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Eigenchannel quantum-defect theory of open-shell atoms.
I. Autoionization resonances and eigenphase shifts of chlorine
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{Received 5 March 1984)

A multichannel quantum-defect theory focused on the time-delay matrix is applied to the analysis
of Rydberg levels and autoionization resonances of the chlorine atom. The analysis shows that re-
cently observed photoionization cross sections above the 3p ( P) threshold of the chlorine ion may
be interpreted in terms of unresolved groups of resonances with three different total angular mo-
menta J and approximately the same energy. Experimental data of Rydberg levels were used to
determine the phase shift of the collisional eigenstate (quantum defect) and the time-delay matrix
for the electron-ion scattering process. The LS coupling scheme is assumed for the electron + ion
compound state. The channel interaction strengths and dipole matrix elements of even-parity states
relevant to electron-ion collisional and recombination processes are obtained. The branching ratio of
photoelectrons is calculated.

I. INTRODUCTION

The general relationship between the phase shift of
electron-ion collisional wave functions and the quantum
defect of discrete states is well known. ' This relationship
connects Rydberg states in the discrete spectrum with au-
toionization resonances in the continuum, and establishes
a base for the channel notion of the multichannel
quantum-defect theory (MQDT). Physical quantities in
the discrete spectrum and in the continuum are expressed
in terms of a single set of parameters. Analytic expres-
sions for the physical quantities consist mainly of tri-
gonometric functions of effective quantum numbers v;,
invariant under the transformation v;~v;+n, n being an
integer. This invariance accounts for the periodicity of
the Rydberg series. These properties permit extraction of
collisional information from the wealth of spectroscopic
data. This method has been successful in analyzing Ryd-
berg and autoionization spectra of closed-shell atoms,
with ground-state total angular momentum Jo ——0, such
as noble-gas atoms. For such atoms, one-electron ioniza-
tion leads to simple ion structure, so that a two-
ionization-limit-MQDT analysis is adequate. However,
this approach has not been adapted for open-shell atoms,
in which the spectra is complicated by the presence of
numerous ion-core states. Channel interactions may
occur among series converging to different ionization lim-
its of the ion-core states. A further complication is
caused by the nonzero ground-state total angular momen-
tum J. By conventional continuum light sources, pho-
toexcitation and photoionization reaches two ( Jo ———, ) or
three final states by dipole selection rules. These spectra
with different J values overlap in the continuum. Open-
shell atoms thus provide a challenging problem for theor-
ists.4'

In this paper we present a two-ionization-limit
multichannel-quantum-defect treatment that introduces
"effective channels" and time delay in disentangling the

autoionization structures and determines partial photoion-
ization cross sections between ionization limits 3p ( P)
and 3P ('D) of the chlorine atom. Discrete Rydberg lev-
els were analyzed and used as input to evaluate the eigen-
phase shifts and the diagonal elements of the time-delay
matrix for the electron-ion scattering process. The effec-
tive channels and the related eigenphase shifts reduce the
number of parameters in the theory and therefore simplify
the problem greatly.

The calculations presented in this paper aim at demon-
strating qualitative relationships and at correlating a wide
range of experimental data. One limitation on accuracy
should be explained at the outset. All quantum-defect pa-
rameters depend on the total energy of the system and
their variations over an energy interval b,E are of order
hE/I, where I is a specific ionization limit. The energy
range AE over which the theory is of interest is a few
times the separation of thresholds I('D) I( P), which —is
about 0.1I( P) for chlorine. Hence, the accuracy of the
present calculation of autoionization cross sections be-
tween 3p ('D) and 3p ( P) ionization limits of the
chlorine atom in neglecting the channel interactions with
channels converging to the 3p ('S) ionization limit is
about 10%%uo.

In Sec. II we develop a multichannel quantum-defect
theory, focused on the time-delay matrix, which reduces a
multichannel problem into a few pairs of interacting
channels in analyzing the autoionization structures of
open-shell atoms. In Sec. III we present the results for the
chlorine atom. Finally, a conclusion is presented in Sec.
IV.

II. THEORY: EFFECTIVE CHANNELS
AND TIME DELAY

We deal with the motion of an electron in the Coulomb
field surrounding an ionic core in terms of a collisional
picture. We consider a set of discrete and continuum
states of the complete system, ion plus electron, which
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differ only in the energy of the excited electron and are
specified by the orbital, spin, and fine-structure quantum
numbers of the ion, the orbital and spin angular momen-
tum of the electron, and the coupling of the electron to
the ion core. For example, one-photon dipole absorption
from the ground state of a chlorine atom, 3p P3~2, leads
to 26 channels consisting of even-parity configurations
3p el (i =s or d) and J= —, , —,, and —,, where e is the or-
bital energy. There are seven channels belonging to J= —,

'

[including five channels converging to 3p ( P) states of
the ion and two channels converging to the 3p ('D2) state
of the ion], ten channels with J= —', , and nine channels
with J= —,'. There are also three channels converging to
the 3p ('S) ionization limit. The 3p ('S) ionization limit
lies about 2 eV above the 3p ('D) ionization limit and
there is no clear evidence of discrete levels or resonances
converging to the 3p ('S) ionization limit in the spectra
range below the 3p ('D) ionization limit. It is reasonable
to neglect the channel interaction effect from channels
converging to the 3p ('S) ionization limit on the spectra
lying below the 3p "('D) ionization limit. As stated in the
Introduction, the error generated amounts to about 10%.
We thus adopt a two-ionization-limit model in analyzing
autoionization structures between ionization limits
3p ( P) and 3p"('D). A complete list of the I.S-coupled
channels converging to the 3p ( P) and 3p "('D) ionization
limits is shown in Table I.

When the total energy, E =I +e, falls below the
ground-state energy I of the ion core, e.g., 3p ( P2), we
have @&0 for all channels. The complete eigenvalue
problem of the discrete spectra is described by the compa-
tibility equation

F(vl, . . . , vt„p, Ut ) =det
~

Ut sin[fr(vk+/l )]
~

=0,

where p and U; are eigenvalues and eigenvectors of an
R matrix that measures short-range non-Coulombic in-
teractions between the electron and the ion core. The
asymptotic wave function of the outer electron, from the
scattering point of view, is far separated from the remain-
ing ion core in configuration space; the electron is at-
tached to the ion by the Coulomb field and forms a disso-
ciation channel (i channel). This solution is a linear com-
bination of two independent Coulomb wave functions and
determines the regular energy spacings of successive levels
of a series. The mixing coefficients of the wave function
are determined by the normalization factor and by match-
ing the boundary conditions at the ion core, where the
electron and ion core form a compound-state channel (a
channel). vk is the effective quantum number of the elec-
tron, related to its energy ek in atomic units by

where Ik is the ionization potential. vI„ is treated as a
continuous varying function of energy, i.e., vt„——vi(E).
The quantum defect p is identified as p =v

&

—n, or
p = —v, (mod 1).

In the autoionization region the total energy E lies be-

TABLE I. The possible channels of the Cl atom {J= 2,
2, and even parity).

Configuration

3p 4[2P)ns

J=—1

2

4p
2p

3J=—
2

4p
2p

5J=—
2

4p

3p4['P]nd 4D
4p
2p

4F
4D
2D
4p
2p

4F
2F
4D
2D

4p

3p [ D2]ns

3p "['D,]nd 2p
2g

2D

2D

2p
F

2D

t~een I& and I2, where I~ and I2 are the threshold ener-
gies of ion-core levels 3p"( P) and 3p ('D), respectively.
Here we neglect the small fine-structure splitting of the
core state 3p ( P). The ratio between the spin-orbit split-
ting energy and the total energy is —10 /10 . It amounts
to one percent accuracy for high-lying levels and severa1
percent accuracy for low-lying levels in replacing
v] vg vb —vg y where vg y vb y and v, are the effective
quantum numbers of the three fine-structure components
of the core state 3p ( P2 l o), with threshold energies I„
Ib, and I„respectively. In this energy range,
I2 ~ E ~ I

&
-I, -Ib -I„18 channels become open

(denoted k HP), and vt, =ilkk is imaginary and degen-
erate in energy, where eight channels remain closed
(denoted k&Q) and vk remains real (see Table I). The
asymptotic behavior of wave functions in this region re-
quires oscillatory standing waves in the open channe1s and
exponentially damped waves in the closed channels. This
can be achieved by introducing eigenstates p, such that
each eigenstate p is a superposition of the standing waves
of open channels with the same eigenphase shift ~~&. An
essential point of the present treatment is the establish-
ment of the following relation, for k H P:

v)~ r~ (mod 1) . —
(3)

The compatibility condition which describes the eigen-
value problem in the autoionization region becomes

F( rz, v2) =det
~

U; —sin[2r( r~+p )] =0,—
pEP . (4)

Equation (4) represents functional curves in a ( —rz, v2)
plot. This means that the variable v& of each level of the
discrete spectrum can be represented in the form
v&

——n —7&, where mvz represents the phase shift of the
collision eigenstate ittz for the autoionization region. This
procedure allows one to use low-resolution discrete data
by neglecting the fine-structure splitting, i.e.,
v& v =vb —v„ to infer the collisional eigenphase shift
graphically.

Figure 1(a) shows an example of a three-channel
quantum-defect plot (p, v2) constructed with 3p ( P2) and
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dwkldv2 with dr&/dv2. The effective phase shift (solid
curve) is obtained by averaging the eigenphase shifts of
the nd and nd channels, ~~ and ~2, so that the slope of the
solid curves equals that of the sum of the dashed curves in
Fig. 1(a) as required by Eq. (6), as shown in Fig. 1(b). The
validity of the eigenphase shift relation (5) and the
channel-interaction-strength relation (6) relies on the in

I

df' '(v2)/dE= gdf'~' '(v2)/dE
P

dependence in energy of quantum-defect parameters p
and U;, since the energy dependence of the parameters
breaks the periodicity of the functional dependence of ~
and v2. Following this procedure, the photoionization
cross section can be expressed as a superposition of pairs
of two-channel formulas:

=2(E —Eo) g Iksin [~(v2 —vk )](d~k/dv2) +ID'
k

(7)

where IOJ represents the continuum background intensity and the slope dpi, /dv2 measures the channel interaction
strength between the effective open channel and the kth closed channel. The effective eigenphase shift ~k represents the
result of prediagonalization' of all open channels on the wave function of the kth closed channel.

For the two-channel case the density of the oscillator strength of an autoionization resonance can be written as"
df (v2)/dE =2(E —Eo)Iksin [n(v2 —vk)](drk/dv2)

and

D f cos 8+D2sin 8+2D&D2sln8cos8 cos[m(p) —p2)]
sin'8 cos'8 sin'[~(p, )

—p2) ]

where 0 is the mixing angle, Eo is the energy of the
ground state, D~ (a=1,2) are the dipole matrix elements,
and vo represents the value of v2 at which df/dE van-
ishes. The addition of the continuum background intensi-
ty IQJ in Eq. (7) guarantees' conservation of flux below
and above the ionization limit 3p ( P). A detailed deriva-
tion of this key result in Eq. (7) will be published else-
wher e.

III. RESULTS AND DISCUSSION

We make use of the relationship Eq. (3) between
discrete energy levels and continuum eigenstates to con-
struct the eigenphase shift ~P of the electron-ion collision-
al process from discrete experimental data. ' Three sets
of the quantum-defect plot (p, v2) corresponding to threeJ values ( = —,, —,', and —, ) were constructed with 3p ( P2)
and 3p ('Dz) as the first two ionization thresholds. '

These plots show the correspondence between bound-state
levels in terms of quantum-defect p and eigenphases ~P in
the autoionization region, a correspondence which is ex-
pressed by Eq. (3). From these results we locate the posi-
tion of resonances belonging to closed channels in the v2
scale and their corresponding interacting open channels.
For example, the broad resonance seen in the photoioniza-
tion cross-section data, replotted on the v2 scale in Fig. 2,
results from the interactions between closed channels
3p ('D)nd' P with J= —, and —, and their corresponding
open channels.

It is worthwhile to note that two autoionization cross
sections have been replotted on the v2 scale (from 3.5 to
5.5) and the results are within 2% agreement. This illus-
trates the periodicity of the autoionization resonances in
the v2 scale and justifies the assumption of energy-
independent quantum-defect parameters. The sharp peak

Channel

TABLE II. MQDT parameters.

D (a.U. )

3p ( +)+d +1/2, 3/2
3p ('D)nd' PI/p3/2

0.31
0.09 50.33 1.01

2.35

3p ( +)+d D3/2, 5/2
3p ('D)nd '

D3/25/2

0.16
0.97 22.2 4.24

0.72

3p ( P)lid I ~/2

3p { D)old '
S~/2

0.24
0.04 40.2' 0.3

0.028

3p"( P)ns P3/p
3p ('D)ns' D3/2

0.13
0.05 37.1' 0.36

0.145

at v2 ——4.03 is due to the interactions between closed
3p ('D)nd' D and open channel 3p ( P)ed D with J=—',
and —', , respectively. The other sharp peak at vz ——3.89 is
due to the interactions of closed channels
3p ('D)nd" St~q and 3P ('D)ns' D3/2 with open chan-
nels. We can reduce the full multichannel problem to a
two-channel problem by introducing effective channels ac-
cording to Eqs. (5) and (6). The upper part of Fig. 3
shows the six sets of the (~,v2) plot obtained from discrete
energy levels. The solid curves in the figure are fitted re-
sults of F(r, vq)=0 following the standard fitting pro-
cedures of MQDT. The basic quantum-defect parame-
ters, i.e., p and mixing angle 0 for these six pairs of two-
channel problems obtained, are listed in Table II.

The values of D~ are determined from Eq. (7)—(9) by
comparing with photoionization cross-section data in
Fig. 2. The final values of D are also listed in Table II.
The values of partial df/dE for each pair of the effective
two-channel problem are plotted in the lower part of Fig.
3. The values of partial cross sections resulting from the



EIGENCH&NNEL QUANTUM-DEFECT THEORY OF OPEN-SHELL ATOMS. 1519

0.0

0.8

0.6

0.4

0.2

0.0
~ ~ ~ ~ ~ ~ ~

2 '2
d P~/2+ d P~/2

0.0,

0.6

0.4

0.2-

0.0

6
d'03/2+d'D3/2 d'D5/2+d'Ds/2

0.0

0.8

0.6

0.4

0.2

0.0

6-

4
0$

LLI'0
'U

2

4-

2-

2 I2
3/2

d'P1/2+ d'S1/2.

~ I I I ~ ~ ~ I I I i ~ I I I I

0.0 0.2 0.4 0.6 0-8 0.0 0.2 0.4 0.6 0.8 0.0 0.0 0.2 0.4 0.6 0.8 0.0 0-2 0.4 0-6 0.8 0.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.8 0-8 0.0
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dfi
dE

g Q U~; Urpcos[rr(p pp)]D~Dp-
i&P a, P

g g U+Upcos[rr(/L /tp)]D Dp-
i&Q a, P

(10)

Using the value of the parameters shown in Table II, we

obtain [(df IdE)( P)]I[(dfldE)('D)]=1.7. The experi-

mental result' at 21.2 eV is 1.85.

interactions between the effective channel 3p ( P)nd P
[=3p ( P)nd +3p ( P)nd] and 3p ('D)nd' P (J= —,

' and
3

—, ) reproduces the major features of the experimental data
as shown by dashed curves in Fig. 2. One sharp peak lo-
cated at v2 ——4.03 arises from the interactions of
3p ( P)d D with 3p "('D)d ' D (J= —', and —, ). The other

peak located at vz ——3.89 arises from the interactions of
3p ( P)ns P3/2 with 3p ('D)ns' D3/2 and the interac-
tions of 3p ( P)nd P«2 with 3p ('D)nd" S&/2. The par-
tial cross sections due to these two sharp resonances are
represented by dotted curves in Fig. 2. The total pho-
toionization cross section corresponds to the sum of all

these six partial cross sections and the results are plotted
in Fig. 2 by the dot-dashed curves. The agreement with

experiment is satisfactory.
In the energy range E &I2 the branching ratio of the

two groups of photoelectrons can be written as

IV. CONCLUSION

We have obtained eigenphase shifts and partial pho-

toionization cross sections of the chlorine atom based on

the introduction of effective channels. We have reduced a

26-channel problem to six pairs of interacting channels

and the number of parameters from 154 to 20. The
behavior of eigenphase shifts near resonances, the con-

tinuity of channel interactions, and the conservation of
flux across the thresholds are all treated properly through

the analytic relations in Eqs. (5)—(7), respectively. This

simple arid reliable method can be used to calculate, on

the basis of discrete spectroscopic and low-resolution pho-

toionization data, excitation cross sections for electron-ion

collision processes' near threshold and dielectronic-

recombination processes, ' where resonance phenomena

precede relaxation mechanisms such as autoionization or
predissociation.
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