
PHYSICAL REVIEW A VOLUME 31, NUMBER 3 MARCH 1985

Diffractive effects in pulse propagation through a resonant medium
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The propagation of a weak optical pulse through a resonant two-level atomic medium is discussed
in the paraxial approximation. Transverse propagation effects within that approximation are treat-
ed exactly by development of the method of Fresnel transforms. In particular, for a temporally
short pulse with an amplitude of arbitrary transverse spatial dependence it is shown that longitudi-
nal propagation is not affected by diffractive spreading. Thus diffraction does not attenuate the
characteristic ringing of one-dimensional pulse propagation in resonant media.

I. INTRODUCTION

The propagation of coherent pulses through resonant
media has received considerable study in recent years. '

Several interesting phenomena, such as self-induced
transparency and photon echoes, have been predicted
theoretically and then observed experimentally. But in al-
most all analytical calculations of these effects to date the
pulse has been assumed to propagate in a strictly one-
dimensional fashion. The assumption of strict one-
dimensionality is questionable, however, because several
effects arising from the finite transverse dimensions of the
systems are not accounted for. The most obvious of these
effects is the diffractive spreading that is always present
in propagation of actual laser pulses used to study such
phenomena. These systems are thus at best quasi-one-
dimensional.

The study of the passage of a weak optical pulse
through a semi-infinite medium of resonant two-level
atoms includes a particular class of propagation problems
that is of much interest. What we treat in this paper is
the problem of diffractive spreading of the pulse cross
section and the manner in which such spreading affects
the interaction of the pulse with the resonant medium.

The transverse spreading, which arises from a spatial
nonuniformity of the amplitude distribution of the pulse
over its cross section, is assumed to be mild enough that
the propagation may still be approximately described by a
single wave vector ko ——kox. More precisely, we assume
that we can make the classical Fresnel-diffraction, or par-
axial, approximation in the wave equation. In addition,
the pulse is taken to be weak enough that its passage
causes only a negligible population transfer between the
two atomic levels. This assumption amounts to an ap-
proximation of linearity in the equations that describe
pulse propagation.

In order to illustrate the physical nature of such propa-
gation we will first consider a temporally short pulse, the
amplitude of which may in the limit be taken to be a 6
function in time. One of the earliest calculations of this
kind was carried out by Burnham and Chiao for a one-

dimensional problem. They showed that in the absence of
incoherent relaxation processes the resonance fluorescence
excited by a uniform plane-wave 5-function pulse should
exhibit damped oscillations, or ringing, of the Bessel-
function form, Ji(aV r)lr, where r is the retarded time
and u is a constant that depends on the length and density
of the sample. An input pulse with a spatially nonuni-
form amplitude over its cross section, on the other hand,
will spread by diffraction, and lead to different distribu-
tions of excitations in different transverse planes. That
complicates the problem, leaving it no longer clear what
kind of time dependence will obtain. To study this prob-
lem we develop an integral transform method based on a
kernel function which describes Fresnel diffraction. We
will show, by using this transform, that within the paraxi-
al approximation the effects of transverse diffraction
decouple exactly from the one-dimensional, longitudinal
process of energy exchange which is responsible for the
simple Bessel-function pattern. Thus, the Bessel-function
ringing obtains once again for this more general case.

We will then generalize the calculations further to in-
clude incoherent relaxation processes of the kinds which
lead both to homogeneous and inhomogeneous broaden-
ing. Also, the restriction that the exciting pulse be tem-
porally short will be relaxed. We will show that diffrac-
tion can in that more general case still be easily included.
These results extend some calculations of Crisp on one-
dimensional pulse propagation to those three-dimensional
situations in which the forward-propagating pulse has an
arbitrary spatial dependence.

II. EQUATIONS OF MOTION

The material medium is assumed to consist of identical
atoms each having only two states,

~
+ ) and

~

—), with
distinct energy eigenvalues. The behavior of an individual
atom will be described in terms of its 2&&2 density matrix

p in the Schrodinger picture. The effect of incoherent re-
laxation of the atomic variables caused, e.g., by collisions
and by the interaction of the atoms with the radiation
field reservoir (spontaneous emission) can be represented
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schematically by introducing phenomenological relaxation
times Tj and T2. The quantity T& is the characteristic
time for the decay of the population and T2 that for the
relaxation of the dipole moment of the atom.

The optical pulse will be taken to be nearly resonant,
i.e., its center frequency ~o is nearly equal to the atomic
frequency co that separates the two states

I
+ ) and

I

—).
The magnitude of the detuning b, given by b, —:co —coo is
thus assumed to be much smaller than coo. We let the
electric field E(r, t) of the optical pulse, which travels in
the z direction, be linearly polarized along the x axis,

E(r, t) =—[8'(r, t)exp(ikoz i co—ot)+c c ]., .X

2

where x is a unit vector in the x direction. The dipole
moment induced in the atoms by the field then also points
in the x direction.

In the electric dipole approximation the expectation
value of the atomic dipole moment operator p is given by

&p)=&(&+ +& +), (2)

where p =e (+
I

r.x
I

—) is the projection of the dipole
matrix element along E, and p+ and p + are the off-
diagonal elements of p. We have taken p to be real by fix-
ing appropriately the relative phases of the states

I
+)

and
I

—).
Since p+ is expected to have dominantly the time

dependence exp( icoot) w—e can define a pair of more
slowly varying, real amplitudes +~ and 7 ~ via the rela-
tions

p+ ———,
'

( 4t, +i F t', )exp(ik"oz i coot)—
(3)

(ko =ci)o/c). The factor exp(ikoz) is inserted to account
for the spatial variation of the traveling fields.

The time evolution of p,J (i,j =+,—), or equivalently,
of (4'a+i P t, ) is easily found with the aid of the density
matrix equation

in which ~~' is the steady-state value to which ~~ re-
laxes. We shall assume in fact that the system is at zero
temperature so that ~~ ———1.(0)

In any actual sample of similar atoms the transition fre-
quencies are inhomogeneously broadened (e.g., by Doppler
broadening). In other words, there is a distribution of the
detpnings b., which we shall call g(b, ), normalized so that

I g(b, )dh= l. For such a medium we see from Eq.
(2) that if no is the number of atoms per unit volume, the
expectation value of the polarization density P(r, t) is
given by

noPP(r, t)='I [ kt(r, t)+i/ t(r, t)]g(h)dh

X exp(ikoz

igloo—

t) +c.c.

= —,
'

[H(r, t)exp(ikoz i coot)—+c.c ], .

where

H(r, t)=no@ f [+t,(r, t)+it a(r, t)]g(b, )db, .

We now assume that H(r, t) and 5'(r, t) vary much
more slowly than the exponential factor exp(ikoz i coot), —
so that we may make the following slowly varying arnpli-
tude approximation:

I

8 H/8 'I «k
I
BHIB

I

«O'
I
H I,

I
~ +/~t'I &&cool ~+/~t

I &&~ol &
I

with a similar approximation for 5'. Then on substituting
expressions (1), (7), and (8) into the wave equation,

a' 1 a'
V —

2 E(r, t) =
2 P(r, t),

c Bt c Bt

we obtain

ih = [FI,p]+ .dp
dt

(4) Vz-+2iko2 a 1a
Bz c Bt

where the ellipsis represents unspecified phenomenological
relaxation terms. In this equation, the Hamiltonian H is
the sum of the free atomic Hamitonian Ho and the dipole
interaction —er E. The equation of motion for the polar-
ization amplitude ( kt, +i P"a), which accounts suitably
for transverse relaxation processes and neglects an-
tiresonant terms oscillating at frequency 2cuo, may then be
shown tobe

=—koH(r, t)

= —nopko f [ ka(r, t)+it t,(r, t)]g(A)db, ,

where

V', =(a'/ax'+ a'/ay') (12)

a lP
Bt

+id+ ( ka+iP a)= — 8'(r, t)~a,

where we have written ~~——p++ —p- for the popula-
tion inversion. The inversion furthermore obeys the equa-
tion

is the transverse I,aplacian operator.
We now make the weak-field approximation which as-

sumes 8'(r, t) weak enough than the population inversion
~~ does not change appreciably from its steady-state
value ~~' ———1. This amounts to requiring' that the
"pulse area" be small,

lp
Bt 24

[8'(r, t)( ka it t, ) 8'*(r, t)( ka+iWa)]— —~ J"
I

a'(r, t)
I
dt «1. (13)

—(~g —~g ')/T)
With this approximation we can replace ~~ by —1 in

Eq. (5) which reduces the equation to the linear form:
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3 . 1 lP
Bt

+i 6+ [ kq(r, t)+i P"q(r, t)] = 8'(r, t) .

(14)

for the transverse flow of energy causes radial variation of
the phase of the field. ") It follows then from Eq. (18)
that kp ——0 and Eqs. (18) and (19) can be reduced to the
form

Since we shall always deal with traveling-wave prob-
lems it is expedient to transform the time variable t to the
retarded time r=(t —z/c). Under this transformation we
have

and

C}
X p(z, r) = 8'(z, r)

87
(20)

a i a a a+-
az c at az' at

We may therefore write Eqs. (11) and (14) as

(15)

a2 COp
P p(z, w)+ P p(z, w)=0,

gaza~

' 4c

where

2 2COPnPP
2

COp =

(21)

(22)

V T+2ikp 8'(r, ~)2

az

=—nppkp f [4'~(r, ~)+it ~(r, i)]g (b, )db, (16)

and

1 . ip+id, + [ kg(r, r)+i F"g(r,~)]= 5'(r, ~) .
'T

(17)

Now since the fields propagate in the forward direction
the electric field, 8'(z, ~), must vanish at z =0 after the
passage of the input pulse, i.e., for all ~&0. From Eq.
(20) it then follows that

F"p(0,~) = P p(0, 0+ ) . (23)

Furthermore if we assume that the input pulse does not
attenuate noticeably as it propagates in the medium, we
find from Eq. (20)

These linear equations, when supplemented with the
proper initial and boundary conditions, describe the most
general propagation of an optical field (which is not too
intense) through a resonant medium of two-level atoms. r.e.,

p+ Q p p+f F p(z, ~)d~= f 8'(z, r)d~,

P@p
m, (z,o+ ) —m, (z, O —) = (24)

III. PULSE PROPAGATION
IN A SEMI-INFINITE MEDIUM

In order to illustrate the essential physics underlying
pulse propagation in semi-infinite resonant media we as-
sume in this section that incoherent relaxation processes
are absent and that all atoms are on resonance at the in-
cident frequency cop, g (b )=5(b ).

P gp
P"p(z, O+ ) =

fi

and according to Eq. (23)

(25)

where 8'p5(r) is the input-pulse amplitude.
If the medium has no polarization prior to the arrival

of the input pulse (~&0), we have F p(z, O —)=0 and thus

A. Purely one-dimensional propagation
(no transverse effects)

Pgp
P p(O, v)=P p(z, O+)= (26)

The atomic medium extends to the right of the plane
z =0. The driving input 5-function pulse has a uniform
amplitude in its plane cross section and is incident at
z =0 at time t =0. It travels in the positive sense along
the z axis. Since the problem is then one-dimensional, V~
can be dropped and Eqs. (16) and (17) with the foregoing
assumptions simplify to

Equations (20) and (21) can be solved in conjunction
with the boundary and initial conditions specified by Eqs.
(26). The solution is the familiar result of Burnham and
Chiao that follows from the observation that 1 p(z, ~) can
only depend on the product variable z~ for z and z & 0:

and

konoP
8'(z, r)= [ kp(z, r)+i 1 p(z, ~)]

Bz 2
(18)

P p
(z, r) = J ((co /c)&czar)e(z)B(r) .

The accompanying solution for the electric field is

ip
O'T

[+p(z, r)+i F'p(z, r)]= 8'(z, ~) . (19) 8'(z, ~)= 8'p 5(r)—cop gz

2C 'T

' 1/2

By differentiating (18) with respect to r we can reach a
second-order differential equation for 8'(z, ~) with real
coefficients. We can then consistently assume 8' to be
real for all z and v. since the input is real. (This cannot be
done in general when transverse effects are allowed for, In these equations

XJ,((co /c)&czar)e(z)e(v) . (28)
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e(x)= '
I, x)0

is the usual Heaviside unit-step function and Jp, J& are
Bessel functions of the first kind. The oscillations embo-
died in Eqs. (27) and (28) describe an alternating exchange
of energy between the atomic medium and the elec-
tromagnetic field that takes place in the wake of the opti-
cal pulse.

B. Transversely nonuniform input pulse

The situation to be considered here is the same as the
preceding one except that the 5-function input pulse now
has a nonuniform x-y dependence as is invariably the case
in actual experiments. This complicates the problem con-
siderably since the pulse then undergoes transverse dif-
fractive spreading as it propagates. Thus atoms at dif-
ferent positions experience altogether different driving
fields. We can, therefore, no longer drop the VT term
from Eq. (16). However, the method of Fresnel
transforms' can be employed to solve the problem exact-
ly. This method of solution also simplifies the physical
discussion of the fluorescent response of the atomic sys-
tem.

1. Fresnel transforms and the solution procedure

ko
X exp (p —p')

2z

where r = (p,z), and r' =(p', 0).
On making the coordinate

( t,z) +(r= t——z/c, z), Eq. (31) reduces to

(31)

transformation,

kp iko
8'p(p, z, r)= d p' 8'p(p', O, r)exp (p p')—

27Tlz 2z

(32)

This expression determines the amplitude of the electric
field on any plane z in terms of the amplitude on the
plane z =0 at the same r. The relation (32) which thus
solves the problem of field propagation in vacuum sug-
gests a technique for solving the same problem in a
resonant medium. Quite analogously, corresponding to an
arbitrary function W(p', z, r) we define a function
X(p', z, w) by the relationship

plane. [For the problem at hand, the Fresnel approxima-
tion amounts exactly to the envelope approximation speci-
fied, for example, by Eq. (9) that enabled us to get Eq.
(11) from Eq. (10). This has been shown in Ref. 14.]
With this approximation, we obtain

ko
I'p(r, t)= f d p'8' p(r', t —z/c)

2s Ez

In order to motivate the definition and use of the
Fresnel transforms we consider the propagation of elec-
tromagnetic fields in vacuum. A Maxwell field Ep(r, t)
propagating in vacuum obeys approximately the following
integral equation

ko iko
W(p, z, ~) = f X(p', z, r)exp (p —p') d p' .

2&lz 2z

(33)

d S'
Ep(r, t) = f

Ep(r', t
~

r——r'
~
/c),

dt
(29)

where d S' is an area element of the plane S given by
z'=const. This relation is equivalent to the Rayleigh-
Sommerfeld formulation of Huygens s diffraction princi-
ple. It is accurate as long as the point r is many wave-
lengths distant from the plane.

When Eq. (1) is used to express Ep in terms of the am-
plitude 8'p and the latter is assumed to be a slowly vary-
ing function of time, Eq. (29) simplifies to

ko d'S'
8 p(r, t) .f, 8 p(r', t —

~

r —r'
~
/c)

2m-i
/

r —r'
/

ko
G(p —p', z) = exp

2&lz

ikp(p —p')
2z

(34)

in terms of which the Frensel transformation Eq. (33) be-
comes

W(p, z,r)= f X(p', z, r)G(p p', z)d p' . — (35)

The feature of the kernel G that makes the transform use-
ful comes from the relation'

Thus X(p', z, r) which we shall call the Fresnel transform
of W(p, z, r) can be physically interpreted as that field dis-
tribution at the input face z =0 which, on propagation
through a distance z in vacuum, will result in the field
W(p, z, r) under the Fresnel approximation.

It is convenient as an abbreviation to introduce the
propagation kernel

/exp[ikp(
~

r —r'
~

—z)] . (30)
+ . VT G(p —p', z) =0 .a I 2

Bz 2ik
(36)

The integration here is carried out over the plane z'=0.
The Fresnel approximation which describes near-

forward propagation amounts to

I 2

z+ in the phase factor
2z

z elsewhere

When we apply this relation to Eq. (33) we find

+ VT 9 (pzr)a 1 2

Bz 2iko

= f [c}X(p',z, r}/Bz]G(p —p', z)d p', (37)

where p and p' are projections of r and r' on the x-y
which means that the Fresnel transform function X is not
subject to transverse spreading. We can use this property
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of the transform to remove the effects of the VT term
while solving Eq. (16). As an example we may consider
the input field 8'0 which by definition propagates in a
vacuum, the response of the matter field representing in
effect a scattered field. Equation (32) then shows that in
the transform space the input field 8'0 does not spread at
all laterally, i.e., it does not depend explicitly on z. In
other words, in the transform space the atoms in all trans-
verse planes see the same exciting field distribution as was
present in the input plane z =0. It is that simplification
which renders the problem soluble.

EPW(p, z, ~) = 8'(p, z, r),
O'T

where we have defined W by

W(p, z, r)= kp(p z 7)+i/ 0(p z r) .

(42)

(43)

2

+ . VT W(p, z, r)+ W(p, z, r) =0 .I 2 ~P
B~ Bz 2ik0 4c

On substituting Eq. (42) into Eq. (41) we find the single
equation for W

= I W(p, z, r)G(p' —p, —z)d p . (38)

Equation (38) differs from Eq. (33) in form only by the
sign of z in the kernel, a property which leads to a natural
interpretation of the relation. It shows that X(p', z, r) is
the field distribution obtained from the distribution
W(p, z, r) by propagating it backward in time in vacuum
and through a distance z. There is in other words a cer-
tain reciprocity between X(p',z, r) and W(p, z, r).

Equations (35) and (38) are together equivalent to a
completeness relation

J G(p p",z)G(p"—p', —z)d'p—"=5"'(p—p') . (39)

We note furthermore that in the limit z~0 the kernel G
becomes in effect a 5 function,

lim G(p —p', z) =5' '(p —p'),
z~0

(40)

since propagation through a distance z=0 entails no
spreading.

We can make another interesting observation about the
Fresnel transformation in connection with the problem at
hand. A comparison of Eqs. (32) and (33) shows that the
z dependence of the transform X(p', z, r) results from the
fact that the propagation is taking place through a medi-
um different from the vacuum. We now proceed with the
solution.

Since g (b, ) =5(A), T2 ——oo, we can write Eqs. (16) and
(17) in the following simplified form:

2. Detaiis ofsolution

Some useful properties of the Fresnel transform are
worth noting. First, we observe that the inversion of Eq.
(33) is easily accomplished. We may do this by noting
that W(p, z, r)exp[ —(ika I2z )p ] is simply the Fourier
transform of X(p', z, r)exp[(ikal2z)p' ]. After a bit of
algebra we obtain easily

ko
X(p', z, r) = — W(p, z, r)

2&lz

ik0
)&exp — (p —p') d p2z

(44)

The Fresnel transform of this equation is obtained by
multiplying it by G(p —p, —z) and integrating it over p.
On integrating by parts over p the Vz term in the equa-
tion and recalling Eq. (36) we see that the transform sim-
ply obeys the Burnham-Chiao equation (21),

2 2

X(p', z, r)+ X(p', z, ~) =0 . (45)

Next we must investigate the transformation of the ini-
tial condition and the boundary condition. These, as we
shall see, simplify too. If

&0(p,z, r) = &0(p,zS(r)

is the electric field of the driving pulse its amplitude as we
see from Eq. (32) must satisfy the integral equation

8'o(p, z) = J 5'0(p', 0)G(p p', z)d'p' .— (46)

By integrating Eq. (42) over r therefore from 0—to 0+
we find

W(p, z,O+ ) —W(p, z, O —)= 8'0(p, z) .lP (47)

But W(p, z, O —) =0 since the medium is quiescent before
the arrival of the 6-function pulse. We now multiply Eq.
(47) by G(p' —p, —z) and integrate over p to find the
Fresnel transform of both sides. By recalling the com-
pleteness relation (39) we then find the initial condition

X(p', z,O+ ) = 8'0(p', 0)

W(p, 0,7.)= W(p, 0,0+ ) for r) 0 .

But since from Eq. (35) and (40)

lim W(p, z, r) =X(p,O, r),
z —+0

Eq. (49) transforms to

(49)

which is indeed independent of z as required.
The boundary condition, on the other hand, expresses

the fact that at z=0 the electric field vanishes for all
times ~ ~ 0, i.e., no backward-propagating waves are
present. With the aid of Eq. (42) we see thus that
W(p, O, r) is then constant,

ikOnOP+ . VT 8'(p, z, r) = W(p, z, r)
Bz 2ikp

' ' 2
(41) X(p, O, r) =X(p, 0,0+ ) . (50)

and
Since X(p', z, O+ ) is independent of z according to Eq.
(48) we then have
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X(p', O, r) =X(p', z,O+ ) = 8'o(p', 0) .

X(p', z, r) = 8' (p', 0)J ((co /c)v'czr)B(z)B(r) . (52)

The complex polarization W(p, z, r) is immediately ob-
tained then by substituting this expression in Eq. (33).
The effect is simply to turn 8'0(p', 0) into 8'0(p, z) so that
we have finally just

The differential equation (45) together with the condi-
tions (51) constitute the formulation of the propagation
problem for the Fresnel-transform function X. The same
analysis as leads to the Burnham-Chiao solution then
leads to the more general result

8'(p, z, r)= f E(p', z, r)G(p p', z—)d p' (54)

by both inhomogeneous and homogeneous broadening
processes [g (A)&5(A), T2 ~ oo ]. Once again we use the
Fresnel-transform method to render the problem effec-
tively one dimensional. It can then be solved by Fourier
analysis.

We need not in fact take. the input pulse field to be a 5-
function pulse. We shall still take it to be sufficiently
weak, however, to preserve the accuracy of our linearized
Eqs. (16) and (17).

We once again define the Fresnel transforms E(p', z, r)
and X~(p', z, r) of 8'(p, z, r) and W~(p, z, r)= [ k~(p, z, r)+i P ~(p,z, r)], respectively, by the relations

W(p, z, r) = &o(p, z)&o((coolc)&czr)B(z)B(r) .
fi

and
(53)

W~(p, z, r)= f X~(p', z, r)G(p —p', z)d p'. (55)
The expression for the electric field amplitude may then
be obtained from Eq. (42). The function 8'o(p, z) which
appears in Eq. (53) is just the transverse amplitude distri-
bution of the actual propagating input pulse. The diffrac-
tive spreading of fields has thus decoupled exactly from
the ringing oscillations, and the Bessel-function ringing is
once again obtained for this more general case.

3. Discussion of'iesults

The propagation problem we have considered may also
be approached as a multiple-scattering problem. An in-
cident field 8'0 impinges on the medium and induces an
oscillating polarization. That polarization radiates a
secondary field which in turn induces a secondary polari-
zation, and so on. Although a complicated diffraction
process is taking place, the successive higher-order fields
in fact maintain a simple relationship to the inducing field

Oo

The first-order polarization at any point (p,z) is propor-
tional, for example, to the amplitude 5'o(p, z) which is the
amplitude the incident pulse had when passing the point
(p,z). The secondary field radiated by the polarization is
the sum of the fields radiated by a succession of slices of
the medium lying at smaller values of z. A slice extend-
ing from z' —M to z', for example, radiates a field which
at the point (p', z') is proportional to the polarization am-
plitude at the point or in turn to 8'0(p', z'). In the single-
scattering approximation this field propagates in vacuum
to the point (p,z). The spatial evolution of all of the fields
radiated by the different slices is therefore identical to the
spatial evolution of the incident pulse. All slices of the
medium together contribute a reradiated field at (p,z)
which is proportional to 5'0(p, z). This simple relation-
ship evidently holds to all orders of approximation and
explains the decoupling of diffractive spreading from
longitudinal propagation which is present in Eq. (53).

The Fresnel transform of Eq. (16) is quite analogous to
that of Eq. (44) and leads to the relation

(57)

The Fresnel transform thus reduces the problem to one in-
volving only a single spatial dimension, z. An analysis of
the one-dimensional propagation problem in a resonant
medium has already been carried out by Crisp. As we
shaH see, the results of this section represent a simple gen-
eralization of his.

We note from Eq. (56) that the field E(p', z, r) in the
transform space does not depend on the z coordinate in
the absence of the resonant medium (no=0). We there-
fore write

E(p', z, r) =E o(p', r)+E „(p',z,r), (58)

where the z-independent part Eo(p', r) represents the in-
put field (in the absence of the medium) and E „(p',z, r) is
the part of the field radiated by the medium. Since we
have assumed no backward-traveling waves are present,
the boundary condition on E, must be

E „(p',O, r) =0 . (59)

We may now solve Eqs. (56) and (57) by Fourier
analysis. We define the Fourier transform and its inverse
for a function f(r) such as X~ or E as

2iko E(p', z, r)
Bz

nopk—o f X g(p', z, r)g (h)db, . (56)

The transform of Eq. (17) is likewise analogous to that of
Eq. (42) and leads to

IV. PROPAGATION OF ARBITRARY
PULSE FIELDS IN THE PRESENCE
OF INCOHERENT RELAXATION

We now briefly turn our attention to the more general
case in which the atomic dipoles can incoherently dephase

f(r) = f f(Q)exp( i Qr)dQ, —

f(Q) = f f(r)exp(iQr)dr .

It is then clear that Eqs. (56) and (57) are equivalent to

(60)

(61)
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lkonotM, oo

E,(p', z, Q) = f Xg(p', z, Q)g(h)d b
(54) and is given by

2

8'(p, z,r)= f 8'o(p, z, Q)exp iQ—r —A(Q)z dQ,
OO 4c

1—i(Q —b, )+ Xa(p', z, Q)
2

[E0(p', Q)+E „(p',z, Q)], (63)

where

8'0(p, z, Q)= f Eo(p', Q)G(p p', z—)d2p'

(68)

(69)

in which we have introduced the decomposition given by
Eq. (58). We can now eliminate X a(p', z, Q) between Eqs.
(62) and (63) to obtain

2

E „(p',z, Q) = — [Eo(p', Q)+E „(p',z, Q)]A (Q),
4c

(64)

where the function A (Q) is given by

is the Fourier transform of the amplitude 8'0(p, z, r) of the
propagating input field. The exact decoupling of diffrac-
tion and the longitudinal propagation thus holds even in
this more general setting.

It is convenient, as the structure of Eq. (68) indicates, to
define a function

00 COpF(z,r) = exp i Qr — A—(Q)z dQ,
277. —oo 4c

(70)

A(Q)= f g(b, ) +i(b, —Q)
00 T2

(65)

With aid of Eq. (58) we may rewrite Eq. (64) as
2

Bz
' ' 4c

lnE(p', z, Q) = — A (Q) .

The solution which satisfies the boundary condition (59) is
then

2

A(Q)z
4c

(66) the function A(Q) reduces toE(p', z, Q) =E o(p', Q)exp—

so that by using the convolution theorem in Eq. (68) the
general solution for the field amplitude 8'(p, z, r) may be
written in terms of the input field 8'0 as

8'(p, z, r) = f 8'0(p, z, r')F(z, r r')dr' . — (71)

For the special case of a Lorentzian distribution of
atomic frequencies given by

(n.T2 )
g(h)=

[~'+(Tz) 'l

On Fourier inversion, therefore, we have

2

E(p', z, r) = f E(p', Q)exp i Qr A—(Q)z —dQ .
OO c

(67)

The final result for the electric field amplitude can then
be found by an inverse Fresnel transform according to Eq.

I

A(Q)=
(Q+iT2 ')

where

T2
' ——(T2) '+(T2)

The function F(z,r) may then be evaluated by shifting the
integration contour in the Q plane by iT& and is given
by

+~ 1cgpz
F(z,r)= e exp —s v7.— d v

2'fT OO + & ~2 4cv
1

~]y, g i ~+iT l cop dv
e , exp —iv~ — z87,' 2% — +~~& ~ 4Cv v

The latter integral is a representation' of the Bessel function Jo((co&/c)&czr) for r & 0 and vanishes for r & 0, so that

[J ((c0 /c)V'czr)e(r)]
87

1/2

J~((co&/c)&czr)e 'e(r) .

F(z,r)=e
r

~p cz=5(r)
2c 7

(72)

For the Lorentzian detuning distribution therefore, the final solution for the electric field amplitude is

co~ ~ J)((re~/c)[cz(r r')]' ) — (r r')
8'(p, z, r) = Ão(p, z, r) — V'cz f 8'o(p, z,r'), exp — dr' .

2c (r r')'"—T2
(73)
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Clearly, the second term above represents the response of
the atomic medium to the input field 8'o(p, z, r).
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