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Semiclassical theory of bistable semiconductor lasers including radial mode variation
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The output of semiconductor laser resonators containing saturable absorbers is calculated with use

of a semiclassical model that takes into account radial variation of the laser mode and the gain. The
results show that more absorption is required for bistability to exist compared to the plane-wave

case, and that transverse effects must be included to predict the switching intensities accurately.

I. INTRODUCTION II. THE SEMICLASSICAL MODEL

Bistable optical devices may play an important role in
the fields of optical computing and optical signal process-
ing. They have potential for use as optical transistors,
memory elements, and logic elements. Most of the de-
vices built to date have required both an optical resonator
and a nonlinear medium for their operation. Passive de-
vices have been demonstrated based on both nonlinear
dispersive' and absorptive media. The first active de-
vices (i.e., laser resonators containing a saturable absorber)
were demonstrated over 20 years ago, ' and recent efforts
have concentrated on semiconductor lasers. ' Inhomo-
geneously excited semiconductor lasers are attractive for
integrated optics applications, and single-chip and
multiple-chip' designs have been demonstrated.

With one exception, " previous theoretical studies of
bistable laser resonators' ' have used the plane-wave
approximation to predict the output. The results from
analyses of passive resonators have shown that the radial
structure of the modal intensity significantly affects the
input-output characteristics in both the steady-state'
and dynamic regimes. In this paper we extend our pre-
vious results" by developing a semiclassical model for
bistable laser resonators that includes the effects of stand-

ing waves, resonator detuning, and radial variation of the
gain, absorption, and modal laser intensity. We treat the
particular case of an inhomogeneously excited semicon-
ductor laser, but our results can also be applied to other
laser systems. We work in the mean-field envelope ap-
proximation, and although this model can be rather
suspect for a high-gain laser such as a semiconductor
laser, we expect our results to be at least qualitatively
valid.

In Sec. II we develop the basic model and derive
dynamical equations to describe the laser output. In Sec.
III we obtain the steady-state solution to our set of equa-
tions and we derive a new state equation that takes into
account the radial variation of the laser mode. In Sec. IV
we compare plane-wave and Gaussian mode results fo~

the input-output curves, and we show that radial effects
must be included if the hysteretic output curves are to be
used to characterize the saturable absorber. In Sec. V we
derive conditions for the onset of bistability. Section VI
contains some concluding remarks.

The physical system that we are considering is shown in

Fig. 1. The semiconductor laser resonator contains two
cells; one acts as a saturable amplifier, and the other is ex-
cited with a lower injection current and acts as a saturable
absorber. The Hamiltonian of our system has three
parts: ' one for the free electrons in the amplifier and
absorber, one for the free light field, and one for the in-

teraction of the light field with the electron system:

H =H,)+Hf +H, ) f . (2.1)

H, &
is the electron Hamiltonian in the site representation,

and is given by

Hei g ~m+m n+m n+ Q ~ppg~m n~m n
rn, n

(2.2)

Acu is the energy of an amplifier electron in band m at
lattice-site position R„, and a~ „ is an annihilation opera-
tor for an electron in that energy state. Similar quantities
for the absorber electrons are denoted by bars. The Ham-
iltonian of the free light field is given by

IIf ——Q Rcoqb q&bqi„.
q, A,

(2 3)

AMPLIFIER ABSORBER

FIG. 1. Generalized geometry for the bistable semiconductor
laser system.

Acoq is the energy of a photon with wave vector q and po-
larization denoted by the polarization index A, (A, =1,2).
bq~ is an annihilation operator for photons in the state
(q, A, ). Finally, the interaction Hamiltonian is
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Het f'——g g g (fig ~

q x „a „a nbq~+H. c. )

q, i, m', m n

+ y y y (eg, mq, „a', „am „bq, +H. c.),
qs~ m', m n

(2.4)

where the coupling constant is
1/2

1 e c 2M
gm'm Zn=-m, m, q, , n

q

The operators for the electrons obey the Fermi commuta-
tion relations

[am , n'&'m n]+ = [ m', n'& mn,]+=

[amn& , m', n']+ ~mm ~n'n

(2.7)

where the plus sign denotes the anticommutator. The b's

obey the boson commutation relations

[bqA bq ~ 1 = [bqA»q h. ]=o
(2.8)

Xuq~(R„) &m', n p I
m, n & . (2.5) [bq~ bqi. ]—=&qq&u, .

e, m, and p are the electron charge, mass, and momen-
tum, respectively. c is the speed of light, and n is the re-
fractive index.

I
m, n & is the state vector for an electron

in band m at lattice site Rn„r uq~(r) is the spatial mode
function for the light field, and it satisfies

d'r u q, (r).uq„(r) =Sqq 5„. (2.6)

We now wish to derive equations of motion for the pop-
ulation, polarization, and light field operators. In the
Heisenberg picture an operator 0 evolves according to

dt
iA =[O,H] (2.9)

We find for the polarization operator ap;as;, using
(2.2)—(2.4) in (2.9),

~ t ~

(ap, as; ) = icospa—p, as; i .~—
d g gm', p, q, l, i m', i s,i+ ~, gsm, q, k„,i pimi, bq&, t.

m'

g

+bqA, ~ gp, m, q, k, ,i m, i s, i + ~ gm', s, q, A, ,i p, i m', i
m'

(2.10)

The difference frequency co,~ =co, —cop. The equation for the population operator ap;ap, can be obtained from (2.10) by
setting s =p, giving

d
(ap, ap, ) = i d-

dt ' '
qx

~ gm'pqAi m'i pi+ ~ gpmqki pi mi ~qA.
m' m

g t ~ Q f ~ )fc

+bqA, ~ gp, m, q, k, ,iam, i p, i + ~ gm', p, q, k, , i p, iam', i
m m

(2.11)

Finally, we have for the light field operator bq~

~ g m', m, q, l, ,n m, n m', n
rm, m n

(2.12)

d
dt qP

= ~q qP gm', m, q, P, n m, n m', n

I
q'.b...b„&= 2 &„- I t &„-}& . (2.16)

(2.15)

where
I In„}& is the tMth occupation number state for

electrons, 7 and a& is a coefficient in the linear expan-
sion (2.15). Similarly for the absorber electrons we have

We now proceed to a semiclassical description by tak-
ing expectation values of (2.10)—(2.12) and making the
usual factorization assumption

We assume that the light field is made up of a number of
uncorrelated modes, and that it can be represented as

&»& =&»& Y&, (2.13) I
q'b, bt&= + Iraqi. &

q, A,

(2.17)

I +ampbfier& I +absorber& I +bgbt & (2.14)

where X is an electron operator and Y is a light field
operator. We choose for the initial system state

where
I Pqit& is a coherent state with wave vector q and

polarization index A, . Defining

op, n =&4 Iap „a,„ I
tp&, (2.18)

The state vector for the system of amplifier electrons is P;=&+Ib,.I

q &, (2.19)
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we have

pqil t ~q pqk ~ g g gc, mq, X,n~, mc, n
rn =v n

X X gc, m, q, k, n mc, n
m=v n

d 0

dt occ, n Pcc, n Ycc(occ,n occ, n )

X X (g, &.q, A„~cl,n pqA,
q, A, 1=v

gc, l, q, k, nOlc, nPqA)~,

d 0
ouun =Puun , Yuv(o'vv, n ouun )

' P ( —gc, u, q, znOcu, npqx
q, i,

(2.20)

(2.21)

decay and pumping terms have been added. yv, is the di-
pole dephasing rate, P„„is the pumping rate of electrons
into the conduction band at lattice site R„, I'» „ is the
pumping rate for electrons in the valence band, and occ „
and o.,„„areequilibrium populations. y„and y„are the
decay rates for electrons in the conduction and valence
bands, respectively. The assumption of a constant decay
rate is reasonable only for heavily doped active layers.

We note the presence of a cru, u n term in (2.23) (an in-

tervalence band polarization term); we assume that this
term can be neglected since it is nonresonant with the
light field at the frequencies of interest. A closed set of
equations can now be obtained by multiplying (2.23) by
the electron-light coupling constant:

dt Rc, v, p, g, n vc, n0

~cu+ Yuc )gc, up, g, n~vcn,

+g.".
q, ~..~-,.pq~» (2.22)

~ ~ )fc+ ~ gc, v, p, q, ngc, v, q, k, n(Occ, n Ouvn)pq, k,

q, A,

(2.24)

d
dt

~uc n (t~cv+ Yvc )ouc n

We now make the quasimonochromatic, single-mode
approximation and write'

q, A,

gc, v, q, A, , n cc, n Pqg(t) =Pqq(t) exP( —iAt), (2.25)

+ g gc, m, q, k, n~vm, n pqk

(2.23)

gc, u, q, z, nouc, n(t) = [C, , q g „(t)+iS,, q g „(t)]exp( i At) . —
(2.26)

In the above U stands for the valence band(s) and c for the
conduction band. The rotating-wave approximation has
been made in the above equations, and phenomenological

The sum over q in all equations will now be taken to
mean a sum over propagation direction. Our basic set of
equations, finally, becomes

p„(t)= y y s.„,„(t)+ g g s„„,„(t),
v n

(2.27)

(~—A)P, (t) = g g C...~ „(t)+ g g C. .., „-(t),
v n

(2.28)

o„„(t)=P„„(t)—y„[o.„„(t)—o,', „]—2 g g S„,, ~ „(t)p«(t),
q, X v

(2.29)

o„„(t)=P„,„(t) y„,[o,„„(t) o'„„„.]+2 g—S.„~„(t)Pq&(t),
q, A,

(2.30)

C„,~ „„(t)= y„C„,„„(t)—(A co„)S„„—„„(t)—[o„„(t)—o.„„—(t)] Im g g,*„,„„g,, q & „pq&(t)
q, A,

(2.31)

S„,„„(t)= y„S„,,„„(—t)+(A co,„)C„,„„—(t)+ [o„„(t)—o„„(t)]Re g g,'„,„„g...~ „pq~(t)
q, A,

(2.32)

Equations for the absorber population and polarization can be obtained from (2.29)—(2.32) by adding bars to the ap-
propriate quantities.
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III. STATE EQUATIGN FGR THE INTENSITY

The steady-state solution is found by setting all time derivatives equal to zero in (2.27)—(2.32). We find for the out-
of-phase component of the polarization and for the inversion

=1
Su, c, p, q, n (occ,n ovu, n ) g /3qk [Re(gc, u, p, q, ngc, v, q, k„n ) ~ ™(gcup,, ,qng, c, v, q, A„n )] i

VC q, A.

0 0
occ, n ouu, n f(occn , ouu, n )+(Pccn , Pvu, n )/3 cc]

1 +4 g g &qAPpq( 1 /7 cc 5uc )[Re(gc, u, p q, n gc u, q k, , n ) ~ Im(gc v, p q, n gc, u, q A, , n )]
pg q, ~

(3.1)

(3.2)

where S =4
~ g,„~ /(y„5„,), (3.6)

b, =(0—co,„)/y
5 =y„(l+&') .

(3.3)

(3.4)

Iqg ——S/3 qg, (3.5)

(yu„=ycc has been assumed. ) We have neglected terms
involving all but one valence band in order to keep the
equations tractable. For GaAs, e.g., one should include
the effect of the light-hole valence band. We now insert
the above into (2.27) and introduce the standard notion

where Iq~ is the optical intensity normalized to the sa-
turation intensity, S is a saturation parameter for the am-
plifier medium, and the spatially invariant coupling con-
stant g,„ is defined through

iq R„
g...,,,~,R„=g..fq~«. )e (3.7)

fq~(r) is the slowly varying envelope of the field mode
function uq~(r). We obtain as the equation for the inten-
sity Ig

2

0=re f d r '"
I [o;,(r) —o.„„(r)]+[P„(r) Puu(r)]/'ycc j-v

X I2IO+~~(r)+2+I&~I &+~~(r)f O~(r)[cos(2Q r)+5 sin(2Q. r)] j

&& [1+I~~f~~(r)+I & f &~(r)+2+I&gI @gag(r)f q~(r) cos(2Q. r)] (3.8)

where the ellipsis represents similar absorber terms; in the
above ~ is the density of amplifier lattice sites, V is the
amplifier volume, and Q is the wave vector of the
forward-propagating wave. Equation (3.8) is the
standing-wave result; the traveling-wave result can be ob-
tained by setting the I~~I ~~ product terms equal to
zero.

We now make a mean-field approximation (for the
direction along the resonator) by adding to (3.8) a—2I I~~ term [cf. (2.27)] and by assuming that f+o~(r)
depends only on the direction transverse to +Q. We also
define a spatially dependent pumping parameter for the
amplifier cell (cf. Ref. 12)

A (r}= [[o„(r)—o„,(r)]
~g„~ ~V

5„I

C(r)=1— 0 0
I [o,,(r) —o.„„(r)]

+[P~,(r) —P, „(r)]/y, —,j .

(3.11)

(3.12)

where V~~ is the laser mode volume, and a„ is a distribut-
ed loss coefficient for the resonator, given by

(3.10)

A (r) and C(r) are related to the actual gain g (r), and ab-
sorption a(r), by

+ [P„(r)—P„(r)]/y„j, (3.9)

and an absorbing cell parameter

nu =2—.Ir
C

Using the above in (3.8) gives

(3.13)
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()= —2I I 1 —V ' f d rf (r~)A(r)[2cos (Qz)+b, sin(2Qz)][1+4f (rj )I cos (Qz)]

—V ' f d r fz(rz)[1 —C(r)][2cos (Qz)+b, sin(2Qz)][1+4f (rj )aIcos (Qz)] (3.14)

where

(3.15)

is the ratio of the amplifier saturation intensity to the absorber saturation intensity, and I =IO~ =I &~. The traveling-
wave result is

0= —2lI 1 —V ' dr —p ' dp
(r~)A(r) f r~ [1—C(r 1

1+2f (rj )I ~ 1+2f (rj )aI
(3.16)

Equations (3.14) and (3.16) are the central results of this paper. They show how the plane-wave result must be modified
to determine the effects of radial variation in the mode intensity, gain, and absorption. The integrals over z and z can
readily be performed in both equations to give

0= —2I I 1 —(2M) ' f dr~A(rj )—I 1 —[1+4f (rz)I]1

—(2~) ' f dr~[1 C(rj )] I
—1 —[1+4f (rj )aI]aI

(3.17)

for the standing-wave result and

f (rq )[1 C(r~)]-
K&y 1+2f (r~)aI

(3.18)

/ /

for the traveling-wave result. M and W are the amplifier
and absorber cross-sectional areas, and A(r) and C(r)
have been assumed to depend on the transverse coordinate
only. Equation (3.18) was derived in our earlier work'
using generalized laser parameters from the outset. A re-
sult similar to (3.17) has been derived by Sandie et al. ' in

a treatment of passive resonators.

IV. INPUT-OUTPUT CURVES

In order to illustrate the effects of transverse mode and
gain variation we integrated (3.17) and (3.18) numerically
for the case of a semiconductor laser with an active layer
thickness of 0.15 pm and a stripe width of 3 pm. The
gain and absorption were assumed to be uniform inside
and zero outside this region. The waist parameters of the
elliptic Gaussian beam were taken to be m„=0.81 pm
(parallel to the active layer) and w~ =0.48 pm (perpendic-
ular to the active layer). We treat here only the pure ab-

sorptive case (6=0). Shown in Fig. 2 are the resulting
curves of intensity I versus amplifier cell pumping param-
eter A for the particular case of C=100 and a=2. The
effect of standing waves is to reduce the output intensity
and increase the value of A for switch-off; the value of A

for smitch-on, however, is unaffected, contrary to the re-
sults for passive resonators. ' The effect of radial mode

20—
I—

(f)

10-
10

0
50 100 150

PUMPING PARAMETER A

FIG. 2. Output intensity I vs amplifier cell pumping parame-
ter A, for C= 100 and a=2. The curves are the traveling-wave
plane-wave case (solid), standing-wave plane-wave case (single

dot), traveling-wave Gaussian mode case (single dash), and the
standing-wave Gaussian mode case (double dash).

-210 50 100 150
PUMPING PARAMETER A

FIG. 3. Results of Fig. 2 replotted on a semilogarithmic
scale. The labeling is as in Fig. 2.
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I (2)-----

A (2) A (1)
PUMPING PARAMETER A

1. 2

1.0
0 20 40 60 80

CDQPERAT I V I TY C

100

FIG. 4. Input-output curve showing the labeling of the
switching points I(1), I(2), A(1), and A(2).

FIG. 6. Ratio of switching points A(1)/A(2) vs C, for the
case a=2. Labeling is as in Fig. 2.

12

10

PJ 8

6

2
0 20 ' 40 60 80

COGPERAT I Y I TY C

100

FIG. 5. Ratio of switching points I(1)/I(2) vs C, for the case
a=2. Labeling is as in Fig. 2.

and gain variation is to reduce the output intensity also,
but both A-switching points are increased. The results are
replotted in Fig. 3 on a semilogarithmic scale, where it is
easier to see the increase in threshold due to radial effects.
It is clear that the effects of radial variation are more sig-
nificant than the effects of standing waves.

An interesting point to consider is whether the hysteret-
ic output curves can be used to make spectroscopic mea-
surements on the absorber cell. Using the plane-wave,
ring resonator theories of bistability one can find analytic
expressions 'for the switching points (cf. Fig. 4) I(1), I(2),
A(1), and A(2) as functions of C and a. ' In principle,
then, C and a could be determined by an experimental
measurement of I(1)/I(2) and A(1)/A(2). Unfortunately,
for the general case of Gaussian laser mode and nonuni-
form gain and absorption, analytic expressions cannot be
obtained. We have therefore calculated the ratios of these
switching points numerically for the case mentioned in
the beginning of this section; the results are plotted in
Figs. 5 and 6 versus C, for the particular choice a=2.
The effect of radial variation is again much greater than
that of standing waves; however, the percentage error of
the traveling-wave theory relative to the standing-wave
theory increases with the amount of hysteresis (i.e., with
C). One rather curious result of the theory is that the rel-

ative height of the hysteresis loop undergoes a stretching
in going from traveling waves to standing waves; I(1)/I(2)
is greater for standing waves for all values of C, whereas
A(1)/A(2) is greater for traveling waves. Thus we see that
in order to use the output curves to determine C and a the
radial variation in the system must be accounted for.

V. REQUIREMENT FOR BISTABILITY

G = [vrw„w~/(2Sd)]erf(S/V2w„)erf(d /v 2w~ ) . (5.2)

Here S is the stripe width and d is the active layer thick-
ness. The requirement (5.1) for bistability is the same for
the traveling-wave and standing-wave cases. The plane-
wave result is recovered by setting G= 1 in (5.1); G, there-
fore, accounts for the effects of radial variation. Using
the numbers quoted in Sec. IV we have C) 4.004; there-
fore in this case radial effects cause the required amount
of cooperativity to increase by about a factor of 2.

VI. CQNCLUDING REMARKS

We have developed a semiclassical theory of bistable
lasers .that takes into account radial variation in the gain,
absorption, and intensity, and we have applied the results
to semiconductor lasers. A new state equation was found
which included four quantities: the ratio of the saturation
intensities of the amplifier and absorber (a), and the gain
[A (r)], absorption [C(r)], and intensity [f (r)] as func-
tions of position. We have found that standing waves de-
crease the output intensity and increase the switch-off

Finally, we would like to calculate the requirements on
the absorber, amplifier, and resonator for bistability. This
can be done rather easily by noting that when. the laser
goes from a system displaying bistability to one displaying
no nonlinearities the slope of the curve of A as a function
of I, evaluated at I=O, changes sign. Thus at the onset of
bistability (dA/dI)

~ I o——0. We therefore expand (3.17)
and (3.18) in a Taylor series about I=O, take the deriva-
tive dA/dI and set it equal to zero. Only the result is
quoted here (for our laser diode system), namely

(a —1)G ' (5.1)
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value of A. Radial effects modify the output curves to a
greater degree by shrinking the hysteresis loop in both
directions. We have also found, at least within the present
approximation, that only radial variation increases the
amount of cooperativity required for bistability; this
minimum requirement is unaffected by the presence of
standing waves, contrary to the results for passive resona-

tors. Our results are general enough to provide insight
into other bistable laser systems.
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