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Theoretical calculation of Penning-ionization cross sections for collisions
of He(2'3S) with sodium atoms
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Cross sections have been calculated for the Penning ionization of ground-state sodium atoms in
collisions with metastable He(2' S) atoms for the range of center-of-mass energies 0.01 eV
&E &1.0 eV. The cross sections were calculated with use of optical-model potentials. The real
parts of the relevant potential-energy curves were determined by carrying out a configuration-
interaction (CI) calculation on the NaHe molecule. The potentials were adjusted to yield the correct
asymptotic van der Waals form. The imaginary parts of the potentials correspond to autoionization
rates and were obtained from a Stieltjes moment analysis of a discrete (L ) representation of the
e +NaHe+ continuum, as represented by diffuse molecular orbitals generated by the CI procedure.
The calculated cross section for He(2'S) on Na at E=0.04 eV is in good agreement with
stationary-afterglow measurements at room temperature. The singlet-to-triplet ratio of cross sec-
tions is in good agreement with that measured by beam techniques. Elastic differential cross sec-
tions for He(2'S} scattered from Na have also been calculated. Satisfactory agreement is obtained
with recent crossed-beam measurements.

I. INTRODUCTION

Slow collisions between atoms or ions are generally adi-
abatic, and do not result in electronic transitions unless
near-degeneracy is present between the initial and final
electronic states at an internuclear separation realized dur-
ing the collision. Avoided crossings ("pseudocrossings")
of potential curves can provide the necessary near-
degeneracy for electronic transitions between bound atom-
ic states. ' However, in a collision between an excited
atom 3* with excitation energy Ez and an atom B with
ionization energy I~, a "hound-free" electronic transition
is possible as long as Ez )Iz, resulting in the Penning-
ionization (PI) process

2*+8 +AS+(j,v)+e— (2)

Most PI reactions that have been studied to date in-

which may also be thought of as excitation transfer to the
continuum. Since the energy E of the outgoing elec-
tron lies in a continuum of values it is possible to have ex-
act energy degeneracy between initial and final electronic
states at all internuclear separations accessible during the
collision. Thus, it is not surprising that PI cross sections
at thermal energies are found to be large for a wide
variety of systems. If the positive ion AB+ is bound, then
associative ionization (AI) is possible, in which the elec-
tron carries away sufficient energy to leave the molecular
ion bound in a rovibrational state j, u according to the AI
process

volve the long-lived metastable species He(2 S) and
He(2'S). , Since the excitation energies E(2 S)=19.8 eV
and E(2 S)=20.6 eV exceed the first ionization energies
of all atoms and molecules other than He and Ne, Pen-
ning ionization is generally possible. Experimental ioniza-
tion rates, usually at room temperature, have been deter-
mined for a large number of species by means of after-
glow techniques, and some cross sections have been mea-
sured in beam experiments. Application of the theory
to PI and/or AI reactions is difficult in practice, and
very few ab initio calculations have been performed. '

Even in the adiabatic theory, generally valid for slow col-
lisions, one must calculate the electronic energy and wave
function describing the initial A'+8 "resonance" molec-
ular state, which is unstable with respect to autoionization
(i.e., PI and/or AI), as well as the transition matrix ele-
ments that involve the continuum-state wave function for
2+B++e

The present study of Penning ionization of Na by
He(2' S) was motivated in part by the stationary-
afterglow measurements of Johnson et al. ' in which
thermal-velocity ionization rates (with a quoted uncertain-
ty of +20%%uo) were determined for collisions of He(2 S)
atoms with alkali-metal atoms. The average cross sec-
tions extracted from these rates are (33+6)X 10
(55+10))& 10 ', (93+ 18)&(10 ', nd (34+7) && 10
cm for Na, K, Rb, and Cs, respectively. The result for
Cs has since been confirmed by Tolmachev and Fogel. '

The relatively small cross section observed for Cs is in
sharp contrast with the trend of Na, K, and Rb. Johnson
et al. speculate that the ionization rate measured for K
and Rb may include important contributions from in-
direct processes such as
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He(2 S)+K(3p 4s) —+He(1'S)+.K(3p 4snl), (3)

where the final "core-excited" atomic state of K is itself
unstable with respect to autoionization. Since it is the de-
struction rate of He(2 S) atoms that is measured, transi-
tions to core-excited atomic autoionizing states, as in (3),
would also be included. Johnson et al. point out that
Rydberg series of such states exist, some members of
which are nearly degenerate with the initial electronic en-
ergy of He(23S) and ground-state K or Rb. For Na, the
energies of these core-excited states lie 10—20 eV too high
to be involved; and for Cs, the whole series, corresponding
to configurations Cs(5p 6snl), lies —5 eV below the ini-
tial electronic energy of the system, and therefore out of
resonance. Of course there are other series of core-excited
states of Cs that could be involved. Moreover, the first
excited state of Cs+ is energetically accessible, and this
additional channel should make a contribution to the total
ionization cross section. Nevertheless, the observed trend
is clear; and the interpretation raises interesting basic
questions about the nature of nonadiabatic interactions be-
tween two characteristically different classes of electronic
states, each unstable with respect to autoionization. This
is not an issue for the present study of Penning ionization
of Na by He(2' S) atoms. The purpose of this work is to
demonstrate that calculations of PI and/or AI for mul-
tielectron systems are feasible, using modern L tech-
niques to avoid the awkward electronic continuum calcu-
lations. The success of the present work encourages us to
extend the study to K in the future so that the role of the
core-excited atomic autoionization states can be explicitly
examined.

The organization of the paper is as follows. In Sec. II
we present a brief description of the theoretical basis of
the optical model as it applies to PI and/or AI, and the
definitions of the real and imaginary ("width" ) parts of
the potential and the cross sections. In Sec. III the
molecular-structure calculations are described, as well as
the Stieltjes moment procedure used to determine the
width function. In Sec. IV the calculated PI cross sec-
tions are described and discussed. Finally, in Sec. V, the
calculated elastic differential cross sections for He(2'S) on
Na are discussed and compared with semiempirical re-
sults.

II. THEORETICAL BACKGROUND

The theory of Penning and associative ionization has
been described by Nakamura and by Miller. The latter
approach is based on an application of Feshbach's
projection-operator formalism to the determination of res-
onance electronic states of the system in the context of the
Born-Oppenheimer approximation, and is very similar to
O'Malley's formulation' of the dissociative-attachment
problem. Since we are concerned with very slow collisions
( U„~ && 1 a.u.), nonadiabatic corrections to the Born-
Oppenheimer approximation should be negligible, except
for possible pseudocrossings that may occur for some sys-
tems (e.g., the core-excited atomic autoionization states
described earlier). In such cases, the nonabiabatic cou-
pling is likely to be localized to a narrow range of internu-
clear separations, and standard methods may be applic-

able with only slight variations. In the present application
to Na, there are no pseudocrossings to concern us.

Thus, following Feshbach's definition of the resonance
state, ' the electronic Hilbert space is partitioned by
means of projection operators P and Q, where the latter
projects onto the resonance states (autoionizing states
NaHe*, in our application), and P =1—Q projects onto all
other states (the e +NaHe+ continuum, in our applica-
tion). For each energy E and internuclear separation R,
the exact electronic wave function can be written

WF. =(p+Q)Pz =pPF. +QVE (4)

where PQE and QfE satisfy complicated coupled equa-
tions. The practical importance of the procedure lies in
the validity of an approximation procedure in which one
ignores the coupling to zeroth order and defines approxi-
mate representations of the resonance function

satisfying a (bound) eigenvalue equation

(QHQ E„)P,=0,—
and the background continuum function

(6)

which satisfies a continuum eigenvalue equation

(PHP E)X~——0 . — (8)

If one takes into account the coupling between the ap-
proximate resonance and continuum states, the
resonance-state eigenvalue becomes

where the shift 5, being small relative to E„, is usually ig-
nored, and where the width is given by the expression

2~PE I (xE
I
(H —E) 14.& 1

(10)

involving the density of states pE dictated by the normali-
zation of X@. Choosing the best resonance function P„ is
something of an art. In the present application we utilize
the similarity of the NaHe molecular orbitals to those of
the separated atoms to associate the resonance with the
roots of a limited CI wave function in which the ls orbi-
tal of helium is singly occupied.

One can gain some appreciation for the appropriateness
of this approximation to the Feshbach description by re-
calling the physical nature of the resonance state. If we
form a wave packet by superimposing stationary-state
wave functions [from Eq. (4)] allowing a small spread in
electronic energy E about E, (and of course a correspond-
ing spread in momentum k of the continuum electron),
we can write

P(t) =&P(t)+Qg(t) .

Now, at times t + —oo, PQE(t)—represents a "free-
electron" wave packet incident on the ion (in our case
NaHe+ at a fixed R). As the electron's wave packet be-
gins to overlap the electronic orbitals of the target ion, say
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as t —+0, there is a finite probability for one of the target
electrons, (e.g., the ls orbital of a perturbed He) to be ex-
cited (e.g., to the 2s orbital of a perturbed He) while the
incident electron is temporarily trapped in another avail-
able orbital (e.g., the 3s orbital of a perturbed Na).
Roughl, the process may be described by

by the standard expression

o;,„(E)=g (m /k 2) g (2l + 1)[1—exp( —4qt )], (16)

where k is related to the center-of-mass nuclear kinetic
energy by

[e +He( ls )Na+]pe[He( ls 2s)Na(3s)]&, (12) k =2pE„, (17)

V'g+ W„(R) E„.g„„,(R—) =0,
2p

(13)

where the nuclear potential energy is defined in terms of
the resonance electronic energy and width by the optical
potential

JF„(R)=E„(R) E„(oo )——,iI—(r)+22/R, (14)

and where E„ is the center-of-mass nuclear kinetic energy.
Since the iriitial electronic state corresponds to
He(2' S)+Na, it is assumed that for slow nuclear motion
the electronic energy will follow the adiabatic curve.
However, autoionization is possible at all finite R and
leads to a flux loss ("absorption") from the nuclear elastic
channel; the imaginary term in 8'„(R) takes this into ac-
count. The absorption cross section describes Penning
ionization and is given in terms of the imaginary parts of
the complex phase shifts

'9I ='9& +~'9&

where the P, Q subscripts remind us that the transient ex-
citation to HeNa* is contained in Qf(t), and corresponds
to a growth in the amplitude of this part of the wave
function and a corresponding reduction in the amplitude
of Pg(t) at t=0. Of course, as t~+ao, Qg(t) again
falls to zero, and the outgoing electron's wave packet is
contained in PP(t). The inverse of "width, " I ', gives
the decay time (in a.u. ) of the resonance. Now, referring
to Eq. (11), it is clear that for t =0, i.e., for the incident
electron close to the ion, P(t) is dominated by Qg(t), and
small errors in Pg(t) are unimportant. The excitation of
Pg(t) for t &0 is dominated by what is "fed in" from
Qg(t). Thus it is essential that in this region of configu-
ration space (i.e., "close in") we have a good representa-
tion of the resonance wave function. Returning to the
stationary-state description and Eq. (5), we conclude that
P„must be a good representation of Qg@ in the close-in
region. Miller has argued this directly from the time-
independent formalism. '

The nuclear motion is determined by the adiabatic
response of the electrons to the instantaneous nuclear
field. Thus the nuclear Schrodinger equation is

p=6214 is the reduced nuclear mass (in a.u.), and g =1
for He(Z~S) and g = —,

' for He (2 S); the latter is a statisti-
cal weight factor associated with the X state dissociating
to He(2 S)+Na. The X state is essentially stable, and
does not contribute to Penning ionization.

III. MOLECULAR STRUCTURE
AND WIDTH DETERMINATION

The electronic problem involves four phases: (1) a spin-
and symmetry-restricted Hartree-Fock calculation of the
ground state of NaHe; (2) a CI calculation of resonance
X+ states of NaHe* dissociating to He(2 S)+Na and

He(2'S) +Na; (3) calculation of L width matrix elements
from the partitioned Hamiltonian; and (4) Stieltjes imag-
ing to get continuum-normalized widths.

The basis chosen for the structure determination was an
even-tempered set of Cxaussian-type orbitals (GTO) with
10-s and 8-p GTO on He, and 15-s, 12-p, and 3-d GTO
on Na. ' Since the same basis is required to represent the
continuum states of e +NaHe+, we included diffuse
GTO, the smallest orbital exponents being 0.0023, 0.0009,
and 0.0275 for s, p, and d orbitals, respectively, on Na,
and 0.0017 for s and p orbitals on He. Since only X states
are of interest in the PI study, certain orbitals, e.g., p,d, and ds, were ignored, except for those required for
description of the 2p core of Na. The CI calculation in-
cluded only single excitations with respect to the Hartree-
Fock ground state (this resulted in 113 spatial configura-
tions and 187 spin eigenfunctions). This approach ensures
a "frozen-core" Hartree-Fock approximation to the
e +NaHe+ continuum, and also generates the set of'
configurations expected to be most important for describ-
ing the resonance states, i.e., those resembling
IHe(lsns)Na(3s)). Table I compares atomic energies
with experimental values. Note that the theoretical results
for the Na Rydberg series are in much better agreement
with experiment than the He excitation energies. This is
not due to a poorer GTO basis for He; rather it reflects
the relative appropriateness of the frozen-core approxima-
tion for Na(nl) versus He(lsni). The fact that the He ex-
citation energies are in fair agreement with experiment is

TABLE I. Atomic excitation energies calculated from the dissociation limits of the CI electronic en-
ergies for NaHe (given in eV relative to the ground states).

Helium
CI Experimental CI

Sodium
Experimental

2S
2'S
2P
2'P

19.82
20.61
20.96
21.22

19.81
21.13
21.23
21.69

3p
4s
3d
4p

1.97
3.06
3.59
3.71

2.10
3.19
3.62
3.75
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due to the near-cancellation of two contributions not in-
cluded in our limited CI: relaxation of the ls orbital in
the excited states (which would decrease the ab initio exci-
tation energy), and the differential electron correlation en-
ergy between the 1s and 1snl pairs (which would increase
the ab initio excitation energy).

The ab initio well depths for the 2 S (2'S) potential sur-
faces are 0.18 eV (0.14 eV) with corresponding equilibri-
um distances of 6.5ao (7.7ao). Since the CI calculation
limited to single excitations does not include the van der
Waals contribution, it is not surprising that the calculated
well depths are much smaller than the values 0.74 eV
(2 S) and 0.30 eV (2'S) inferred from the PI electron-
energy distributions measured by Hotop and Niehaus.
We feel that the experimentally inferred well depths are
likely to be accurate. Therefore, we chose to modify the
potential-energy curves to exhibit the correct long-range
van der Waals behavior and to have the experimental well
depths. The modified potential curves have the form

V(R) =[E„(R)—E, ( oo )+22/R]f (R)
—(C6/R )[1—f(R)],

where the cutoff function is defined as

(18)

f(R)=exp[ —(R/Ro) ], (19)

0.1P,

& G,04

and the parameters Ro are chosen to obtain the experi-
mental well depths. The values chosen for He(2 S) and
He(2'S) are Ro ——6.27ao and 8.22ao, respectively; the cor-
responding values of C6 are 2220 and 3660 a.u., respec-
tively. ' The equilibrium distances deduced from this fit
are then 5.85ao (7.35ao) for the 2 S (2'S) surfaces. The
classical turning points for thermal collisions are )4.4ao
(5.7ao). In Fig. 1, the resonance potential curves are
shown corresponding to the semiempirical modification.

In order to calculate the imaginary part of the optical
potential, i.e., the width of Eq. (10), we require a represen-
tation of the e +NaHe+ continuum. The diffuse
GTO were included in the basis set for just this purpose.
However, in carrying out the CI calculation we have
mixed all configurations, so that the wave functions corre-
sponding to the states that dissociate to He(2 ' S) have

soine contributions for all configurations. Moreover, the
CI eigenvectors by definition completely diagonalize the
Hamiltonian (i.e., within this CI space). So, if we decided
to select some particular eigenvector to represent the con-
tinuum in a calculation of the width, the result from Eq.
(10) would necessarily be zero. Such a state does not de-
cay into the continuum since it already includes the con-
tinuum i.e., it is a representation of the full wave function
QE, of Eq. (4), not of QPE.

Hazi has described a two-step procedure for separating
resonance and continuum states. In the first step, a pro-
jection operator Qo is defined

Qo=g Ix, &&x, I, (20)
j=1

where the IXJ) are vectors that have features of the
desired resonance states. In our case, the

I X~ ) are taken
to be Slater determinants corresponding to all singly excit-
ed configurations where the molecular orbital correspond-
ing to the 1s orbital of He is singly occupied. More pre-
cisely, if the ground state of NaHe is denoted as (core)
lo 2o, then all excitations of the form (core) 1o2crna are
included in Qo. Note that this space includes as a subset
all configurations dissociating to He(lsnl)+Na(3s). The
Qo-space Hamiltonian Q0HQO is then diagonalized to ob-
tain resonance eigenfunctions

I P; ) and energies E;. Next
we choose the two lowest-lying resonant states

I gi) and

I $2) and define a new Q space with

(21)

where i = 1,2 label the states dissociating to Na+He(2 S)
and Na+He(2'S), respectively. The operator I'=1—Q
now contains all the lower-lying continuum, and the
eigenfunctions

I P„) of I'MI' are taken to be representa-
tions of the continuum at energies given by the eigen-
values E„. Thus, we have the matrix elements

(22)

defined only at discrete energies E„. The y„are not
directly usable as approximate widths since the normali-
zation of the P„ is not that of the desired continuum func-
tion Xz of Eq. (7). However, the Stieltjes imaging pro-
cedure corrects this improper normalization by taking ex-
plicit account of the density of eigenvalues representing
the continuous spectrum. ' The direct relevance of the
calculated values of y„and E„ is that they are useful in
determining moments of the width energy distribution.
Thus, if one defines exact negative-power moments

(23)

G.OO

04 I I ~ I a I ~ I

4 6 S 10 18

FIG. 1. Potential-energy curves, adjusted to have the correct
long-range form. He(2 S}+Na (solid curve); He(2'S)+ Na
(dashed curve).

it is found that the first few moments are approximated
well by

'(24)

as long as k«¹The zero of energy chosen in Eqs. (23)
and (24) is largely arbitrary. However, it is preferable to
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FIG. 2. Contributions to the Stieltjes derivative for
He(2 S)+Na at R =6ao from various moments and least-
squares fit (solid curve). E„and E; are the "resonance" and ion-
ization threshold energies, respectively, at R =6ao.

(25). Since the width is required at the resonance energy
e„some interpolation is necessary. In the present work,
we use a least-squares cubic-spline fit. In Fig. 2 the calcu-
lated Stieltjes derivatives I (e ) from Eq. (27) and the fi-
nal curve fit are illustrated for He(2 S)+Na at R =6ao
and for four choices of M in the determination of the
smoothed spectrum. In this example, the resonance ener-
gy is e„=0.7 a.u. (relative to the ground state of NaHe).
The widths in the vicinity of e, are seen to be nearly in-
dependent of M, as they should be if the procedure is con-
verged. The comparison for He(2'S)+ Na is similar. The
final widths for both He(2' S)+Na are given in Fig. 3 as
a function of R; in each case, the width is evaluated at the
resonance energy e„(R). As expected from orbital overlap
considerations, at large R the widths decrease exponen-
tially.

I(6) g 7n ~ Fm &E&Ern+I
n=l

and the Stieltjes derivative of I(e), defined by

(26)

I (e )= pm + /M+1
m =1,2, . . .

2(r~+, —r )
(27)

gives an approximation to the width, according to Eq.

make a choice that avoids the occurrence of very small
values of

~
e„~, which would lead to excessive weighting

of the corresponding terms in Eq. (24), and that avoids
changes in the sign of E„at some point jn the spectrum.
For the present application, the energy is referred to the
ground state of NaHe at each internuclear separation.
The usefulness of the moments S(—k) lies in the fact that
a new "smoothed spectrum" of values [y„,e„j for
n = 1, . . . , M may be obtained by inverting a small subset
of the moments, up to k=2M. The smoothed spectrum
may be shown to provide an adequate quadrature for the
"cumulative function, "which in our case is the energy in-
tegral of the width

I(e)=f I (e')de' . (25)

Thus, a histogram approximation to I(e), using the
smoothed spectrum, is simply

IV. PENNING-IONIZATION CROSS SECTIONS

The optical potentials defined by Eq. (14) in terms of
the real potentials V(R) of Fig. 1 and widths I (R) of Fig.
3 were used in the Jeffreys-%'entzel-Kramers-Brillouin
(JWKB) approximation to calculate the complex phase
shifts which give the total Penning-ionization cross sec-
tions according to Eq. (16). The cross sections for both
He(2' S)+Na are illustrated in Fig. 4 as functions of
center-of-mass energy E in the range 0.01&E& 1.0 eV.
Experimental results are also shown for comparison. For
He(2 S), an experimental average cross section of
(33+6))&10 ' cm is derived from the measured ioniza-
tion rate constant (at T=441K) of (5.1+1.0))&10
cm /sec in the stationary-afterglow experiment of
Johnson et al. ' Earlier thermal-beam measurements car-
ried out by Hotop and Niehaus originally gave a cross
section for He(2 S) of 14X10 ' cm (+100%, —50%).
However, recent knowledge has led them to increase their
estimate of the relative collision energy to 50 +10 meV,
and the He(2 S) cross section to 24&& 10 ' cm
(+ 100%). Similarly, their revised estimate of the
He(2'S) cross section is 60)&10 ' cm (+100%);and the
corresponding singlet-to-triplet ratio is now approximate-
ly 2.5. Our calculated cross sections are seen to fall

l60 ~ I

10 120—

10 'o 8O

b 4o

10
0

0.01
I I I I I I I I

0.1

E (ev)

10
4 6 8 10 12

R(a)
FICx. 3. Autoionization widths for He(2 S)+Na (solid curve)

and He(2'S)+ Na (dashed curve).

FICx. 4. Penning-ionization cross sections. Present theory for
He(2 S)+Na (solid curve) and He(2'S)+Na (dashed curve).
Experimental results for He(2 S)+Na: U, Hotop and Niehaus
(Refs. 20 and 26); 4, Johnson et al. (Ref. 14). Experimental re-
sults for He(2'S)+Na: ~, Hotop and Niehaus (Refs. 20 and
26); —o —,Haberland and Weber {Ref.27).



15731 THEORETICAL CALCULATION OF PENNING-IONIZATION. . .

' h' the uncertainties in the measu
~ ~ ~

surements. The calcu-
t ratio is 2.2 at 50 mev in goodg -o- p

with the experimental value o . . a
d He(2'S) cross see-d Weber have indirectly obtaine e

ra f '
b a semiempirical deter-tosoe a gran e of energies y a

1

tical otential rom i s o
d elastic differential cross sections or e

e au
' '

in determination of the op-The authors note uncertamties m e e
ut do not quote specific uncertainties or

fhPIre. In the calculation o t e creported here. n
n in Fi . 4, we use the moui ie po ed'f' d otential curves

9) The van der Waals attractivegiven by Eqs. (18) and (19. e van

R tail pulls in a larger number o pf artial waves, each of
w ic conh' h tributes to the iomzation croross section, the sen-

in reatest at lower energ|es. For exampmle at
E (18) d

o and 37% in the respective cross sections otions of 17% an o in
in sin let-to-He 23S) and He(2'S) and the corresponding sing

d b 27%. Our results are, oftri let ratio is decrease y c.
t recisely how the van der Waa scourse, less sensitive o pre

'

1 ded. For example, if the parameter R'0interaction is inc u e . or e
in E . (19) is arbitrarily shifted outward by ao, i.e.,

22a for He(2 S) and He(2'S), respectively,
b 11% and that forthe He(2'S) cross section is reduced by I0 an

ased b 3%. The latter increase in crossH (2 S) i
'

y
section is soomewhat surprising since t e rea po en

'

IO IO

lo'

IO

IQ5 Ir

IO
(b)

D
I—
LLj
Cf)

LLI
CL

LL

C5

IO

lo'

I04
r

l06

IO

IO

IO

IO

IO'

l04

Ee~=0052 eV

0.092 eV

j(I~ tjI, 'IIII

Iil
I

I
'

I ~IJ t

]I 'II I—

IO

IO

IO

r

IO

O )Q

IO
CA

C/3

O
CL

IO'

a l04

IO':-
LJJ

lo'-
C)

10

0.092 eV

II
I! f q'j'II'~'

10 ==)

IO

IO ==

IO

IO

IO

0.202 eV

I

IO

IO =:

Io' =

IO

-2

'

I I

I

l60
I

80 l20
c.m. ANGLE (deg)

I

40 l60
I I I I I IO 00 40 80 l20

c.m. ANGLE (d ge )

-ma, d ith different potential curves:-mass s stem, calculated wit i erG 5 Differential elastic cross sections or e
Fi . 1' (b) empirical potential curve o a er

FI . . i
in to resent theory, as illustrated in ig.(a) potential curve corresponding to presen

27).



158 COHEN, MARTIN, AND LANE 31

certainly less attractive. However, there is a competing
velocity effect that is important here. For a given partial
wave, a deeper potential implies a higher "local" (classi-
cal) velocity and, therefore, less time for ionization to
occur. This effect is always present, but is particularly
evident 111 tllls comparison of Hc(2 S) closs scctloIls A. s
Ro is shifted still further out to 12ao, the He(2'S) cross
section is reduced by 22% and the He(2 S) cross section
by 4% compared with the original choices of Ro. Finally,
setting Ro ——~ is, of course, equivalent to setting C6 ——0.
These comparisons give some indication of the sensitivity
of the calculations to modifications of the potential
curves. We believe the potentials described in Eqs. (18)
and (19), with the semiempirical choices of Ro, are the
most appropriate choices; we therefore consider the cross
sections of Fig. 4 to be the best theoretical estimates.

It is difficult to estimate the accuracy of the width
since, to the best of our knowledge, the Sticitjes method
has never before been applied to any Penning-ionization
process, and there are no examples of theoretical deter-
minations of widths for PI of Na. We can quote uncer-
tainties in the widths related to convergence of the
Stieltjes procedure itself. By comparing the widths I (e„),
at the resonance energy, corresponding to reasonable
choices of the order M (e.g. , 8 (M (14) of the Stieltjes
inversion, we estimate the uncertainty in the widths to be
+10% for both He(2 S) and He(2'S) states. These uncer-
tainties correspond to about +5% uncertainties in the PI
cross sections at thermal energies.

V. DIFFERENTIAL ELASTIC He(2'S)+ Na
CROSS SECTIONS

The recent measurements by Haberland and Weber of
the differential elastic cross sections for collisions between
He(2'S) and Na atoms provide some opportunity to evalu-
ate the potential curve used in the He(2'S) PI calcula-
tions. Unfortunately, because of the difficulty in making
a Na beam, the velocity resolution in the experiment is
poor (+25%) and most of the structure is washed out.
Nevertheless, a qualitative comparison is possible. We be-
lieve that it is most informative to compare the center-of-
mass, differential cross sections calculated with our poten-
tial (shown in Fig. 1) with those calculated with the
empirical potential of Haberland and Weber. This com-
parison is made in Fig. 5 at the c.m. energies where the
experiment was done. The empirical potential was chosen
by Haberland and Weber such that the corresponding dif-
ferential cross section, when transformed to be laboratory
system and averaged with respect to experimental beam
and detector conditions (not completely specified in their
paper), is in good agreement with the measurements.
However, the choice is not unique and their analytic form
(hybridized Morse potential) does not have the correct
asymptotic form. Hence the results obtained at small an-
gles with our potential should be better. Also, the repul-
sive wall of the empirical potential is rather uncertain
since the influence of the width I'(R) is greatest there.
Haberland and Weber use a simple exponential form for
I'(R), which is similar to our ab initio result at R &R„
but is much larger at small R. The repulsive part of the

potential mainly affects large-angle scattering. In spite of
these uncertainties, it can be seen in Fig. 5 that the c.m.
differential cross sections calculated with the two poten-
tials are similar in shape except at very small angles. On
the other hand, the magnitudes of the differential cross
sections calculated with our potential are substantiaHy
greater than those calculated with the empirical potential
at all angles —the experimental measurements themselves
are not absolute. This difference is due primarily to the
difference in the long-range forms of the potentials and
secondarily to the difference in ionization widths.

Although the theoretical information content is some-
what less accessible and the results depend on the detailed
experimental conditions, it is also interesting to consider
one example of the differential cross section in the labora-
tory system. We do this in Fig. 6 for tile results corre-
sponding to E, =0.052 eV at 0'& 0~»& 180. The beam
velocities appropriate to the Haberland and Weber experi-
ment have been used, but averaging over velocity and an-
gle, which would eliminate most of the structure, has not
been performed. The pronounced peak at H~,b

——104' is a
result of glory scattering and was observed in the experi-
ment done at E, =0.052 eV. It was not seen experi-
mentally at higher c.m. energies since it then occurs at
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FIG. 6. Differential elastic cross sections for He(2 S)+Na in
the laboratory system at an energy corresponding to
E, =0.052 eV. The cross section calculated with the present
potential (see Fig. 1) is compared with that calculated using the
empirical potential of Haberland and Weber (HW) (note change
in scale) and with their actual experimental measurements (in
arbitrary units).
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laboratory angles larger than detected. This peak is of
purely kinematic origin, corresponding to 0, =180', and
so, as Haberland and %'eber point out, its angular position
gives no information about the potential.

The differential cross sections shown in Figs. 5 and 6
are suggestive of the resolution that would be required to
obtain a more rigorous test of the theoretical potential
curves. However, it appears that obtaining the real and
imaginary parts of the potential from differential elastic
scattering data will require high precision unless one of
them is already known accurately from ariother source.
Test calculations done with l (R) set to zero show that the
overall periodicity of the interference structure is not
much changed, but that the width does have an observable

effect on the detailed structure of particular peaks as well
as on the magnitudes.
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