)[(a&—1)' +(a& —1) ]I
X exp(ivA+p + I 2Aptv[(a& —1)' +(a &

—1)' ] I
' ),

Lt (r, r;t)=Ap '(2p)' [(a& —1)' +(a —1)' ] ' j (k r')L~(r, r;t) . .

(50)

(51)

In these equations A p, a &, a &, v, and P are given by

/Ip+ ——(a& —1)' +(a& —1)'

In the latter equation M(a;Iz7) is the single-valued Kum-
mer function. ' In the limit Apt~ ao,

—arc cos(a & ) —arc cos(a & ),—1 —1

v= I + —,', a =kpr jv,

a =kpr &/v, P=Apt/v .

(52)

(53)
and

tM ( —,;2;iApt) - t '/',

Jp ( A pt /2 ) t cos( A pt /2 —7r /4 )

Case (I7) I» (kpR/2). :
I„t(r,r;t) = — (r /r )'

(2l+1)r &

X exp(i Apt /2) Jp( Apt /2),

Lj (r,r;t) = i (21 + 1) —(r &/r & ) (r & )

X exp(iApt'/2) Jp(Apt'/2)dt'

i (2l + 1) '(r—& /r )'(r )

Xjl(kpr')tM( 2
'2'l'Apt) . (55)

Thus, LI has oscillatory decay whereas Li' shows only a
slow t' growth in time.

For I kpr kpr the behavior of LI as a function of
time is given by the function EI 7/6(i Apt), defined" by

E &(z)= g z"/r(ak+P) .
k=0

The modulus of this function
~

EI 7/6(i Apt)
i

shows no
monotonic growth with t; in fact, for large Apt (Apt »1)
it decreases as (Apt)

From the above considerations we conclude that the
modes (I,m) for which I &kpR do not amplify signifi-
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cantly in the time during which modes ( I,m) with i & koR
do. We will henceforth call the (i,m) modes with I & koR
the amplifying modes and the remaining (i,m) modes the
nonamp/ifying modes

For the purposes of later calculations we shall simplify
Eq. (50) by assuming that a),a( »1. This approxima-
tion corresponds to extending the simplification which
takes place for l «koR to those amplifying modes forl-0 (koR) which do not in fact amplify quite as rapidly.

Equation (50) then reduces to

L,(r, r );t)= —i (g~) ' '(ko«') [Aotko(r +r')]

Xexp[iko(r +r')]
XexP[2Aotko(r+r')]' ', (56)

which is independent of l for l &koR. The corresponding
reduction for Eq. (51) is

L' (r «, r»;t) = ij I(k—or')(4mAokor'r") '
I

16m' (Aot)/[ko(r'+ r")] [
' exp[iko(r'+r")] exp[2Aotko( r'+ r")]'

(57)

ith the aid of expression (57) for Li we can carry out the r integration in Eq. (44) approximately in the lonE™
limit, (2AokoRt)'i »1. The result for r »R »ko

R
eI+'(r, t)-(ger) 'i ko exp(ikor)r ' J expIikor +[2Ao(t —r/c)ko(R+r")] )0

X [koAo(t r/c)(R +—r")] ' ci (r",0)r"«"

This can be rewritten in terms of Lt(r (,r );t), given asymptotically by Eq. (56) as
R

et'+'(r, t) =iko(R/r) exp[iko(r —R)] dr' r' LI(r', R;t rlc)ci (r',—0) . (59)
0

lt has not been necessary thus far to distinguish between L.P-(r, t) and L VXP +—(r, t), or correspondingly, between
L.E'~'(r, t) and L.V X E~+'(r, t). But now, in order to discuss separately the electric and the magnetic multipoles (related
to L V XP +—and L P—+, respectively) we have to make the distinction.

We let cl~(r, t) and dt~(r, t) denote the coefficient operators in the expansion of the slowly varying amplitudes of
L.P and L V&&P, respectively:

L.P (r, t) =exp( i coot) g c—t~(r, t) Yi~(8,$),
l, m

L.V X P (r, t) =exp( icoot) g dt (r, t)—Yt (8,$) .
l, m

Then from Eqs. (25) and (59), for r »R we obtain in the long-time limit

(60)

(61)

L.E'+'(r, t)
L VXE'+'(r, t)

R c, (r', 0)
'

.=iko(R lr) exp[iko(r R) icoot] g—'—I dr'r' LI(r', R;t rlc) X ', —'X Yt (8,$) .
0 dtm r', 0

(62)

The prime on g in this and the subsequent equations indicates a sum over only the amplifying ( i, m) modes, i.e., those

for which i &akoR (a =1). The Hermitian adjoints of Eqs. (62) give the corresponding relations for the negative-

frequency field variables. The foregoing equations, as we have noted earlier, in fact determine the radial components
r.B'+' and r E'+' as expansions in terms of the various spherical harmonics. Each term in the first sum and the corre-
sponding term in the second sum of Eqs. (62) together specify the two Debye potentials' in terms of which the full free-

space vector field E'+'(r, t) may be written as

E'+'(r, t)= —R exp( ikoR i coot—) g' [l (l—+ 1)] '(V X I V X [r exp(ikor) Yt (8,$)/r] I )
l, m

R
dr' r' Lt(r', R;t r/c)dt~(r', 0)—

0

+ ko g' [l(l +1)] 'I V X [r exp(ikor) Ytm(8 p)/r]I
l, m

R
dr' r' Li(r', R;t —r/c)ct (r', 0)

0
(63)
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The magnetic field 8' + ' given by

B'+'(r, t) =(iko) 'V XE'+ '(r, t)

assumes the same form as Eq. (63) provided the replace-
ments, dl (r', 0)~ct (r', 0) and cl (r', 0)~ dl —(r', 0),
are made. With the aid of the identity '

r (VX t Vx[rf (r)YIm(9, $)]I )=l(i+ 1)f(r) Yl (g p)
(64)

and the result

V [f(r)YI (~ 4)]= kof (—v)YI (~ 4)

which holds approximately if the dominant dependence of
f ( r) is of the form exp(ikor)/r, one may easily verify that
E' + ' and 8' + ' as determined above do indeed satisfy the
free-space Maxwell equations as well as Eqs. (62). In ex-
pression (63) the first sum represents the electric multiple
contribution whereas the second sum represents the mag-
netic multipole contribution.

IV. STATISTICAL ASPECTS:
AVERAGE INTENSITIES AND THEIR

ANGULAR CORRELATIONS

Since during the initial stages of amplification the elec-
tromagnetic field depends linearly on the atomic polariza-
tion variables elm (r', 0) and dl

—(r', 0), the average field in-
tensity and the intensity-intensity correlation are averages
of bilinear and quadrilinear forms, respectively, of these
operators. We shall address here the more general prob-
lem of determining the statistics of the fluctuations of
cl (r', 0),dl+ (r', 0) by ca—lculating the expectation values of
all of their products.

A. Properties of the fully inverted initial state

It is more convenient to consider integrals over the full
spherical volume. This we do by using the Hankel
transforms clmk(0), dlmk(0) defined as

cl (r, p) „cl k(0)
= f 'd 'xjI(kv)k'dk (66)

lm V O Imk

with the inverse relations

c, (r', 0)
d

—
(p)

'= —f, 'd („p) XJI(kv')v' dv', (67)

in which we have used the fact that cl (r', 0)
dim(r', 0) vanish for r'&R. From Eq. (65) we then find

clmk(0) 2 L P (r 0)
(P) f d" &1 k(r)x 'L Vxp ( 0), (68)

in which we have written

(69)

On using some vector identities and then integrating by
parts we may show that

cl
—

k(()) 2 V X (r+Imk )
d rP (rp)k(0) im ~ ' VX[VX(r&l k)]

(70)

Then using the definition (5) of the initial polarization
field and the relations (a~+,

crumb ) =5II 5,b (a, b =x,y, z) fol-
lowed by some algebraic manipulations, including several
integrations by parts, one obtains the results

(cl+ (r, p)cl (r', 0))=no@ 5II 5 l(I+ 1)5(r r')/r—
By projecting out the spherical harmonic coefficients in

Eqs. (60) and (61) we find

elm(r~p) L p (r,p)= f d QYlm(6, $)'L V p ( 0)
. (65)

( c+ (r, p)d ~ (r', 0) ) =0,
and

(71)

(72)

(dl+ (rp)dl (r', 0) ) =n p l(l+1)5II 5

X, 2 +8 5(r r') l+2 8 5(r r—') l+2 8 5(r r') (l—+2)2 5—(r —v')+ —, +BrBr' r2 r' Br r2 r Br' r'2 rr' r2

+— ' [5(r R)5(v' R)/R ]— —
2 dE. (73)

Equation (72) represents the mutual independence of
electric and magnetic multipole evolution. The vanishing
of Eqs. (71) and (73) for l =0 indicates an absence of
source fluctuations for I =0. Thus as we have noted ear-
lier, the lowest radiating multipole is a dipole ( l = 1).

In the limit of large particle number X, the averages of
the higher-order products are reducible to forms involving
only the 2nd-order products. Clearly, products involving+ +an odd number of cl— or dl— have zero expectation values

I

in the initial state. On the other hand, the 2p-order aver-
ages (p =1,2, . . . ) can be reduced to a sum of products of
2nd-order averages as follows:

(cl+, , (rl) . . cl+ (r~)cI (rl ) . c, (r~))

cljm& r1 cl m
r ' ' ' cl m Y& cl' m'
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The sum in this equation runs over all p! permutations of
the primed coordinates. The time coordinate which is 0
has been dropped to simplify the notation. Equation (74)
is accurate only for p «N. A formally identical relation
is also obtained for the d~~'s. From these composition
rules it is evident that the fluctuations of the operators
c~ (r, O) and d~ (r, O) in the initial state follow Gaussian
statistics for N sufficiently large. More precisely, the
coherent-state amplitude corresponding to each of the in-
itial polarization coefficient operators c~~ (r,O) and
d~~(r, O) assumes random values with a Gaussian
quasiprobability distribution. Since the electromagnetic
field can be written as a linear combination of c~~(r, O)
and d~ (r, O), the fluctuations of the electromagnetic field
also obey the Gaussian statistics in the linear regime.

B. Average intensity of ( I, m) multiple radiation;
average delay times

We now discuss in detail the two lowest-order averages
of the electromagnetic field in the linear regime. For
I ~koR, in the limit of koR ~~1 and long times, both
magnetic and electric multipoles of a given order (l,m) ra-
diate the same average intensity,

and (47), which show that W(r) is zero at r=0 and rises
at first quadratically with r. The number of photons
N(r) emitted in time interval r is given by the integral

Since W(r') is small for small r', N(~) may in the long-
time limit (77) be estimated by means of Eq. (78). The re-
sult is

(akoR ) exp[4(AokoRr)' ]N(r)=
4~ 4(A,k,Rr)'" (79)

Even though the linear regime is confined to the initial
stages of radiation during which N(~) &&N/2, we see
from Eq. (79) that when N » (koR ) there should
nevertheless exist a finite interval of time in which the
solution follows the asymptotic expressions (76) and (78)
accurately.

With the aid of Eq. (79) we obtain an order-of-
magnitude estimate of the average delay time ( tD ) for the
evolution of the amplifying modes. It may roughly be de-
fined to be the time needed for the emission of N/2 pho-
tons. We then have the approximate result

Ii~E( r, t)=I&~M (r, t) ( tD ) ( 16ApkoR ) I ln[2wN/(akpR ) ] I (80)

I(~E(r, t)= If@op/[16+i (I +1)r]I

)&exp[4(ApkpRr)'i ] i
VI'I (8,$) i

(76)

an expression which is valid for

(2AokoRr)'i »1 . (77)

Thus the time dependence of-the intensity is asymptotical-
ly of the same form, r 'exp(av r), as in the one-
dimensional model of superfluorescence. " This formal
correspondence is a hint of a one-dimensional character
for the emission from a large sphere. In any single experi-
ment, as we shall see, the radiation does tend to be con-
fined close to just one dominant radial direction. The

.time dependence expressed by Eq. (76) is qualitatively dif-
ferent from the purely exponential time dependence found
by Ernst and Stehle and by Rehler and Eberly.

The total energy flow rate W(r) from the sample in all
such (l, rn) modes is given by integrating 2II~E(r, t) over
all solid angles and summing over I from 1 to Io ——akoR
For long times r we may use Eq. (76) to obtain the result

W(r)=[%coo(akoR) /8vrw]exp[4(AokoRr)' ] . (78)

Its short-time behavior is perhaps best seen from Eqs. (44)

—= cR konop [l(l+1)]
&&

~

V)&[rexp(ikpr)Y(~(8, $)/r]
~

R
&& f dr'r'

i
LI(r', R;t r/c)

i
. — (75)

The details of the derivation are presented in Appendix B.
For large times r=t r/c, —the integral in Eq. (75) is

straightforwardly evaluated, for then only r' close to R
contribute significantly when expression (56) for LI is in-
troduced. The resulting intensity is

Since Ao is proportional to N, (tD ) also takes the
form characteristic of the one-dimensional theory,
(1/N)(lnN) . The delay time tD itself will show fluctua-
tions about the average (tD ) which can be calculated in
the present model by following the procedure of Ref. 13.

A natural physical interpretation can be given to the re-
sult in Eq. (80). Since 16AokoR -NT

~ [1/(koR)],
where T, ' =p ko/(M) is the spontaneous emission rate
of a single excited atom, it is evident that not all atoms
but only a fraction of order (koR) participate in the
cooperative radiation process in a single pulse. But
4m(koR) is the solid angle subtended by the characteris-
tic diffraction pattern of a sphere of radius R. That only
N(koR) atoms cooperate results from the fact that
photons emitted only in a solid angle 4m(koR) initiate
the cooperative decay of atomic excitation. [In the termi-
nology of Rehler and Eberly (koR) is the shape factor
p of the sample. ] In fact, all intensity-intensity and
higher-order correlations may be expected, therefore, only
to extend over a maximum solid angle of order
4'(koR) . The emission process, in other words, may
tend to be highly directional for each pulse.

C. Angular intensity-intensity correlation function

The angular distribution of radiation intensity which
emerges from the sphere in any single pulse is extremely
random. The ensemble average of the intensity taken over
many pulses is isotropic and has no angular dependence
whatever. It may nevertheless be true that the individual
pulses are quite anisotropic in their structure. If that is so
it will become evident by consideration of the angular
correlation function for the radiated intensities.

We discuss here the angular correlation of intensities
detected along two rays which enclose an angle g (Fig. 2).
Along each ray is placed a detector sensitive to either left
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Spherical
Sample

v, v'. circular polanzers

D, D: square-law detectors

In view of the Gaussian statistics of the electric field and
the consequent reduction of the fourth-order field correla-
tion function we can write

~

(8', '(r, t)8",+'(r', t))
~R (g, t)=

( 8', (r, t) 8'+ '(r, t) ) ( 8'„'(r', t) 8',+ '(r', t) )

(82)

The computation of the second-order averages is analo-
gous to that of the average intensity in Sec. IVB (see Ap-
pendix B for details). In the long-time limit one obtains

FICx. 2. Intensity-intensity correlation.

or right circular polarizations. The output photocurrents
are multiplied and the product averaged over many pulses
to give a correlation function which is proportional to the
joint photon-counting rate in the two beams. We assume
that the detectors are placed the same distance
r =

~

r
~

=
~

r'
~

away from the center of the radiating
sphere.

For each direction r we introduce a pair of complex cir-
cular polarization vectors e,(r) corresponding for v=+1
to the right and left circular polarization, respectively.
The circularly polarized components of the field vector
are then defined as

8&(+ ) mt (r ) E(+ )
V V

We introduce the normalized intensity correlation func-
tion R (P, t) by writing the joint counting rate as

( 8'„'(r, t) 8', '(r', t) 8",+'(r', t) 8'+'(r, t) )

(8' '(r, t)8'+'(r', t))E)=vv'(8' '(r, t)8", '(r', t))M,s,
(83)

in which the subscripts "El" and "Mag" stand for the
electric and magnetic multipole contributions to the corre-
lation function. The factor vv' comes from the difference
in the angular dependence of the electric and magnetic
multipole radiation patterns.

An important consequence of Eq. (83) is that field com-
ponents of opposite circular polarizations are completely
uncorrelated along any two rays, for, if vv'= —1, then

(8'„'(r,t)8'„+'(r', t)) = (8'„' '(r, t)8',+'(r', t))

+ (8.(-)(r, t) 8',+'(r, t) )E,

The only correlated emission, therefore, is of photons cir-
cularly polarized in the same sense, for which we have

~

(8' '(r, t)8',+'(r', t))
~

'
R (,t)=

~

(8",-'(r, t)8'(+)(r, t))
~

'
= (8', '(r, t)8' '(r, t))(8' '(r', t)8',+'(r', t))

X [1+R (g, t)] . (81)
I

To evaluate this correlation function we note that accord-
ing to Eqs. (63) and (71)

( 8' '(r, t) 8'„'+'(r', t) )=2(8'„'(r, t)8'„+'(r', t) )M,s

=2RDkono)L(, g [l(l+1)] '(e (r)'IVX[rexp( —ikor)Y)* (8,$)/r] I )
l, m

RX(e*(r '). [V'X[r'exp(ikor')Y)~(8', P')/r']I ) f dpp
~
Lt(p, R;t r/c) ~—

R
By noting the fact that f dp

~
L)

~ p is approximately independent of l for the amplifying modes, we may cast Eq. (84)
in the form

2

g [l(l+1)] '[e (r) VY)* (0,$)][e*(r') V'Y) (O', P')]
l, m

R (g, t)= 2

g [l(l+1)] '[e (r) VYi* (0,$)][e*(r) VYt (6),$)]
l, m

(86)

The summations in Eq. (86) may be carried out straight-
forwardly. The details are presented in Appendix C.

It is convenient to write

(1l,t)= ~s(g)/S(O) ~'.
The result of carrying out the summations of Eq. (86) can
then be expressed by writing

S(Q) = g [(2l + 1)/l(l +1)]

X [Pt"(cosP)( —sin f)+.Pt' (cosg)(1+cosg)],
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where Pt(z) is the Legendre polynomial of order l, Pt (z)
and Pt"(z) are its first two derivatives, and lp ——akpR is
the upper cutoff on the sum.

For /=0, since Pj (1)= ~ I (l + 1), we have

sponding to opposite circular polarizations. But, f'or
vv'=+1 corresponding to circular polarizations of the
same sense we find that R (g;~, r') factorizes in the limit
of long z and ~', i.e.,

S(0)=lp(lp+2) . (88) R (P;r, v') =R (Q)X(r,r'), (94)

Now, for Ip~ oo (i.e., kpR ~ oo ), since'

g [(2I +1)/I (l + 1 )]Pi(cosi)r)
I=1

[Pt (cosP) /I) +Pt (cosP) /(I + 1)]
1=1

= —1 —ln[( 1 —cosit ) /2],

we have (for /&0)

S(g) ~ I
—[sin g/(1 —cosP) ]

koR, lO~ co

+ (1+cosset )/(1 —
cosset ) )

=0. (89)

Thus, for an infinitely large sphere there is no angular
correlation at all of fields for nonvanishing i(t.

For values of kpR that are large but not infinite, it is
convenient to write S(p) in a somewhat different form.
On subtracting Eq. (89) from Eq. (87), we obtain

S (Q) = g [(2l + 1)/l (l + 1)]
I =/0+1

X [ sin QPt"(cosg) —{1+cosp)Pt' (cos1{)].

Since for large l and P not too close to m we may write
Pt(cosg) as'

Pi(cosg) =Jp[(lp+ —,
' )f](P/sing) '~ (91)

we can evaluate the sum in Eq. (90) asymptotically. The
result we find for R (lt ) in Appendix C is

R (@)=
~

S(g)/S(0)
~

=4J', [(4+—,
' )g]/[(l, + —,

' )g]' . (92)

The first zero of the Bessel function J~ occurs at
/=3. 83/(lp+ —, ), giving R (P) a width b.g of the order
of 1/(lp+ —, ), or since lp ——akpR (a =1),

b,f-(kpR) (93)

Since expression (86) [as well as (92)] is manifestly in-

dependent of the time variable, we may expect it to hold
for times longer than the linear initiation regime over
which it is rigorously valid.

The results presented in this section have so far referred
to measurements at equal retarded times, ~=(t r/c)—
=(t' r'/c) =r', for the two —directions. For w&r', if we
denote the time-dependent angular correlation function by
R~(g;r, r') we easily see that R ~ =0 if vv'= —1 corre-

where R is given by Eq. (86) or (92).
One sees from Eqs. (56) and (63) that the purely tem-

poral factor X(~,r') assumes the form
R 2

dr r L(r,R;r)L*(r,R;r')

f dr r ~L(r,R;r)
~ f dr r IL(r,R;r')

~

which in the large-~, ~ limit reduces to the expression
(95)

(96)

Many of the results obtained in the present paper
should continue to hold with good accuracy when the
shape of the radiating volume is no longer spherical. This
is because we may expect the emission to occur along
well-directed rays in a one-dimensional manner. Thus if
I. is a measure of the maximum linear dimension of an
arbitrary sample, many of the results may be carried over
from the spherical case simply by substituting L for 2R.
The analysis of the present paper is, of course, confined to
the linear regime which prevails in the early stages of ra-
diation. One effect of the nonlinearity is to couple all of
the radiation field modes to one another. Such coupling
may be expected to alter significantly the result for later
times.

After the completion of the present work, a paper by
Mostowski and Sobolewska' dealing with the same prob-
lem appeared. Their results, although generally parallel to
ours, differ in several ways. Their analysis is based on a
scalar rather than the correct vector wave equation. They
are thus unable to discuss those aspects of the problem
that depend intrinsically on the nature of photon polariza-
tion. An important result of this kind, as we have seen, is

the complete absence of angular correlation between any
two photons which are circularly polarized in opposite
senses. For photons circularly polarized in the same

sense, however, we find that in the long-time limit the
intensity-intensity correlation extends over an angular

range of order 1/koR. Because the Debye multiple-
reflection expansion of geometrical optics, which their
analysis makes use of, implicitly assumes kpR = ao, they,
on the other hand, predict zero angular range for correla-
tion in the same, long-time limit. The average intensity in

their work amplifies in time as ~ ~ exp(ar'~ ), whereas

we find it to have the same form, ~ 'exp(ar' ), as occurs
in the one-dimensional problem.
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APPENDIX A: EVOLUTION KERNELS
LI(r,r, t) AND Lq'(r, r;t):

LAPLACE INVERSION DETAILS

For t & 0 the inversion contour can be replaced by a cir-
cle of radius & Ao centered at the origin in the complex s
plane. Then the transformation i Aols =co gives us

L~(r &,r&;t)= ko(2mi) ' f dcoco 'ji(kor &V'I co—)
C

X hI "(kor & v'I —co)

X exp(i Aot /co ) (Ala)

this problem. This work was supported in part by the
U.S. Department of Energy under Contract No. DE-
AC02-76ER03064 and by the U.S. Air Force Office of
Scientific Research.

L('"- (k o/—4~) f g(co)exp[E'vf(co)]de,

in which

g (co)= co '[x & x & (1—co) ]

X I [x & (1—co) —v ][x& (1—co) —v ] ]

(A4)

L
('])

~2~
.= ko(4mi) ' f dcoco 'exp(iAot/co)

I

Xh/ "[kor (1—co) ' ']
h( "[kor & (1—co) '/ ]

X h' [k r (1—m)1/2) . (A3)

We need consider either L, I
' or I I'

' in detail since the
calculations for both are exactly analogous. For I.~" we
have the expression

Li (r &,r &;r)= —ko(2~Ao) 'ji(kor')

X f, dry jl (ko r V'I —co)

XhI"(kor &I —~)

X exp(i Aotlco), (A lb)

f (co) = [o,)(1—co) —1]' + [a &(1 —co) —1]'/

—arccos[a&(1 —co)' ]
—arccos[a&(1 —co)'/ ] '+I3/co,

v=l+ —,, x( ——kor, x =korI

(A5)

where c' is a circle of radius smaller than 1. The branch
cut for the integrands lies outside c' in the cu plane. Since
the integrands in Eqs. (Ala) and (Alb) differ by a simple
factor of co, we need give details of evaluation only for one
of the two integrals. The value of the other integral in the
stationary phase approximation, which we use since
koR &&1, is obtained simply by appending to the result an
extra factor of co„ the relevant stationary point in the co

plane. We choose to evaluate I.I here.
We study the following domains of I values.
Case (a). (l+ —,')&kor« kor& &koR: We take the

radius of c' to be very small so that
~
koR (1

—co)'/
~

&(l+ —, ) on it. Then for h~" we have Debye's

asymptotic formula given by'

g~ ~(u) u
—~/2[u2 ($+ —') ]

XexpIi [u —(1+—,
'

) ]'/

i (I + —,
'—)arccos[( I + —,

'
) /u] i m /4 I—

~& ——x& /v, tt& ——x& /v, P=Aot/v .

provided P « 1 as is the case for small times t « v/Ao.
We now deform the closed contour c' so that it passes

through the stationary points co —+ and assumes the slopes
0+—of the stationary paths near co+- given by

28+—+argf "(co+—
) =0,~ .

In the limit P« 1, 8+- are found as

(A7)

—m/4, m/4

m/4, 3m /4 .

We first assume v~&1 but the fina1 expressions hold even
for v-O(1). For the function f(co) the stationary points
m, lying close to the origin are given as

~+~+) (2P)1/2[(~2 1)I/2+ (~2 1 )1/2] —I/2

in which

[u —(I+—, ) ]»1 .

(A2)
By using

f exp(+iaz )dz=(~/a)'/ exp(+i'/4)/2
0

(a &0), (A9)

Now, by writing ji ——(h& "+h~ ')/2 and using Eq. (A2) in
Eq. (Ala) we obtain

I (&)+L (2)

where L~
' and L,I

' are expressed as(&) (2)

it is now easy to demonstrate that the two stationary seg-
ments of the contour at co+ contribute exactly equal
amounts, whereas contributions from similar segments at
cu cancel each other exactly. One may carry out a simi-
lar procedure for L~' '. The final expressions for LI" and
L, ~ are written as

L (&)

(S~r&r&) —/ [(a)—l)(a( —1)] ' I2P[(a) —1) /+(a —1) / ]I—
I

Xexp(ivAo +[2Aotv[(a& —1)' +(a& —1)' ]]'/ ), (A10)
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where

A p = (a &
—1)'/ +(a &

—1)'/ —arccos(a & ')+arccos(a & ) . (Al 1)

It is clear from Eq. (A10) that the maximum rate of evolution of LI in the long-time limit is obtained for r & -O(r & ) for
which LI' ' is negligible.

Case (b) k.pr & (l + —,
'

) & kpr & kpR: This case is not important for our purposes since, as we have just noted, the
major contribution to the r' integral in Eq. (43) comes from the vicinity of r =0(r ) [in the limit (2AptkpR)' »1]
for which kpr & & (l + —,

' ). The calculations are similar so that we will not present them here.
Case (c). l »(kpR/2): In this range of l, both jt and ht"' have just power-law dependences on their arguments. ' It

is then, easy to show that

Lt(r &,r &;t)= —[ 27r(2l +1)r &] '(r &lr &) f (de/co)exp(iApt/co)(1 —co)

= —[27r(2l+1)r &] '(r &lr &) f ds exp(iApts)[s(s —1)] (A12)

where c encloses the branch cut from 0 to 1.
To evaluate the integral we deform c so that it just cir-

cumscribes the branch cut. The integral may the be writ-
ten as the sum of two integrals of the same integrand
which are performed over the line segments from 0 to 1

running just above and just below the real axis in the com-
plex s plane. The sum of the two latter integrals is easily
expressed as

Lt(r &,r &;t)=K ds s '/ (s —1) / exp(iApts),
C

where on c,
~

s
~

=sp&1. By expanding (s —1) / in a
Taylor series we may show that

—,( —, +1) ( —,+m —1)5 5 5

L(=27riK 1+
m=1 m!

Lt(r, r;t) = —[27r(2l + 1)r & ]

X2i f dr[r(1 —r)]

Xexp(i Aptr )(r & lr & )' .

On substituting r =sin 0 in this expression and using the
formula

(iApt)
X m!

On writing —,
' +k —1=k ——,

' it is easy to show that

(A16)

Jp(x) = —f dO exp( ix cos8),—

we finally obtain

Lt(r, r;t) = —i[(2l +1)r & ] '(r /r )I

X exp(iApt/2) Jp(Apt/2) . (A13)

K= ikpexP(i27r/3)(sin 7r/3)l ( —, )

)&6 (k r r ) /(18 ) (A15)

By substituting s =co ' we transform Eq. (A14) to the
form

The high (l, m) modes thus do not evolve; they just os-
cillate and damp out in a time of order Ap which is in-

dependent of the sample size R. This independence from
R is because of the fact that to the high-I modes the sam-

ple appears to be a detail-less point emitter.
Case (d). l kpr & --kpr &: For this intermediate case,

too, we once again have power-law dependences. With the
appropriate expressions for ji and h&"" (Ref. 18) substitut-
ed in Eq. (Ala) we obtain

Lt(r &,r &;t)=K f draco 'exp(iApt/co)(1 co)—
C

(A14)
in which

ln[ —,
'

( —,
' + 1) . ( —,

' +m —1)]

=-ln(m!m e )

=ln[(m!)2e r/6/I (m + —,
' )],

Lt(r,r; t)=27riK exp( y l6)E, 7/6 (l—Apt) (A17)

in which Et 7/6(iApt) is a special function defined by the
relation"

APPENDIX 8: EQUALITY OF AVERAGED
INTENSITIES FOR ELECTRIC AND MAGNETIC

MULTIPOLES

From Eq. (63), on taking the (I,m) electric multipole
contribution and using Eq. (79) we obtain for the corre-
sponding averaged intensity

where @=0.577 . . is the Euler-Mascheroni constant.
With the aid of this result, Eq. (A16) reduces to the ap-
proximate form
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2
R

Ii»&z(r, t) =Wt~(r), [r Li (r', R;t —r Ic)] dr'Ir'
Br'

R—(l+2) f (BIBr')[r' Li*(r',R;t —r/c)]Li(r', R;t rI—c)dr'Ir'

R—(l +2) f (8/Br')[r' Li(r', R;t r lc—)]Li*(r',R;t v/c—)dr'/r'

—(l +2) f dr'
~

Li(r', R;t r Ic) ~— (81)

where 8'~ is given by

Wi~(r)= cR npp [l(l+1)]
X

~

VX [VX[rexp(ikpr)Yi (0,$)/r]]
~

. (82)

We can recombine the terms in Eq. (81) to a more trans-
parent form by noting that

But since in the long-time limit the major contribution
comes from r'-O(R) the first term is of order
(kpR) ~Li

~

dr', whereas the second term is always
0 R

less than a quantity of order (kpR) p ~Li
~

dr' for am-
plifying modes (l & kpR). Hence, for kpR »1 we can ig-
nore the second term in Eq. (85) altogether, so that we
have

(d/gr')(r' Li) =r'[(&3/cir')(r'Li)+Li] .

Equation (81) reduces to the form
R

I I 2 IIi E(r, t) = Wi (r)
~

(BIBr')(r'Li)+Li dr'
L

(83) R
It~F(r, t)=Win(r)ko f r

~
i( ', ;t r/c)

~

dr'. —

(86)

However, in the limit kar && 1 we have the simplification

A

+ l(l+2) f ~Li
~

dr'

V X [ V X [r exp(ikpr ) Yt~(0,$)/r]]
~ lkpexp(ikpr )V Yi (0,$),

(84) so that Eq. (86) may be written as

We can neglect the second term above because it involves
8/Br' derivatives of r'

~
Li ~, which has no fast r' varia-

tion. Furthermore, from the exact expression for J ~ in
Eq. (A10) (on neglecting Li ' for large times) it follows
that

(dIBr')(r'Li) =i v(BA + /Bv')(r'Li )

=ikp[l v /(kpr') ]'~ (r'L—i) .

With the aid of this relation, Eq. (84) may be expressed as

It~@(r,t)=Wi~(r) kp f r' ~Lt
~

dr'

Ii~F(r, t)= cR npp kp[l(1+1)] '
~
VYim(0, $)

~

R r' L~ r', R;t —r c dr',

which is the same as the averaged intensity It~~(r, t) of
the corresponding magnetic-multipole radiation obtained
easily from Eqs. (63) and (71).

APPENDIX C: DETAILS OF EVALUATION
OF SUM S(f) AND ITS ASYMPTOTIC FORM

We may write S(g) as

S(f)=4mr g [l(l+1)] [e (r) VYi* (0,$)][e*„(r') V'Yi (0',P')]
1,m

=4~[(a /a0a0 ) —(iv/sln0)(a'/ay a0')+(1v/sln0 )(a'/a0ay )

+(sin0sin0') '(8 /BQBQ')] g [l(l+1)] 'Yi* (0,$)Yi (O', P') .
E, m

With the aid of the relation

Yim (0&iti) Yim (0 &P ) =(2l +1)Pt(cosg)/4',
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in which the angle P between directions (8,$) and (O', P') is given by

cosf =cosO cosO'+ sinO sinO'cos( P —P'),
we may express S(g) as

10

S(g)= g (21+1)[l(l+1)] '[((} /(}8(}8') (i—v/sinO)(B /Bp(}8')

(C3)

+ (iv/sinO' )((} /(}8 (}p')+(sinO sinO') '((} /Bp (}p')]Pi(cos1b) . (C4)

Since our final answer can only depend on the angle f
(there are no other angles in the problem) we shall con-
veniently take 8=/=0 after carrying out the derivatives.
This straightforwardly gives us the desired expression (87)
which simplifies in the limit of large koR.

We consider first the sum related to that in Eq. (90):

Z(1b) = g (2l + 1)[l (l + 1)] 'Pi(cosg)
1 =10+1

Since we shall only be interested in p « 1, we may re-
place the sum by the integral

Z(tb)-2 f( IJo[(l+- )tb]/(l+ —,
' )Idl

(t 3/p)QJo(u)du /u

From this expression Z'(f) and Z"(1b) are easy to calcu-
ate by simple differentiation. On rewriting 8 (P) as

2(l + —,
'

) 'Pi(cos1b), since l ))1 .
1 =lo

With the aid of Eq. (91) Z (1b) may be expressed as

R (1b)=[lo(1&+2)] [—sin 1bZ"(g)
'

+( I+costi'j)Z'(g)]

Z(g)= g 2(l + —,
'

) 'Jo[(l + —,
'

)p](t/r/sin1b)' ' .
1 =10+1

and using the calculated values of Z'(1b) and Z"(g} we
obtain Eq. (92).
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