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Eigenchannel quantum-defect theory of open-shell atoms.
II. Calculation of 3p4(3P)ns Rydberg spectra of the chlorine atom

Z.-w. Wang* and K. T. Lu
Argonne National Laboratory, Argonne, Illinois 60439

(Received 9 April 1984)

Rydberg spectra of the chlorine atom 3s 3p ( P)ns, J= z, z, and z, are calculated by use of an
eigenchannel quantum-defect method. The results indicate that the channel interactions due to elec-
trostatic and spin-orbit potentials are weak. The effect due to channel interaction of the 3s 3p con-
figuration is completely negligible. Agreement with emission data is excellent ( & 0.2% accuracy ex-
cept for the lowest n =4 levels). Autoionization resonances are predicted.

I. INTRODUCTION

Rydberg spectra for open-shell atoms have long been
recognized as a challenging problem for both theoretical
and experimental work. Recently, we have begun to
disentangle the chlorine spectra seen in the photoioniza-
tion cross section and in early discrete emission data.
Specifically, we have introduced' the "effective channel"
in connection with the time-delay matrix suitable for
analyzing autoionization resonances. In the present paper
we report a calculation of Rydberg levels of the chlorine
atom in terms of quantum-defect parameters, namely,
eigen-quantum-defect p and channel-mixing angles 9.
We aim at establishing the connections between a
configuration-mixing treatment and an eigenchannel
quantum-defect theory (EQDT). '

EQDT has evolved into a unified theory of spectros-
copy and collision processes in atoms and molecules.
This unification is achieved by treating eigenchannel
phase shifts and time-delay matrix in terms of basic
quantum-defect parameters. ' T'hus, it permits the extrac-
tion of collisional information from the wealth of spectro-
scopic data. Ab initio calculations of quantum-defect pa-
rameters have also been made.

On the other hand, configuration-mixing calculations
of atomic ' and molecular" wave functions by variation-
al techniques, via trial electronic wave functions, have
been very successful for low-lying states. However, in cal-
culating highly excited or continuum states, one en-
counters several difficulties. The large number of re-
quired configurations, the poor orthogonality between
states of the same symmetry, and the poor numerical con-
vergence are major problems. The many-body dynamics
for open-shell atoms and the necessity of including several
configurations in the ground-state wave function make
these problems especially intractable. '

In this paper we use the Hartree-Fock program of
Froese Fischer' to calculate these EQDT parameters for
3p ( P)ns Rydberg series of the chlorine atom. Rydberg
energy levels and the time delay of the interacting chan-
nels can then be evaluated insofar as these EQDT parame-
ters depend weakly on the total energy of the system.
This procedure may be useful for molecular systems

where experiment has not yet provided information accu-
rate enough to give quantum-defect parameters.

II. THE 3p ( P)ns RYDBERG SPECTRA
OF THE CHLORINE ATOM

vi =v2[1 —2(I2 I,)v2]— (2)

The two ionization potentials I& and I2 correspond to the
ion-core states 3p ( P& 0) for J=—, and 3p ( P2 &) for
J= —,', respectively. We also assign to each level E„asin-

gle quantum-defect p =n —v], where n is an integer. The
eigenvalue problem of the quantum-defect theory re-
quires all levels to lie on a smooth curve of the form

F(p, v2) = sin 8 sin[a (p —p) )]sin[sr(v2+pq)]

+cos 0 sin[re(p —p2) ]sin[+(v2+ p & ) ]

=0. (3)

Photoabsorption of a neutral chlorine atom from its
ground state, 3p ( P3~2), leads to 3p ( P)ns and
3p ( P)nd configurations with J= —,', —,', and —', , and even
parity, and thence to 19 series in the final states. The con-
figuration interactions between the ns and the nd series
are very weak and can be neglected entirely. We can thus
decouple the ns channels from the nd channels and focus
on the interacting ns channels only. There are five ns
channels, i.e., one series converges to the 3p ( Po) ion-core
level and two series converge to P], and two other series
converge to the P2 ion-core level. Since channels with
different total angular momenta J do not interact, these
five channels may be divided into three groups: two two-
channel problems, 3p ( P& )ns and 3p ( Po)ns' with J= —,

and 3p ( P2)ns and 3p"( P~)ns' with J= —, and one
single-channel problem, 3p ( P2 )ns with J= —', . The
eigenvalues of these two two-channel problems are charac-
terized by two effective quantum numbers v~ and v2,
which are related to the ionization potentials I] and I2
for each energy level E„by the relations

E„=I,—(2v, ) '=I2 —(2v2) ' in a.u.

and
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TABLE I. The values of f3~, G', and v&G' for the configuration 3p4( P)ns of atomic chlorine, ca cu-

lated by the use of the HF program.

State

3p ( P)45 P
3p'('P)4s'P
3p ( P)5s P
3p "( P)5s' P
3p ( P)6s P
3p ( P)6s' P
3p ( P)8s P
3p'('P)8s'P
3p ( P)10s
3p ( P)10s'
3p "( P)12s
3p ( P)12s'
3p ( P)14s
3p ( P)14s'

f3~ (cm ')

626.584
629.875
631.573
632.189
632.511
632.739
632.958
633.02
633.060
633.089
633.101
633.111
633.113
633.122

6' (cm-')

2403.5
1615.8
561.9
441.2
223.9
182.8
63.9
53.7
26.6
22.6
13.5
11.6
7.8
6.7

1.913
1.979
2.938
2.998
3.946
4.004
5.951
6.009
7.953
8.010
9.954

10.011
11.954
12.011

v'G'V&

16 824.33
12 526.47
14259.89
11 890.83
13 760.29
11737.77
13470.06
11 649.84
13 381.37
11 615.54
13 314.24
11 637.35
13 322.79
11 609.29

'v& is the effective quantum number.

Here p, +=1,2 are the eigen quantum defect and 0 is
the mixing angle between these two channels. They corre-
spond to the eigenvalues and eigenvectors, U;~, of the re-
action matrix which measures the short-range non-
Coulombic interactions between the electron and the ion
core. The orthogonal matrix U; transforms the dissoci-
ating channel i in which an electron and the ion are loose-
ly coupled by electrostatic interaction to the reactive
channel o. in which an electron and the ion are strongly
coupled by electrostatic interactions (i.e., many-body in-
teractions). For two-channel interactions the frame
transformation matrix U; has only one independent ele-
ment and can be represented by a mixing angle 0. The
quantum defect p is treated as a continuous variable of
energy. Equation (3) determines the functional depen-
dence of p on the quantum number v2 which is a dirnen-
sionless quantity representing energy. The Rydberg levels
belonging to these two interacting channels lie at the in-
tersections between a family of curves represented by Eqs.
(2) and (3). In other words, these three parameters,

p, n = 1, 2, and 0, together with the ion-core fine-
structure splitting AI=I2 —I&, completely determine the
properties of the two mutually perturbing Rydberg series.

In the autoionization region, I& ~E&I2, one of the
channels is open, whereas the other is closed. One simply
replaces the quantum defect p by the phase shift ~ for the
open channel in Eq. (3). In other words, the behavior of
an eigenphase shift near resonance in the autoionization
region is described by the same expression in Eq. (3). The
derivative dv/dE, which measures the delay time of the
autoionization resonance due to the open-channel interac-
tion with the closed channel, is then proportional to the
channel interaction strength d~/dvz which in turn is
equal to the slope of the quantum-defect plot (p, v2). '

Therefore, the same basic quantum-defect parameters
characterize the autoionization resonances.

III. CALCULATION OF EIGENCHANNEL
QUANTUM-DEFECT PARAMETERS

In this section we aim at establishing the connection be-
tween the eigenchannel quantum-defect theory and the

aa &
arctan

—( t/2/3)(f3~ /6 ')

I+ —,(pe/6')

and

E) g
——(E„—„F+ —,6')—

8~~= —,
' arctan

—v 5/3(f3~/6')

l+ —,(pe/6')

where E„ is the average energy of the p "s configuration,
F and 6' are Slater integrals, and f3~ is the spin-orbit
coupling parameter. The mixing angle 8 represents the
orthogonal transformation matrix V- which diagonal-
izes the Hamiltonian from the I.S coupling, cY, basis into
the a basis. The diagonalization is carried out at each en-
ergy level E„.

On the other hand, the eigen quantum defect p~ and
channel-mixing angle 0 are the eigenvalues and eigenvec-
tors of reaction matrix R:

configuration-mixing method. This connection allows one
to use well-established Hartree-Fock (HF) computer
codes' to calculate eigenchannel quantum-defect parame-
ters. Eigenvalues and eigenvectors of the eigenchannels
and of the time-delay matrices are expressed in terms of
quantum-defect parameters. Thus, the energy positions of
excited Rydberg levels as well as autoionization resonance
can be predicted provided the basic quantum-defect pa-
rameters are known.

We first diagonalize the Hamiltonian including electro-
static and spin-orbit interactions of the configuration p s
for J= —,

' and —,
'

in the basis of I.S coupling. The eigen-
values and eigenvectors are

Et 2=(E» 25F + 66 4(3p)

(4)
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1

2

Channel

3p4('P) )ns

TABLE II. EQDT parameters.
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FIG. 1. The theoretical level diagram for all five channels.
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5 ptan(I~p )=g(U ')~;R;~U/p.

U,.=gU,.V... (9)

where V is an orthogonal matrix that diagonalizes the
Hamiltonian. The matrix U,. is the jj-I.S orthogonal
transformation and is known analytically. For a 2&2
matrix, the relation (9) can be expressed in terms of mix-
ing angles,

O=O +O- (10)

where O is related to a 2)&2 orthogonal matrix by

cosO sinO
—sinO cosO (11)

For J= —,', 0-=35.26 and for J=—', , 8 =24.09. Ac-
cording to Eq. (1), the eigen quantum defect p~ can be ex-
pressed in terms of the eigenvalues of the Hamiltonian in
Eq. (4) or (6) as

Uia

These parameters measure the short-range dynamical in-
teractions including electrostatic electron correlations and
spin-orbit interactions and are treated as independent
functions of energy. In the dissociation channel i, the
electron is attracted to the ion core by the small long-
range Coulomb field and the fine structure of the ion core
stands out. Therefore, electron's angular momentum cou-
pling with the core is better described in terms of the jj
coupling scheme. In the reactive channel cY, the electron
is coupled strongly to the ion core by the electrostatic in-
teractions; thus the IS-coupling scheme is a better
description. However, the eigenchannel a is not purely
I.S coupled because of the spin-orbit interactions. The
transformation from i-channel jj coupling to the eigen-
channel a can be carried out by an intermediate transfor-
mation V

IV. RESULTS

The Rydberg discrete levels and autoionization reso-
nance positions for p ( P)ns, J= —,', —,', and —,

' channels,
are calculated from Eqs. (1)—(3) with quantum-defect pa-
rameters obtained in Table II as input. The values of ioni-
zation limits, p "( P2 ~ o), of the chlorine atom are taken
from Ref. 3. The calculated Rydberg energy levels and
the predicted autoionization resonance positions are listed
in Table III. The energy-level diagram for all five chan-
nels is plotted in Fig. 1. The Lu-Fano plots for J=—,

' and
channels are shown in Fig. 2(a). The experimental data

are also listed in Table III for comparison. The agree-
ment for energy levels with n &4 is excellent. For au-
toionization resonances, there are no measurements suit-
able for comparison.

The oscillator strength for the nth state is written as'

2 12

f„=2(E„—E ) g D A'"'
a=1

(13a)

where D~ (a=1,2) are the dipole matrix elements. The
normalization factor X„ is given by

T - —I
d( —vl) d( —vl)

(13b)
dv2 dv2

2 3 3Nn= vI „+v
n n

ing angle O =0.68 and O=O +O =35.94' and
5 p

——p —p p
——0.0105. For J= —,', the mixing angle

Oaa 1' an O ~ 9 and ~ap 0 0093. These re-
sults are shown in Table II. Note that the difference b p
of the eigen quantum defect is independent of the total en-
ergy E,„. Thus, it is a more meaningful quantity to be
evaluated in terms of the HF program which takes care of
no configuration interactions. The eigen quantum defect
p is obtained by the normalization to the lowest Rydberg
energy levels. The resulting quantum-defect parameters
p and 8 for J= —,', —,, and —,

' are listed in Table II.

36 p ——p —pp ——hv( ——v]AE

=vlG'(1+ —,x+ —„x )l

for J= —,
' (12a)

where

d( —v, ) sin [m(v, +pl)]=tan2O
sill [IT(v2+p, 2)]

(13c)

and

hap ——p —p p
——hvl ——vI EE3

= ', G'(1+-,'x+-,'x')'"
for J=—', , (12b)

where x is the ratio of spin-orbit energy gqz to the Slater
exchange integral 6 '. The expression vIG ' is independent
of the effective quantum number, namely, energy. The
calculated values of glz, G', and vlG' using the HF pro-
gram' are listed in Table I. As expected, vIG' is nearly
independent of vl or of energy levels. We take the mean
value of v&G' for P to be 13317.46 cm ' and P to be
11630.17 cm '. We use the weighted mean value of vIG'
for ~P and P as the Slater exchange integral G' in Eqs.
(12a) and (12b) to evaluate the eigen quantum defect pa-
rameters from Eqs. (5), (7), and (12). For J= —,', the mix-

is the slope of p(vz) curves in Fig. 2(a). The mixing coef-
ficients A are given by

sin[~(vz+ p2)1
A ((v2) =

sln8, sin[IT(P I
—Pl) ]

(13d)
sin[n. (v2+p, )]

A2(v2) =
cos8 sin[~(p, —pz) ]

Experimental oscillator strength data for the 4s mani-
fold' are used as input to evaluate the dipole matrix ele-
ments D~. The fitted results are listed in Table II.

For a two-channel case, the density of the oscillator
strength of an autoionization resonance can be written'
as

df (v2) /dE =2(E—Eo )Iosln [Ir(v2 —vo) ](d&/d v2)

(14a)
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Open squares represent the theoretical level positions. The function —v(vz) defined by Eq. (2) is represented by thin lines. (1) Time
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where vo represents the value of v2 at which df /dE van-
ishes. Quantities vo and Io are defined by

slll[7T( Vp+ p2) ]
tanO

sin[~(vo+ p, ) ]
(14b)

and

Io ——D~cos20+D2sin 0

+.2D)D2sln8cosOcos[vr(p~ —p2)] . (14c)

QO

'4D
Ch

O Q

QO QO
Ch

oO

O Q

QO

QO

O Q O

The value of df IdE of the autoionization resonances as
a function of v2 is plotted in Fig. 2(c) for J=

z and —,

channels. The positions of the resonances are listed in
Table III. The resonance profile shows an asymmetric
Fano line shape with a zero-intensity points, e.g., at
E=105309.9 cm ' for the first resonance located at
E=105310.1 cm above the ionization limit p ( P~),
J= —,'. The half-width at full maximum is —1 cm
However, the density of the oscillator strength for J=—',
is by one order of magnitude larger than that of J= —,'.
The corresponding time delay, which is proportional to
the slope drldv2, is plotted in Fig. 2(b).
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Properties of Rydberg spectra of p ( P)ns channels,
such as energy levels, autoionization resonance positions,
and time delay, are predicted from the calculated eigen-
quantum-defect p and the channel-mixing angle 0. The
results indicate very weak channel interactions between
the pairs of channels. The s-d interaction, as well as the
effect due to the 3s3p interloper, are negligible.

Experimental oscillator strengths for the 4s manifold
were used to infer the autoionization resonance profile.
The dipole matrix element D is determined accordingly.
An asymmetric Fano profile for a very narrow autoioni-
zation resonance with width —1 cm is predicted. Ex-
perimental investigation for these resonances would be
very challenging, since the chlorine atom, like most open-
shell atoms, does not have a ground state with total angu-
lar momentum J=0. It requires high resolution to
separate levels and resonances with different J' in the fi-

nal states, in particular for continuum spectra.
A natural extension of the present method is to calcu-

late eigenchannel quantum-defect parameters as functions
of effective nuclear charge z so that the spectra of the
isoelectronic ions can be analyzed. ' Calculation of
3p ( P)nd Rydberg spectra of the chlorine atom using the
present method is underway.
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