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Calculation of two-photon processes in hydrogen with an L basis
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A new method for calculating atomic multiphoton processes is presented here with application to
two-photon processes in atomic hydrogen. The I. -basis-set approach exploits explicit expansion of
the Coulomb radial function and resolvent in terms of Pollaczek polynomials and functions to
achieve compact expressions for two-photon radial transition amplitudes. This allows efficient cal-
culation of the Bethe logarithm even for highly excited hydrogenic states and two-photon ionization
amplitudes near and above the one-photon ionization threshold. Above the one-photon threshold,
the complete-basis limit of the highly oscillatory amplitude is computed by applying the epsilon al-
gorithm carefully to a sequence generated from only 10—15 basis functions. The approach is ex-
tended below the one-photon threshold by splitting the transition amplitude into a sum of two for-
mally divergent but geometriclike series, whose analytic continuation is realized by the epsilon algo-
rithm to yield a clearly defined and efficient interpolation between the resonances at highly excited
Rydberg states. This suggests a new I. -basis formulation of the quantufn-defect method. The ex-
tension to complex basis functions and many-electron atoms in strong fields is discussed.

I. INTRODUCTION

The desire to extend the basis-set methods so successful
in quantum chemistry in calculating the properties of
bound systems to ionizing and reactive processes has
motivated the development of a variety of square-
integrable- (L -) basis formulations of time-independent
scattering theory. When, as is usually true, the systems of
interest behave asymptotically as two, or perhaps three,
fragments scattering, the advantages of such an approach
are evident, for the really difficult problem of describing
the structure of the fragments accurately enough can be
tackled directly with basis-set methods and the results
coupled to and projected on the scattering continuum in a
transparent fashion. It is, moreover, not surprising that
L -basis methods have been applied with most success to
resonances and photoionization, which involve the transi-
tion from bound states to the continuum.

The challenge to extract full scattering information
from a discretization of the appropriate Hamilton opera-
tor obtained by truncation of an L basis of a Hilbert
space demanded the development of a thorough
mathematical understanding of the continuum in function
space. While the now well-established concept of pseudo-
states' and the techniques of equivalent quadrature
and Stieltjes imaging '" exploit the discretization directly
as interpolating the continuous spectral density, the coor-
dinate rotation methods' ' realize the function-theoretic
description of a resonance as an L, , and hence I-
expandable, state belonging to a dilated Hamiltonian. '

Still other approaches such as the J matrix ' ' and cer-
tain uses of the Schwinger variational principle combine
a representation of the long-range part of the Hamiltonian
in a complete basis with truncation of the short-range rest
to a finite subject.

Most of the methods mentioned experience trouble at
thresholds and when the interaction to be represented in

the I. basis is too long-ranged. This paper deals with a
prototype of such difficulty —with the dipole interaction
in atomic multiphoton processes. As simple, but nontrivi-
al, test cases of physical and recent theoretical in-
terest, the two-photon processes of the Bethe-
logarithm ' contribution to the Lamb shift and two-
photon ionization near, or above the one-photon threshold
in the hydrogen atom are studied. By applying and ex-
tending the discovery of Yamani and Reinhardt of an L
discretization of the radial Coulomb Hamiltonian in a
special Laguerre-Slater basis, extremely compact formulas
are obtained for the double radial integrals on which the
two-photon processes depend. En practice, the Laguerre-
Slater basis strikes the right compromise for the efficient
calculation of atomic multiphoton processes. Because the
radial-integral formulas exhibit a transparent dependence
on both the basis-set parameters and on the electron ener-
gy and angular momentum, it is almost straightforward,
for instance, to remove the singularities explicitly that in-
hibit the calculation of the Bethe logarithm and to extra-
polate from the information possessed by the first dozen
functions to a complete-basis converged approximant of
the two-photon ionization cross section. Yet, since the
basis functions are linear combinations of simple Slater
functions, there is no difficulty coupling the representa-
tion of the electronic continua to a traditional atomic-
structure code to extend what is learned from hydrogen to
other atoms.

The plan of this paper is first to satisfy the reader in-
terested in the physical results and how the new methods
introduced here compare with other recent calcula-
tions. ' ' After Sec. II presents the calculation of the
Bethe logarithm starting with the very compact analytical
form of the ac Stark shift of arbitrarily highly excited
Rydberg states afforded by the correct choice of
Laguerre-Slater basis, Sec. III gives a new, computational-
ly efficient scheme for computing the two-photon ioniza-
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tion of those states, with special attention to the difficult
region just around the single-photon ionization threshold.
The success of the two prototype calculations, however,
stems from a thorough mathematical analysis of the
Laguerre-Slater basis representation of the attractive
Coulomb spectrum by Pollaczek functions, ' ' which is
given in detail in Appendix A. The optimal form of the
ac Stark shift and the current treatment of high-energy
divergence in the Bethe logarithm, for example, require an
extensive use of the recursion relations and asymptotic
form of the Pollaczek functions, while an understanding
of their various branches allows using Klarsfeld and
Maquet's convergence-acceleration idea to generate a
parametrization of the two-photon ionization cross sec-
tion which converges rapidly and passes smoothly
through the one-photon threshold. Thus, Appendix A
summarizes and extends the work of Yamani et al. to
include the useful special cases and develop efficient, reli-
able algorithms to serve as the mathematical foundation
of the two applications in Secs. II and III.

The final discussion in Sec. IV assesses what can be
learned from the prototype calculations which is of use
for many-electron atoms and large field strengths. The
major lesson is the importance of careful preparation of
slowly converging matrix elements in extrapolating from
a modest basis set to completeness. The success of the ep-
silon algorithm' ' " in analytically continuing two-photon
transition amplitudes below threshold, for example, sug-
gests a new, less empirical approach to quantum-defect
theory. Moreover, the transparent dependence of the
Coulomb resolvent matrix on the Slater exponent of the
basis set opens a path of convergence acceleration of com-
plex basis function' ' calculations. Hence, the work
presented in this paper can be seen as a contribution to the
effort to endow L -basis-set methods with extrapolation
possibilities as rich and as efficient as those enjoyed by
other numerical approaches.

II. BETHE-LOGARITHM-SUM CONTRIBUTION
TO HYDROGENIC LAMB SHIFT

Although most of the terms of the lowest-order expan-
sion for the Lamb shift in hydrogen can be determined
analytically, the Bethe logarithm, which contains the non-
relativistic contribution to the bound electron s self-

energy, must be approximated numerically. Following
Bethe and Salpeter, or the more careful argument of
Erickson and Yennie, the Bethe logarithm can be ex-
pressed either as an integral over virtual transitions from
the perturbed state to a11 1ower energy states and back,
that is, as ac Stark shifts, corrected for any divergences,
or, equivalently, as an expectation value of a logarithm of
the nonrelativistic Hamiltonian. Since both forms require
bound-state expectation values of fairly simple operator
functions of the radial Coulomb Hamiltonian, they pro-
vide an ideal test of the effectiveness of the L -basis rep-
resentation of the Coulomb spectrum introduced by
Yamani and Reinhardt. After briefly reviewing the form
of the Bethe logarithm and its place in the lowest order of
the Lamb-shift expansion, this effectiveness is demon-
strated by using the basis set to express the ac Stark shift

of any Rydberg state in terms of very few of the Pollaczek
functions defined in Appendix A. Then, putting the de-
tailed knowledge of the asymptotic and analytic form of
those functions which is derived and summarized in Ap-
pendix A to work to smooth singularities and remove
divergences, the Bethe logarithm is calculated in two
ways. First, the regularized self-energy integral over the
frequency-dependent Stark shifts is estimated by Gauss-
Chebyshev quadrature and then the logarithmic operator
form, from which the Bethe logarithm gets its name, is
approximated using the Gauss-Po11aczek quadrature of
the Coulomb spectrum discovered by Yam ani and
Reinhardt and derived for the case needed here in the ap-
pendixes. Although the logarithmic dependence of the
self-energy integrand hinders the convergence with an in-
creasing number of weights and points in both ap-
proaches, applying the epsilon convergence-acceleration
algorithm to a sequence of quadrature estimates finally
yields accurate values for the Bethe logarithm in good
agreement with those of Maquet and Klarsfeld.

To lowest order, the radiative correction, or Lamb shift,
of the energy of a Coulomb bound state for nuclear
change Z, of principal quantum number n, orbital angu-
lar momentum I and its projection ml, and total electron-
ic angular momentum j =1+—,', takes the form
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where H, is the nonrelativistic Coulomb Hamiltonian, or
equivalently, as an integral
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over frequency-dependent ac Stark shifts
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with all energies in Hartree atomic units. While the ——,

comes from the vacuum polarization and

Cij ——+1/(j+ 2i }, for j= l+ 2i from the a/2~ co~ection
to the Bohr magneton, the rest of the terms account for
the self-energy of the bound electron. The nonrelativistic
part of the self-energy was defined by Bethe " in terms of
the logarithm of an average excitation energy Ko, and can
be expressed as the logarithmic expectation value
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where 6,+ is the resolvent of H, . For /~0, the linear
counterterm, which can be included in the integral and
understood as a mass-polarization correction, since
(nlml ip i

nlmI)=Z/'n, is sufficient to make the self-
energy finite. In s states, on the other hand, the electron
comes very close to the nucleus, giving rise to the relativ-
istic shifts of in the first set of large parentheses in Eq. (1)
and requiring, in Bethe's somewhat ad hoc procedure, a
logarithmic cutoff between these relativistic terms and the
upper limit of the nonrelativistic self-energy. Although
considerable effort has subsequently been spent ' to
clear up inconsistencies in Bethe's argument, the naive
picture of the radiative correction as a sum of second-
order perturbations, or virtual transitions, made finite by
physically plausible counter terms, is appropriate to the
atomic-physics context of this paper. For instance, while
the principal part in the frequency integral in Eq. (2b), or
the absolute value in the logarithm in Eq. (2a), accounts
for the real part of the singularities of the integrand at ac-
tual intermediate bound states, the imaginary part would
give the natural linewidths for deexcitation. ' The goal
of the rest of this section is, then, to show how choosing a
certain I. -basis-set expansion can give formulas so simple
and general for the ac Stark shifts that the Bethe-
logarithm contribution to the Lamb shift can be calculat-
ed, even for highly excited Rydberg states.

+, I'I~(r)GI+(», »';E)I'I (r')
6,+(r, r';E) =

l, pn
P'T

(4)

A. ac Stark shift of hydrogenic states

Computing the second-order perturbation sum 6„I(co)
involves integration over the four angles and the two ra-
dii. The angular integrations are performed with the stan-
dard techniques of, first, expanding the Coulomb Green's
function in partial waves,

with pl+"= —ill + 1[d/d» —(1+1)/»] and p
'+'

=iv'l + 1[d /d» + ( l + 1)/»]. In this way,

~,1(Idi) [k,l I ~1(CO)+ b I I i(I0)]/(21 + 1 ), (7)

where

5n I L (co) = f d» f d»'itin*(»)p GL+(», »', En —co)

Xp' g'„(»') (8)

contains only the radial wave function g„(») of the state
being perturbed, and radial operators, where, naturally,
when / =0, the I —1 term is absent.

In a similar, but less standard fashion, the two remain-
ing integrals can be reduced to a sum of a few terms by
choosing the appropriate basis set for each radial coordi-
nate. As described in detail in Appendix A, the matrix
elements of the radial Green's function in the Laguerre-
Slater basis,

IP'(» A)=(A»)'+'e ~" 'L "+'(A»),

have the very simple form

Ap„' (x;)).)q„+ (E;A, )
6„+„'(E;d(, )=—

2(E+d(, /8)(n +1)2I+1(II +1)2!+I
where p„and q„+ are the Pollaczek polynomials and
functions and ( n)I are Pochhammer symbols with
(n)I —= I (n+l)/I (n) and (n)0 1. Wh——ile not difficult to
calculate, the Pollaczek functions include all the spectral
properties of the resolvent, with simple poles at the bound
states and a branch cut along the continuum. The radial
momentum operator is also represented economically in
the basis as a narrow-band matrix whose only nonzero ele-
ments are

and then using the signer-Eckert theorem on the
momentum as a vector operator,

p„",+'=p,',+"=I(Ii +1)2I+3v'I +1/2

(9)

(
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to reduce the matrix element between two typical radial
functions, f and g, to a radial expectation value of an ef-
fective radial momentum operator as

—l' p —ll= f drf(r)p ), (v),

p„'+ 2'„' ——pn'n'+2 ———I' (ll —I )2I+3v'I + 1/2 ~

The most important simplification comes, however, by
choosing the basis-set exponent 1, equal to 2/n to coincide
with the exponential decay of the radial wave function,
for this makes f n idrectly proportional to the basis func-
tion Pn (»;2/n), where n„=n —I —1 is the state's radial

quantum number. Putting the basis representations of the
wave function, momentum operator, and resolvent togeth-
er at E=E„—co with E„=—A, /8 then gives
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Further simplification follows by recurring with Eq. (A10) and employing the Wronskian of Eq. (A18) to replace the
n, +2 terms with n„+1 and isolate the term responsible for the linear divergence to give

+l+1 +l+1 1+1 I+1
Zi(1+1) (qn qn —i )(pn pn —1 )

6) n(n+1+1) (n„+1)pi+i

T

[(n+1 —1)q+ ' (—n l)q—++i'][(n+1 —l)p„' —(n —l)p„+'i]
~,l, l —1

CO n (n„+ 1)@i+i n 2

Note how the sum of the two 1/n terms in Eq. (11) is of
just the right form to cancel the counter term linear in 0
in Eq. (2b).

Before subtracting out the remaining logarithmic diver-
gence, it is computationally more efficient to reexpress the
Pollaczek functions of angular momentum 1+1 in terms
of functions of angular momentum l. This can be done
using the definitions of the Pollaczek functions as hyper-
geometric functions in Eqs. (A8) and (A17) with some
moderately tedious manipulations of 2F1 s with contigu-
ous parameters and gives

z Pn, l, l. Qn, !,L Z I)
& IL(~)=, ' ' ' ' +

2n co(n, +1)2i+i(E Ei )1& —n co

(12)
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+
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In addition to subtracting out the divergent high-energy
terms it is of advantage to map the integration interval
onto a finite interval and to smooth the poles at real inter-
mediate bound states to be avoided in taking the principal
value. Choosing the integration variable y = T/n
=(1+2n co) '~ &[0,1] for coE[O, ao) obviates

thermo

integrable singularity mentioned above Eq. (14) for s
states. The Bethe logarithm so transformed then takes the
orm

I

that p„' = [(n +1)2i+ i/(21 + 1)!][1+0(co ')] and
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'
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This determines the troublesome terms in the integrand of
Eq. (2b) to be

where 1& is the greater of 1 and L and
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for

In Eq. (12), the factor with Ei = —1/21 &, denoting the

lowest bound state of angular momentum 1& —1, stems
from a pole in q„+' ' at Ei for L =1—1 which is absent
from q„+, but is canceled by a zero in the numerator for
I.=1+1.

This compact form, which includes the formulas given

by Maquet ' for n &4 as special cases, has two distinct
advantages. Equipped with the algorithms for p„and q„

l

given at the end of Appendix A, 6„l L can be calculated
efficiently and accurately, while the detailed analysis of
the Pollaczek functions at the beginning of Appendix A
eases the study of the frequency and quantum-number
dependence. Thus, the integrand of Eq. (Zb) is now in
simple enough form to allow numerical integration on a
fine grid after explicit separation of any singular behavior.

B. The Bethe logarithm by numerical integration

To prepare the Bethe-logarithm integrand for numeri-
cal integration, the logarithmic divergence in Eq. (2b) can
be studied in terms of the large-co behavior of the Pollac-
zek functions appearing in Eqs. (11) or (12). Taking the
limit T +no and g'~ —1 in —Eqs. (A8) and (A28) shows

Pn, l, L Qn, I,L 2

2(np+1)/a+i(l') —T ) 21+1 (16)

1 P„ i Lmi(E„)
~n l vL . Re In l Ly-~„' ' v(n„+1)2&~,(

' v1) )

For L =1—1 and v=1, the factor v —1 is canceled by a
zero of ~l, and a limit must be taken. Before subtracting
out the poles, it is useful to examine how the integrand in
Eq. (15) behaves as y goes to zero. Although the in-
tegrand has already been made finite by adding the two
extra terms in Eq. (16) to the Stark shift, using Eqs. (A8)
and (A28) to study the y~O limit of F„ i exposes a y lny
dependence for l =0 which would hinder the convergence

(17)

From the discussion in Appendix A2, the poles in the
integrand at any intermediate bound state are hidden in
the Pollaczek functions of the second kind and the resi-
dues can be extracted with the help of Eqs. (A25) —(A26).
The residue of the integrand at an intermediate state of
principal quantum number v is thus

i n, l(~n, , l, ,I+1+i n, l, , l —1»(21 + 1»
where
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of a numerica1 integration. This was removed along with
the residues at the intermediate state poles by defining a
smoothed function,

+ 85ion (1—y) "

&& I 1+2ny[lny+g(4n +2)—f(2)] I . (18)

+5to[2+ln(n )] (19)

The third, 51o, term in Eq. (18) subtracts the constant and

y lny dependence of I'„ i as y —+0 to produce the 2 in Eq.
(19).

The results for the 1s Bethe logarithm obtained from a
Gauss-Chebyshev quadrature (weight function
[y (1—y)]' ) for 2 points and weights are given in the
second column of Table I. Evidently, the remaining non-
analytic, logarithmic behavior of the integrand at the end
points is responsible for the somewhat disappointingly
slow convergence with respect to the number of quadra-
ture abscissas. The situation is far from hopeless, howev-
er, for the integrand is a smooth function and the Che-
byshev abscissas are equally spaced in the variable

TABLE I. Gauss-Chebyshev quadrature of the Bethe Ioga-
rithm for the 1s state of hydrogen. Quadratures of the regular-
ized self-energy using 2J points and weights are listed as eo. The
further columns display the Pade approximants generated by the
epsilon algorithm (Ref. 34) from that sequence of quadratures.

~o

(quadrature w&th

2J points)

3.203 282 116
2.994 271 130
2.998 513 836
2.985 310010
2.984 428 371
2.984 203 771
2.984 147 375
2.984 133261
2.984 129 733

ej
(Aitken's algorithm)

2.988 350 757
2.981 290 184
2.984093 648
2.984 126 994
2.984 128 467
2.984 128 550
2.984 128 556

Now the integral can be split in the usual way into a
smooth part and an explicitly integrable singular part, giv-
mg

In[2Z Xo(n, I)]

+n 1+ pn I v ln pv —1 +pz

0=2cos 'vy, suggesting that convergence-acceleration
techniques could work well. The remaining columns in
Table I exhibit the rapid improvement ending near the
single precision of the 48-bit (binary-digit) machine used

by applying the epsilon algorithm to the sequence of
quadrature approximants in the first column. Recall that
the epsilon algorithm builds a table of Pade approximants
Egk with the recursion

6+1=6+—I+ 1 i(6+ —6» (20)

starting with all the e'
1 defined to be zero and Ieg the

sequence whose convergence is to be accelerated. It is in-
teresting that, while the quadrature approximations in
Table I bound the correct value from above, the second
approximants ez, corresponding to Aitken's algorithm,
approach even closer but always from below. Unfor-
tunately, this straddling of the final value is peculiar to
the 1s state.

Bethe-logarithm values obtained in the same way for
several hydrogenic states with principal quantum number
up to 25 and angular momentum up to 7 are listed in
Table II and compared with other calculations. The num-
ber of significant figures reported indicates the stability of
the last three epsilon-algorithm approximants, all of
which include the 512-point quadrature. Although the
number of intermediate states to be subtracted and very
diffuse Slater exponents of the highly excited state ap-
parently spoil the accuracy, reasonably accurate calcula-
tions even for principal quantum numbers as high as 100
should be reasonable in double precision.

The Bethe-logarithm values in Table II compare favor-
ably with the careful computations of the lowest eight
states of Maquet and Klarsfeld, who isolated the loga-
rithmic dependence of the ac Stark shift on the frequency
and integrated the rest with only a 24-point quadrature.
With the more compact general formula in Eq. (12) here
for the integrand, it would be possible to use the ~q„ver-
sion of Eq. (A28) to subtract off both the bound-state
poles and the ln(1 —g ) terms exactly for arbitrary states
and integrate the rest with a modest number of points to
high accuracy. Yet, the remaining integral with the loga-
rithmic terms is still too complicated in the general case
to be computed analytically, although using ln(y) as an in-
tegration variable in Eq. (15) would concentrate the quad-
rature points where they need to be. Thus the unorthodox
use here of the epsilon algorithm to extract converged re-
sults from the sequence of struggles of the direct quadra-
ture to deal with the logarithmic singularity is computa-
tionally less than optimal, but circumvents a good deal of
tedious algebra while demonstrating the power of the a1-
gorithm.

C. Equivalent quadrature of the Bethe logarithm

1

2
3

2.984 068 741
2.984 128 359
2.984 128 542
2.984 128 556
2.984 128 557

2.984 128 542
2.984 128 557
2.984 128 557

2.984 128 557 Instead of numerically integrating for the Bethe loga-
rithm following Eq. (2b), one could just as well use the
spectral representation of the Coulomb Green's function
in Eq. (3) and perform the cutoffs at large frequency ex-
plicitly to arrive at the spectral representation of Eq. (2a)
given originally by Bethe. Despite its innocent appear-
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ance, however, this form of the Bethe logarithm with its
sum and integral over the Coulomb spectrum is by no
means straightforward to calculate accurately. Yet,
knowing that truncating the basis-set expansion of the ra-
dial Coulomb Hamiltonian generates the Gauss quadra-
ture of such spectral integrals detailed in Appendix A2
makes it hard to resist trying the quadrature on the spec-
tral form of the Bethe logarithm, even though the func-

l

tion to be integrated is not well behaved.
To this purpose, the Pollaczek polynomials and func-

tions in the transformed ac Stark formula in Eq. (12) were
put together in accordance with Eq. (A30) as Green's ma-
trix elements, which were then approximated by an X-
term truncated basis as in Eq. (A33). This truncated spec-
tral representation can then be integrated with respect to
co to g1ve

n n„+1 21+1 En
(21)

where

cY
Pn, / j,1 ~1 (n +I + 1 )4 nj nr4n„—1j

TABLE III. Pollaczek equivalent quadrature of hydrogen ls
Bethe logarithm. Quadratures of the spectral representation, of
the Bethe logarithm using 2J points and weights generated by di-
agonalization of the Coulomb Hamiltonian in a basis of 2~

Slater-Laguerre functions are listed as ep. The further columns
display the Fade approximants obtained by the epsilon algo-
rithm |',Ref. 34) from that sequence of quadratures.

- 3

5
6
7
8
9

&o

2.0023
2.3952
2.6427
2.7906
2.8762
2.9247

3.2642
3.0643
3.0106
2.9937
2.9878

E4

2.9818
2.9842
2.9843

2.9843

N
@n,lj,!—I (+r+ I)gn„,j ~rWn —1,j

are the components of the momentum matrix of Eq. (9)
operating on the jth eigenvector corresponding to the
eigenvalue E& of the %&X matrix approximation to H~
obtained by using the first X basis functions of Eq. (A2).
While the last term in Eq. (21) accounts separately and ex-
actly for the / —1 bound state at EI, the sum over pseudo-
states omits the exactly represented state to be perturbed
trivially and approximately omits the apparent pole at
Et+1 by a vanishing of that term in Eq. (22).

Because the other pseudostate poles cannot mimic the
effect of intermediate states exactly enough and the loga-
rithmic integrand is not well represented by a polynomial,
this quadrature approach does not converge as nearly as
well. Table III illustrates the equivalent quadrature esti-
mates and their epsilon-algorithm approximates for the 1s
Bethe logarithm. Note, for example, how the e4 approxi-
mant obtains three-figure accuracy from the 8-, 16-, and
32-point quadratures and that the whole epsilon tableau
gives a reliable picture of the convergence behavior. Since
an equivalent quadrature calculation requires only the
eigenvalues and eigenvectors of the Hamiltonian in a fi-
nite I. basis, this moderate success suggests its use on
systems where more accurate representations of the spec-
trum are too difficult to obtain.

III. TWO-PHOTON IONIZATION OF HYDROGEN

The compact form in Eq. (10) of the ac Stark shift of
arbitrary hydrogenic states achieved by the basis-set ex-
pansion suggests trying the same approach on the more
demanding and more interesting two-photon matrix ele-
ments which give the transition amplitude for two-photon
ionization. The demanding aspect appears when the ab-
sorption of the first photon produces a continuum inter-
mediate state which then absorbs an additional photon,
for then none of the functions in the second integration in
the matrix element decay and the integral converges only
through the destructive interference of two waves of dif-
ferent frequency. When the photon is somewhat redder
and the intermediate slightly bound, the situation is in a
certain sense even worse, for the intermediate wave func-
tion dies very slowly while the amplitude varies wildly
with the frequency. Recently, Aymar and Crance dealt
with the intermediate continuum directly by integrating
the long-range form of the intermediate wave function
iteratively by parts to generate an accurate asymptotic ex-
pansion. Maquet and Klarsfeld, on the other hand, ex-
tended their Sturmian-expansion representation of the in-
termediate Green's function from bound intermediate en-
ergies, where it converges, above the one-photon threshold
to free intermediate energies, where it does not, but where
the epsilon algorithm applied to the partial sums app'roxi-
mates the appropriate analytic continuation accurately
enough, except for some difficulty just above the thresh-
old.

This section presents a new approach to calculating
multiphoton transition elements, which proves to be com-
petitive with those of Aymar and Crance and of Maquet
and Klarsfeld with the advantage of using a basis much
more closely related to the functions common to atornie-
structure calculations. After first reminding the reader of
the dependence of the differential photoionization cross
section on a few basic radial integrals, those radial in-
tegrals are expressed in the basis set as formal infinite
sums containing products of Pollaczek functions. Al-
though at light frequencies where the intermediate state is
free, these sums converge no better than the correspond-
ing radial integrals with their oscillating integrands, the
results of the detailed analysis of the asymptotic proper-
ties of the various branches of the Pollaczek functions in
Appendix A can be exploited to split the formal sums into
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geometric-series-like components on which the epsilon al-
gorithm works very well. In addition, the division of the
intermediate Pollaczek function at slightly bound energies
into a background and a resonant part leads to a very effi-
cient parametrization of the widely varying transition am-
plitudes by smoothly varying functions.

dcr2/dQ=~co
I T/p I

7.3170&&10 m W (23)

A. Reduction of cross sections to radial integrals

In the lowest order in the dipole interaction of light of
frequency co with an atom, the differential cross section
for two-photon ionization can be defined as

is the transition amplitude from a bound state (n, l, rnI ) of
energy E„,dipole coupled (dip) to an intermediate state of
energy E; =E„+co, to a final photoelectron of energy
Ef——E; +cu, in direction kf . The numerical factor in Eq.
(23) converts from Hartree atomic to SI units.

Assuming, as is usually the case in experiments, that
the initial bound state is a statistical mixture of angular
momentum projections, but that the light has polarization
I(,, with A, =+1 for circularly polarized light propagating
along the laboratory z direction or A, =O for linearized po-
larized light propagating along the x direction, leads to an
expansion of the differential photoionization cross section
in the first three even Legendre polynomials (L =0,2,4):

where, for hydrogen

Typ= (E/~k/ I
dipG+(E; )11p

I
nlrnI )

dcr2(n, l, co,&)/dQ= QPt(c os e)d t( nl, coA) /4m.
L

"4' with"
I

(25)

mo 2L+1 —1 lf tfL
dt (n, l, co, A) = g g g g (2lI+ 1)' (21/+ 1)'

4 2l+1
lf t' l

Lr' Ll L Li' Li I 1 1 L;
—2 2 0 l l' l ' A, A, —2X. f f

r

lfL; l l'L' l
&&rI ' (n, co)(2L +1)

& & 2&
[r~ ' (n, co)]*, (26)

where

lfL; l ' lfl;l
I 1 I;

'(n, co)= g 1 l L
't '(n, co)f

l

(27)

proceeding to the two possible final angular momenta is
contained in the angular dependence of the differential
cross section, in d2.

B. Calculation of the radial integrals

dcr2 "/dQ(n, s,co)=co
I
t I'"(n, co)

I

sin 8/128, (29)

are recouplings of the radial transition matrix elements, in
the notation of Eq. (6),

t '(n, co)= co '(E/lt —Ip 'GI,+(«)p '
I
nl) . (28)

For the s initial-state calculations presented below, the
form of the three expansion coefficients dt simplifies
greatly, for the intermediate must be a p state —giving
only one term in the sum in Eq. (27) with L; =I/. Indeed,
for circularly polarized light, this allows only d pho-
toelectrons and lets the cross section be written most sim-
ply as

After this introduction on the dependence of the pho-
toionization cross section on a few radial transition matrix
elements, a new, efficient way of calculating them using
the same basis set as for the shift can be presented. Just
as for the ac Stark shift in Sec. II A, the Laguerre-Slater
basis of Eq. (A2) generates the narrow-band matrix of Eq.
(9) for the radial momentum, the resolvent matrix of Eq.
(A30), and, for the special choice of the exponent,
A=2/n, in,cludes the initial state exactly as the member of
the basis, P„(r;2/n), where n„=n —l —1 is the radiall

T

quantum number. Then, expanding the final continuum
radial wave function in accordance with Eq. (A5) gives
the formal sum for the transition element,

dp"(n, s,co)=cr2h" neo(It' 'I /36——+ It" 'I /90),
d2" (n, s,co) =neo[

I
t ~'

I
/63 —R (t'e't II")/9V 2],

d4"(n, s, co)=marco
I
t t"

I
/35 .

(30)

now in Hartree atomic units, without the numerical factor
of Eq. (23).

With linearly polarized light, on the other hand, both s
and d photoelectrons are emitted and the Legendre poly-
nomial expansion is still the most useful:

t /' (n, co)
l l;l

[gp (Eg)] (2lt. +1)!
CO 7l

lf lfl,. + l,. l,.l
p.'(xy)p" G„„'«;)p„' „

nt n; z' (nf + )2' 1[(+r+n1)2l+11
(31)

Note that the only information on the relative phase of where x~ (E~+E„)/(E~ E„) in accor——dance —with Eq.
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lf +1,.
(AS) and the A=, 2/n dependence of p„f and G„„' is
suppressed. Since, by Eq. (9), the momentum matrices

l,.lp„'„vanish unless n'=n or n+2, only a single infinite
sum remains in Eq. (31). To avoid needlessly lengthy for-

mulas, a discussion of the particular case (lf, l;, 1)=(d,p, s)
suffices to illustrate the method. Evaluating the momen-
tum matrix for this case then displays the single infinite
sum as

30' 2[40+'«f )l*
t"&'(n, n)) =

1/2 2n
(p. —p 2)[ GJ„~(n +2)(n + 1) Gj+—„~ 2(n —2)(n —1)],

j=o
(32)

where any terms with negative indices here, and in the expressions to follow, are defined to be zero. When going further
to introduce the greater and/or lesser product in Eq. (A30) for the resolvent matrix, it is expedient to use the Wronskian
of Eq. (A18) to reach the compact form

2V."„-i—a.", 3)

n+1

with x; =(E;+E„)/(E; E„). The la—st term corrects for
the cases in the sums where the greater and/or lesser rule
is violated.

Looking at Eq. (33) and knowing from Appendix A
that the Pollaczek polynomials and functions are easily
calculated, one might ask why the work is not now over.
The trouble comes when the intermediate energy E; is not
significantly negative, as must be expected from the oscil-
latory transition element being approximated in the ex-
ponentially decaying basis functions; the infinite sum in
Eq. (33) does not converge. From Eqs. (A17a) and
(A27a), for positive E;, the product p~"qJ.+~=0(j ) for
large j, whence the terms in the infinite sum acquire con-
stant amplitude with increasing j, albeit with a wildly
enough oscillating phase to ensure convergence in some
appropriate sense. That the partial sums show no sign of
convergence occurred also in Klarsfeld and Maquet's
Sturmian expansion, and their experience suggests that
the epsilon convergence-acceleration algorithm so useful

(33)

l

in improving the quadrature estimates of the Lamb shift
in Sec. II can save this otherwise dismal situation. Now,
the sort of sums where the epsilon algorithm works best
are geometriclike series in a complex variable z, at or even
outside the radius of convergence, for the algorithm gen-
erates a Pade approximant in z to the analytic continua-
tion of the formal series. Here, this geometriclike
behavior can be mimicked for positive E by using Eq.
(A24) to split pj (xf ) into [qj+ (Ef ) qj (Ef)]/
2mipd(Ef ) so that for large j, the summands are dominat-
ed in accordance with Eq. (A17a) by the asymptotic
behavior (/fan;)j

' for the qj+ sum and (g;/gf) for the

qj
" sum, with g; and gf the appropriate energy-

dependent complex numbers of unit modulus defined
below Eq. (AS). Table IV displays the epsilon-algorithm
approximants to the two parts obtained by splitting the
infinite sum in Eq. (33) for the ionization of the ls state
with a frequency large enough to proceed through a
slightly unbound intermediate state and using only the

TABLE IV. Convergence acceleration above the one-photon threshold. The first row gives the par-
tial sums up to 15 terms of the two parts of the basis-set expansion of the two-photon ionization of the
1s state of atomic hydrogen with circularly polarized light of frequency 0.51 a.u. , as discussed below
Eq. (33) in the text. The further rows display the Pade approxunants, [14—k/k] generated by the epsi-
lon algorithm (Ref. 34) from the sequence of partial sums of 1S and fewer terms.

Iteration

g (q„+"—q„+ )q+~/(n + 1)
n=0

Approximants to

g (q„d—q„'2)q„+'/(n +1)
n=0

—36.585 594 72 —l.313247 628i
—68.908 80S 73—69.964 39943i
—69.290 317 38—70. 137098 55i
—69.295 932 01—70. 136203 10i
—69.296 052 70—70. 136 11689i
—69.296 056 58 —70. 136 11124i
—69.296 056 77—70. 136 11072i

178.632 027 6—172.885 722 9i
47.985 140 67 —197.207 182 Si
49.202 043 92—197.583 533 9i
49.173 688 78 —197.573 879 6i
49.174934 31—197.573 773 Oi

49.174 946 35—197.573 675 Si
49.174 869 37—197.573 811 8i
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TABLE V. (a) Two-photon ionization of ns states of atomic hydrogen above the one-photon threshold by circularly polarized hght.
Sources were a, this work; b, Aymar and Crance (Ref. 23); c, Klarsfeld and Maquet (Ref. 26). Cross sections in cm/W, where (—44)
indicates a factor of 10 . (b) Cross section for ionization by linearly polarized light (this work). (c) Asymmetry parameter d2 for
linearly polarized light.

A, /n

20

300

911.27

Source

1.10(—44)
1.10(—44)
1.11{—44)
3.02( —40)
3.02( —40)
2.99(—40)
3.219{—37)
3.22{—37)
3.33(—37}
2.028( —36)
2.03( —36)
z.oz( —37)
8.534( —36)
8.54( —36)
8.52( —36)
2.786( —3S)
2.79( —35)
2.77( —3S)
7.639{—35)
7.64( —35)
7.64( —35)
1.846( —34)
1.85( —34)
1.85( —34)
4.057( —34)
4.06( —34)
4.412( —34}
4.41{—34)

8.8( —42)

2.10S(—37)
2.1O( —37)
2.09( —37)
1.957( —34)
1.96( —34)
1.95( —34)
1.154( —33)
1.15( —33)
1.15( —33)
4.S30(—33)
4.53( —33)
4.50( —33)
1.374( —32)
1.37{—32)
1.38( —32)
3.486( —32)
3.49( —32)
3.46( —32)
7.765( —3Z)
7.77( —32)

1.566( —31)
1.57( —31)
1.686( —31)
1.69( —31)

n=3

(a)
4.Z( —40)

9.23( —36)
9.24( —36)
9.20( —36)
7.485( —33)
7.39( —33)
7.46{—33)
4.134(—32)
4.14( —32)
4.12{—32)
1.572( —31)
1.53( —31)
1.52( —31)
4.378{—31)
4.38( —31)
4.37( —31)
1.055( —30)
1.06( —30}
1.05( —30)
2.239( —30)
2.24( —30)
2.23( —30)
4.317(—30)
4.32( —30)
4.625( —30)
4.63( —30)

1.30( —34)
1.30( —34}
1.30{—34)
9.13(—32)
9.15( —32)
9.10( —32)
4.784( —31)
4.79( —31)
4.77( —31)
1.692( —30)
1.69( —30)
1.69( —30)
4.680( —30)
4.68( —30)
4.66( —30)
1.094( —29}
1.09( —29)
1.09( —29)
2.264( —29)
2.27( —29)
2.3( —29)
4.272( —29)
4.30( —29)
4.567( —29)
4.57( —29)

n=5

9.78( —34)
9.78( —34)
9.75( —34)
6.02( —31)
6.02( —. 31)
6.00( —31)
3.032( —30)
3.03( —30)
3.oz( —3o)
1.042( —29)
1.O4( —29)
1.04( —z9)
2.821( —29)
z.8z( —z9)
2.81(—29)
6.486( —29)
6.49( —Z9)
6.4( —29)
1.325( —28)
1.33( —28)

2.474( —28)
2.48( —29)
2.642( —28)
2.65( —29)

4.92( —34)
4.93( —34}
4.91(—34}
2.71(—30)
z.71(—3o)
2.70( —30)
1.33( —29)
1.33{—29)
1.33( —Z9)
4.49( —29)
4.50( —29)
4.4( —29)
1.201(—28)
1.20( —28)
1.z( —z8)
2.74( —28)
2.74( —28)

5.55( —28)
5.56( —28)

1.O32( —27)
1.03( —27)
1.1o( —z7}
1.10(—27)

20
100
300
400
500
600
700
800
900
911.27

1.61(—44)
4.090( —40)
3.668( —37)
2.151(—36}
8.493( —36)
2.619(—35)
6.826{—35)
1.577( —34)
3.332{—34)
3.608( —34)

1.27( —41)
2.605( —37)
1.991(—34)
1.1O7( —33)
4.156( —33}
1.216(—32)
2.997( —32)
6.516(—32)
1.287( —31)
1.383( —31)

(b)
5.7( —40)
1.05( —35)
7.144( —33)
3.795( —32)
1.364( —31)
3.830( —31)
9.080( —31)
1.903( —30)
3.630( —30)
3.885( —30)

1.38( —34)
8.48( —32)
4.33( —31)
1.508( —30)
4.125( —30)
9.564( —30)
1.967( —29)
3.694( —29)
3.947( —29)

9.9{—34)
5.53( —31)
2.75{—30)
9.37{—30)
2.52( —29)
5.784( —29)
1.179(—28)
2.199(—28)
2.348( —28)

4.9( —33)
2.49( —30)
1.22( —29)
4.09( —29)
1.09( —28)
2.49( —28)
5.06{—28)
9.41(—28)
1.00( —27)

20
100
300
400
500
600
700
800
900
911.27

4.32( —44)
8.31(—40)
2.814( —37)
6.761(—37}

—2.400( —37)
—7.045( —36)
—2.847( —35)
—7.610( —34)
—1.583( —33)
—1.697( —33)

2.75( —41)
9.84( —38)

—2.014( —34)
—1.168(—33)
—3.887( —33)
—8.939(—33)
—1.489( —32)
—1.588( —32)

1.456( —33)
S.SO( —33)

(c)

—8.20( —36)
—6.811(—33}
—2.276( —32)
—3.261( —32)

3.671(—32)
3.615(—31)
1.273( —30)
3.309( —30)
3.641( —30)

—1.67( —34)
—3.13(—32)

4.50( —32)
7.458( —31)
3.372( —30)
1.040( —29)
2.590( —29)
5.593( —29)
6.058( —29)

—1.15(—33)
1.22( —30)
1.91(—30)
9.85( —30)
3.36{—29)
9.02{—29)
2.059( —28)
4.187(—28)
4.51(—27)

—4.3( —33}
1.77( —30)
1.39( —29)
5.96( —29)
1.85( —28)
4.69( —28)
1.03( —27)
2.04( —27)
2.19(—27)
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first 15 partial sums. Evidently, the lion's share of the
convergence acceleration is accomplished in the first step,
where Aitken's algorithm generates a single pole in the
variables, (g;gf) or (g;/gf) in the approximation. To be
honest, at the low values of E; and numbers of terms used
in the approximant, the discussion of the low-energy
asymptotics of the Pollaczek functions in Appendix A re-
veals that the series are not all that geometric and the ep-
silon algorithm is performing more subtly to achieve such
impressive convergence acceleration. Table V exhibits the
cross-section parameters for a variety of initial s states at
several frequencies and compares with the previous results
of Aymar and Crance, and Klarsfeld and Maquet.

When the intermediate energy is negative, on the other
hand, qJ.

+~ dies eventually exponentially as g~+' as j be-
comes large and one might hope that the infinite sum for
the transition element in Eq. (33) con verges rapidly
enough. Yet, the analysis in Appendix A exposes the
practical fallacy of this supposition, for the exponential
decay only sets in when j+l;+ 1=T; /4n, which is much
too late when the intermediate is only slightly bound and
hence T; large. To make matters worse, the Airy-
function-like dependence of qj+~(E;) on j and its rich
Rydberg pole structure at slightly negative E; make the
infinite sum a poor candidate for successful convergence
acceleration. The rather surprising solution to this dilem-
ma is to reexpress the too-slowly-convergent infinite sum
with two formally divergent, but geometriclike sums, and

I

then let the epsilon algorithm go to work.
Using Eq. (A26) to split qJ.+~(E;) into its two other

neighboring branches —
qJ ~, and defining

j=n„
fqj~ ( f) qj z(E—f)]+qj

—(E;)/j(+1)3, (34)

gives two formally divergent sums whose analytic con
tinuation is efficiently approximated by the epsilon algo-
rithm applied to the sequence of partial sums. Table pl
demonstrates a rate of convergence again for the ls ioni-
zation, but with E; just bound, which is every bit as good
as for positive E;. Since qj+~(E;) at negative E; is real,
the necessary sums with qJ (E) can be obtained from Eq.
(34) by appropriate combin'ation of 8'+ and 5'

The tremendous advantage of employing the other
branches, +—

qj ~, comes not from the improved conver-
gence alone, but rather from the additional possibility of
an unambiguous, smooth splitting of the transition ele-
ment into a background and a resonant part:

lf l; l lf l.l lf1,.lr f ' (n, co) =t~~„'g(n, co) t,f ' (n, co—)cot(m T; ), (35)

where T; =( 2E;) '/—, with poles at each intermediate
bound Coulomb state at T; —l; a positive integer. Incor-
porating the definition of 8' —of Eq. (34) and the relation
between the branches of qg of Eq. (A26) into Eq. (33) for
the transition element gives

p Pg PJ zPg (+ q + q )
Im(S +5 )( q q )

30~2(~1,+d)e n —1
(

d d +

(n) ~,=p (J +1)3 2&Pd
Pn, —Pn„-2

2(p„ t
—p„3)/—(n + 1) (36)

n a) J p mpd
(37)

TABLE VI. Convergence acceleration below the one-photon threshold. The first row gives the par-
tial sums up to 15 terms of the two formally divergent parts discussed below Eq. (34) in the text for the
transition amplitude for the two-photon ionization of the 1s state of atomic hydrogen with circularly
polarized light of frequency 0.49 a.u. The further rows display the Pade approximants, [14—k/k],
generated by the epsilon algorithm (Ref. 34) from the sequence of partial sums of 15 and fewer terms.

Iteration

g (q+" q+ 2 ) +q„~/(n + 1—)3
n=0

Approximants to

g (q+ —q+ 2) q„~/(n+1)3

0
1

2
3
4
5
6

131.224 895 5+318.309 1734i
48.869 S03 58+ 196.292 8119i
49.272 645 29+ 198.036 1674i
49.263 748 68+ 197.984 9144i
49.264 91583+ 197.987 280 8i
49.264 728 08+ 197.987 127 Oi

49.264 760 70+ 197.987 161 Si

—33.576 456 19—155.171204 3i
—74.926 665 55—66.997079 24i
—74.892 268 80—66.228 458 04i
—74.886 049 94—66.215 705 94E'

—74.885 71471—66.215 371 04i
—74.885 691 90—66.215 357 69i
—74.885 689 65 —66.215 356 88i
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Smce, or E; &0, the expressions in brackets are real, it is
now easy to extract the phase of the remaining complex
quantity $0+" to define the real quantity

lfl,.l ' 1 I ll
t ' (n&ro)=(e )(urn ca )' r '

(n&co) & (38)

where o.
r

—argI (if+1—Tf) is the Coulomb phase shift

of the final continuum partial wave and the additional
actors scale away much of the energy and initial-

quantum-number dependence. The total scaled transi-
tion element t is plotted for the ls initial state and d or s
inal partial waves in Figs. 1 and 2, respectively. Above

graphs switch to display the real and imaginary parts and
the absolute value of the now complex scaled transition
element t. Examination of Eqs. (A27a) and (A27b) re-
veals that the smooth transition from t&„I, below thresh-
old to the real part of t above threshold and from r„, to
the imaginary part of t is no accident.

The kink in Fig. 1, at a frequency of about 0.46 hartree
just below the resonance at the n =4 intermediate p state,
'ndicates the numerical limitations of the present extrapo-
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FREQUENCY ( hartree )
FIG. 1. Scaled radial transition amplitude for the two-photon

ionization of the hydrogen 1s state through a p intermediate to
an s continuum. Above the one-photon ionization threshold at
co =0.5 hartree, the amplitude is smooth and complex; the abso-

lute value in atomic units is indicated by the simple solid line, its
real part by the line marked with triangles and the imaginary

part by circles. Below co=0.5, the amplitude becomes real with

poles at each intermediate Rydberg state, the first few of which

are denoted by the dashed vertical asymptotes. It can be

smoothly parametrized by t =tb„k —t,~ltanmT where tb„k and

t, are the smooth continuations of the real and imaginary parts
below the one-photon threshold. Calculated using ten basis

functions.

FREQUENCY ( hartree)
FIG. 2. Scaled radial transition amplitude for the two-photon

ionization of the hydrogen ls state through a p intermediate to
a continuum. Absolute value, real or background, and imagi-
nary or resonance parts as in Fig. 1.

lation procedure. At such strongly bound intermediate
energies, the minus branch form of Eq. (A28) requires a
large number of terms and great care to avoid cancellation
errors. Moreover, the infinite sum in Eq. (A28) can only
be efficiently performed at large n, and, near a Rydberg-
state energy, the relation for recurring to smaller n be-

comes ill conditioned. The larger the initial principal

quantum number and the more negative the intermediate

energy, the more severe this problem becomes, as can be
seen from Figs. 3 and 4. There, the scaled transition ele-

ments for Eq. (38) for the transition from each of the first
five s states through p to s continua performed with

n +10 basis functions are plotted against the frequency
stretched by n to make the curves easier to compare.2

Below n co about 0.45, the extrapolation of especially the2

background part of t becomes more and more erratic with

increasing n, indicating a numerical inability of the epsi-

lon algorithm to continue the formally divergent tb„k to

t„, down that far in.energy. The same calculation per-

formed with a few more basis functions gives graphical
agreement with Figs. 3 and 4, down to about n co=0.45,
where erratic disagreement takes over. Although work is
in progress to remove this limitation, it does not present a
serious hindrance to the calculation of two-photon transi-
tion amplitudes, for, just at strongly bound intermediates,
t e straightforward approach using the plus branch of
Pollaczek functions in Eq. (33) works well. Hence the
best algorithm for the present uses Eq. (33) when E; is
sufficiently negative and switches over to computing the
formally divergent, but geometriclike series only when El
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FIG. 3. Imaginary or resonance part of the scaled radial

transition element in atomic units for two-photon ionization of
the first five s states of hydrogen through a p intermediate to an
s continuum vs the frequency stretched by the principle quan-
tum number squared. Calculated using n +10 basis functions.
Note that the threshold for one-photon ionization is at
n co=0.5 hartree and that the values depicted are reliable only
above n m=0. 45.

o2 u ( hartree )
FIG. 4. Real or background part of the scaled radial transi-

tion element in atomic units for two-photon ionization of the
first five s states of hydrogen through a p intermediate to an s
continuum vs the frequency stretched by the principle quantum
number squared. Note that the threshold for one-photon ioniza-
tion is at n co=0.5 hartree and that the wild oscillations indi-
cate that the values are reliable only above n co=0.45.

is slightly negative —say at the onset of the exponential
decay of qJ with j at T; =2nN;, where N; is the number
of basis functions.

In a general sense, the two-photon ionization cross-
section calculations of Aymar and Crance, Maquet, and
this work have much in common. While Aymar and
Crance integrate the appropriate inhomogeneous differen-
tial equation out to a radius where the integrand over the
remainder achieves its asymptotic behavior and repeated
integration by parts of the remainder generates a rapidly
converging sequence, Maquet and this work, following his
suggestion, sum a basis-set expansion up to an index j,
where the epsilon algorithm can perform the analogous
task in function space. The splitting of the radial transi-
tion amplitudes into matrix elements with two Jost solu-
tions, in close analogy to Aymar and Crance's iteration
with the sum and difference of WKB phases, has the dou-
ble advantage of solving the problem the Sturmian basis
has in correctly representing the multivalued structure of
the amplitude at the one-photon threshold and of provid-
ing a well-defined separation into background and
resonant contributions just below that threshold. Indeed,
this preparation of poorly converging partial sums con-
taining a polynomial with sinelike asymptotic form into
two sums containing functions with complex-exponential
behavior may prove valuable in other instances such as
the summation of partial-wave expansions. Perhaps the

strongest point in favor of the basis set of Eq. (A2) is not
revealed by the hydrogen-atom applications presented
here, however, and that is the ease with which such a
basis set can be coupled to a traditional Slater-type basis
function atomic-structure code. While supplementing
such a structure code with 10—15 additional functions
shown to be sufficient in this work for each ionized radial
degree of freedom is no small change, still the well-
developed technology of representing bound states by
basis functions can be exploited optimally.

IV. DISCUSSION

Now that the test of the I -basis-set approach for cal-
culating slowly converging matrix elements came out
surprisingly well, it is fitting to explore extending the
method to obtain reliable atomic multiphoton transition
amplitudes. Of importance are how the basis can
represent a many-electron atom with an ionization contin-
uum and Rydberg series, how the epsilon algorithm esti-
mates complete-basis results, what must be changed to ex-
ploit the advantages of dilation analytically' by using
complex basis functions, and how to treat the Rydberg
states in strong fields.

The Laguerre-Slater basis of Eq. (2} seems to strike the
right compromise between aptness for bound states and
for continua needed in calculating photoionization pro-
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cesses. While exponentially decaying basis functions can
represent the initial bound state as well as the residual
ionic core economically, the solubility of the radial
Coulomb equation in the special basis affords a correct
treatment of the analytic structure of the resolvent opera-
tor, with its many branches and accumulating poles. Par-
ticularly promising appears the introduction of the
smoothly varying branches, —q„, at negative energies, in
analogy to Seaton's formulation of quantum-defect
theory. Since various branches of the resolvent matrix
differ by separable terms, the scattering and transition
operators and the Fredholm determinant in a multichan-
nel problem can be separated formally into background
and resonance contributions. This immediately allows a
basis-set calculation of quantum defects by searching for
the zeros of the Fredholm determinant obtained either by
the J-matrix method or, better, by a Schwinger variation-
al approach.

The epsilon algorithm proved here to be both versatile
and powerful. While its efficiency at extrapolating the
Chebyshev quadratures of the Bethe logarithm is to be ex-
pected, its ability to approximate the complete-basis limit
in the equivalent-quadrature Bethe logarithm and two-
photon ionization calculations is astounding. The mell-
converged approximants below the one-photon threshold
in Table VI define, at least numerically, an analytic con-
tinuation of,formally divergent transition elements from a
bound state to an exploding wave. This corresponds to
continuing Aymar and Crance's partial integration ap-
proach below threshold by discarding divergent surface
terms and suggests a new way of defining and computing
quantum defects as negative-energy phase shifts, not only
at the bound states, but in between. Yet, the approach
seems only to work well when the matrix elements to be
extrapolated are split into sequences with some similarity
to a geometric series, even if formally divergent. Perhaps
the splitting merely serves to define the branch of the
function to be extrapolated uniquely. Further study of
how the epsilon algorithm analytically continues is impor-
tant; it could suggest efficient ways to treat such problems
as three-body scattering and breakup with basis-set ap-
proaches.

'The close relation of the basis set of Eq. (A2) to the
Slater type has another ramification of current interest in
contributing to the understanding of complex-dilation ap-
proaches which employ complex Slater exponents. '

Since the dependence of the Pollaczek polynomials and
functions is transparent from their hypergeometric repre-
sentations, it is directly clear how the spectrum and resol-
vent react to complex scaling. Whereas the independence
of 1 (1+1 T) in Eqs. (A5) —and (A17) indicates immedi-
ately the invariance of the discrete spectrum, the confor-
mal map form of the A, dependence of g and x exposes the
rotation of the branch cut between ingoing and outgoing
waves, or between q„+ and q„, down into the complex en-

ergy plane. Two consequences of making X complex show
promise when examined in light of the experience gained
with basis-set convergence acceleration here. First, al-
though Eq. (A6) for the regular wave function becomes
even more of a formal, indeed divergent, series, the epsi-
lon algorithm should be able to continue its exploding
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APPENDIX A: BASIS-SET REPRESENTATION
OF THE COULOMB SPECTRUM

Several years ago, Yamani and Reinhardt discovered
that the Schrodinger equation for the radial Coulomb
Hamiltonian for angular momentum l and nuclear charge
z

H~ = —,' d Idr + l (l + 1)/2r —Zlr, —

in the complete basis,

y'„(r;A, )=(ir) +'e "~ L„+'(Ar), n =0, 1, . . .

(Al)

(A2)

can be solved analytically giving expansion coefficients
for the regular wave function and the resolvent of H~ in
terms of certain hypergeometric functions which had been
investigated by Pollaczek. ' %'ith Appendix 8, this ap-
pendix summarizes and extends their results to give a
direct proof of the orthogonality of the Pollaczek polyno-
mials, to elucidate the Gauss quadrature of the Coulomb
spectral density associated with them, and to investigate
the properties of the Pollaczek functions thoroughly

part analytically. Second, the diagonal dominance of the
resolvent matrix in Eq. (A30) achieved by choosing a neg-
ative argument for A, at real energies, because then

~ g ~

is
less than 1, provides hope that partial ionization probabil-
ities for quite complicated processes may be projected out
of entirely I. complex basis representations by
convergence-acceleration techniques applied at the end of
the calculation. '

Simply turning up the electromagnetic field strength to
a measurable fraction of the atomic field also generates an
atom-plus-field system too complex to be solved straight-
forwardly, even for the hydrogen atom. The nonperturba-
tive Floquet truncated complex-basis-function calcula-
tions of Chu and Reinhardt' give insight into the intrica-
cies of a correct treatment of the time development of the
atomic states in a strong optical frequency field. Unfor-
tunately, their truncated basis does not represent the accu-
mulation of dressed Rydberg states at the threshold for a
free-free transition. The recent experiments of Kruit
et al. revealed a surprising disappearance without appre-
ciable shift of the lowest-energy photoelectron peak,
which provoked Tip and Muller's careful analysis of the
role of the A term in shifting the effective threshold.
Work is in progress in this laboratory to incorporate the
compact and smooth representation of the Coulomb
threshold developed here into a nonperturbative descrip-
tion of atomic multiphoton ionization involving highly
excited Rydberg intermediate states.
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enough to afford stable algorithms for their rapid and ac-
curate numerical calculation.

The basis set in Eq. (A2) is orthogonal on [0, ao ) with
respect to the metric 1/r so that

I dr &p'„(r;A)r '&p'„(r;A, ) =5„„(n+1)2I+&, (A3)

where (a)b ——I (a +b)/I (a) is the Pochhammgr symbol.
This means that the overlap matrix S» —— dr P„P„ isI I

0
not diagonal, but rather tridiagonal, with nonzero matrix
elements:

three-term recursion

(n + 1)I&„'+I—2[(n +I +1—r)x +r]p„'

+(n +2l + 1)p„',=0, (A10)

with initial conditions: I&0=1, p I
—=0. Thus, except forI l

the interesting special case when ~—I is a positive integer,
discussed below, the p„are polynomials of degree n in x.
As shown explicitly in Appendix B, they are orthogonal
with respect to the weight function,

S„„=2(n+I + 1)(n + 1)2I+~/I&, ,

S„„&——S„+&„—— (n+1)—I /A, .

p((x) = e"'g (2 sing) '+'

&& I'(I + 1 —T)l (I +1+T)/m, (Al 1)

&(@(I+ 1 —T,2I +2;—2ikr), (A5)

where E =k /2, t =Z/k, and T =it, the formal expan-
sion

g~ (r;E)= g y„'(r;I&, )lI&+ (E;I&,) (A6)

has coefficients

Q„+ (E;2)=$0 '(E;A. )I&„'(x;A,)
n +27+1

2l +1 (A7)

containing Pollaczek polynomials '

p„(x;A, ) =P„'+ '(x; —r, r)

n +2l+1
2I+1

&&2FI( —n, l +1—T;21 +2;1—g ), (A8)

where r=2Z/A, , g=(T r)/(T+r) =exp(—ig),
x =(E —I&, /8)/(E+A, /8) = —cosg, and the initial value
in n,

mtl2P I 1 T'(E 2) = — (2 g)'+'g
&2+k (2I+1)! (A9)

Indeed, the Pollaczek polynomials here are only a renor-
malization of the Sturm-sequence polynomials in x for
the Jacobi matrix (M~ ES)/(E+A, /8); th—ey obey the

Moreover, the matrix of the radial Coulomb Hamiltonian
in Eq. (Al) in the basis is also of symmetric tridiagonal,
or Jacobi, form with nonzero elements:

H» =&&&, S„„/8 Z(n +—1)2(+I,
(A4)

2H„„+,=I„+I„———k S„„+)/8 .

With such a simple form for the Hamilton matrix, it is
not surprising that eigenfunction expansion coefficients
and the elements of the resolvent matrix can be expressed
in terms of analytically known functions. For the regular
solution, 4'

~+( E) e '"r(i+1—T)
(2k ),+

v'27rk (2I + 1)!

giving

jf dpi(x)p, p, =&„(&+1)2~+I/(n+I+1—r) . (A12)

Here, dpI symbolizes a Stieltjes sort o integral, with
an integral for x H[ —1, 1], corresponding to positive en-
ergies, and an infinite sum of jumps of 2' R—es(p~) a&.

the poles of I (1+1—T), which lie at real x values to the
right and left of the integration region, corresponding to
the Rydberg series. The evident connection between the
completeness of the solutions to the Schrodinger equation
and the orthogonality is detailed in Appendix B.

When, as is useful in the applications in Secs. II and
III, the exponent A, in the basis is chosen so that ~—I is a
positive integer, the orthogonality integral in Eq. (A12)
would blow up at one n, and the above discussion must be
modified. When r2Z/X=n„+I+1, where n„)0, the
basis function P„(r,I&, ) is a constant times the Coulomb

T

bound eigenstate of energy E = —&{, /8, and is hence su-
perfluous in the expansion of the continuum eigenstate
P& (r,E). A look at the recursion relation (A10) in this
case reveals that the p„are po1ynomials of degree n —1,
and not n, in x for n )n„One could. say that one of the
zeros of each of these polynomials has been pushed to
x~00, which corresponds exactly to E = —A, /8. The
simplest way out of this dilemma is, then, to remove p„

T

from the set of polynomials as well as the residue in the
Stieltjes-type integral as x~ ao. This reduced set of poly-
nomials fulfill the appropriately modified recursion and
orthogonality relations.

1. Pollaczek equivalent quadrature

As recognized by Heller et al. ,
' the orthogonality of

the polynomials leads directly to a Gauss quadrature espe-
cially tailored to approximate integrals over the Coulomb
spectral density of the form

&~
I
«~r& If&=g «&'

I Wf&E&&O&E&&tt&E&lf&

(A13)

where 0 is some operator function of HI. Using the
basis-set expansion in Eq. (A6) truncated to the first N
terms and performing at the same time a Gauss quadra-
ture with abscissas at the zeros of the %th Pollaczek poly-
nomial leads to the very simple approximation,
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(i
~
0(Hg)

~
f)1=g (i

~
gj~)0(EJ )(pj ~

f), (A14)

where

N —1

yN( ) y 1( )yN (A15)

2. Pollaczek functions of the second kind

Since the basis-set representation of the Schrodinger
equation, Eq. (A10), is a. three-term recursion relation, it
is quite analogous to a second-order differential equation.
Hence, in addition to the regular solution, p„, expressing
the resolvent matrix requires a second, linearly indepen-
dent solution with Weyl or Jost behavior, ' irregular in n
at n =0 and dying exponentially at large n in the positive
half momentum plane and oscillatory in the E+ie limit.
The function with this behavior is

q„+ (E;A,)=
—2(n +21 + 1)!(—g)"+'I (1+1 —T)

I (n +1+2 T)—
&&2F&( —1 —T,n +1;n +1+2—T;g ), (A17)

and because it is one of the set of Kummer's hyper-
geometric functions having the same parameters as the
Pollaczek polynomial, q„+ should by all rights be called a
Pollaczek function of the second kind. The recursion for
this second solution differs only from that of p„ in the in-
itial condition q ~

= —2[(21)!],which gives the very sim-

ple discrete analogy to the Wronskian:

W(q+,p):= (q„+'p„' t
—q„+'] p„)/2(n +1)2/ ——1,

(A18)

independent of n.
Following the same approach used to prove the ortho-

gonality of the Pollaczek polynomials in Appendix 8, it is
straightforward to establish the integral representation,

q„+ (x)= JL' dp((x')p„(x')/(x' —x), (A19)

except for an extra term in qo for the special choice of
Slater exponent, ~=l + l, corresponding to an exact repre-
sentation of the lowest bound state of angular momentum
l. Although this representation of the second function as
a Stieltjes-type integral is not useful for actual computa-

is the jth normalized eigenvector of H~ truncated to an
N&&N matrix. The expansion coefficients are then the
Sturm-sequence polynomials scaled by the quadrature
weights l8~,

P„i= [2(E+A, /8)m /A, ]'~

X( n!)p„( xi~I)/( , n+21+1)! . (A16)

If the basis-set exponent is chosen so that one of the N
basis functions corresponds to an exact Coulomb bound
state, the argument must be modified to treat that state
separately and exactly and approximate the rest of the
spectrum by the remaining X —1 pseudostates. At the
end, the exact state takes its place among the pseudostates
again as one of the terms in the sum in Eq. (A14).

n

q '„(x;A, ) =p„'(x;A, ) g 'mJ"/(xj" —x), (A21)

where the primed sum indicates omission of the exactly
represented bound state if r—1 is a positive integer. Be-
cause po is chosen equal to 1, the q „obey the recursion
relation (A10) with the initial conditions q 0

——0 and
q ~

———2(21)!. Moreover, Eq. (A21) with Eq. (A20) can
be used to write qo+ as the Gauss quadrature approxima-
tion of its integral representation plus an error term:

n

qo+'(E;&) =g' wg /(x," x)+q„+'(E—;A, )/p„(x;A, ) .

(A22)

For
~ g ~

& 1 in Eq. (A18) and away from the bound-state
poles at T —I equal to positive integers, the error term
dies exponentially with increasing n, making the quadra-
ture approximation even better. This can be achieved as
well at positive energies simply by choosing a complex
Slater exponent A, , with Imk, & 0, thus indicating explicitly
how well complex-dilated finite-basis calculations can be
expected to work. Evidently, from the definition of g
below Eq. (A8), the error term will be much larger near
threshold, where

~

k/A,
~

is small, and at large
~

k/A,
~

than at intermediate energies.
Second, the integral representation in Eq. (19) exposes

the many-valued nature of the Pollaczek functions of the
second kind. Replacing k by —k, and hence T by —T
and g by g

' in Eq. (A17) gives another branch:

(n +21+1)!(—~) " 'I (1+1+T)
I (n +1+2+T)

&&,F, ( —1+T,n+1;n+1+2+T;g '),
(A23)

where the hypergeometric series converges for
~ g ~

& 1, or
Im( k/A, ) & 0. The appropriate Kummer's relation
expresses this solution as a linear combination of the other
two:

q„'(E;A)= q„+' 2mip, &pn . — . (A24)

In the limit towards real positive energies, Eqs. (A17) and
(A23) are complex conjugates of each other, and the
second term in Eq. (A24) displays the discontinuity across
the scattering branch cut in terms of the spectral density
and the expansion coefficient of the regular Coulomb
wave. Yet, a good look at Eqs. (A5), (A9), or (All) re-
veals that this square-root cut structure in the Pollaczek

tion, it immediately suggests two calculational ap-
proaches.

First, by adding and subtracting p„ to the integrand in
Eq. (A19), the singularity in the integrand can be separat-
ed-into a smooth part and a simple singular part,

q„+'(E;A, ) =q '„(x;A,)+p„'(x;A, )qo+'(E;A, ), (A20)

in such a way that the smooth part can be expressed ex-
actly with the help of the quadrature discussed in Appen-
dix A 1 as
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277 I — ~ I+ l8(p~ +2' lM)p~
tan(m. T)

(A26)

so that they are complex conjugates of one another for
positive imaginary k, this time with discontinuity
2mim~p„. Moreover, it follows from the formulas for pI,
wI, and q»+ in Eqs. (All), (A25), and (A17) that the fac-
tor 2n.w~p»~ cot(mT) in Eq. (A26) just cancels the bound-
state pole in q„+' to give functions which are smooth in
the upper half k plane. Although the existence of two
branches in Eq. (A26) indicates that the hypergeometric
series for q„ in Eq. (A23) is a divergent, formal sum,

I

function of the second kind is not the whole story; the
Coulomb potential introduces a logarithmic manifold of
Riemann sheets through the term, exp(m. t/2). Indeed,
when k is positive imaginary, and hence T positive real,
two useful branches appear from two ways of forming
( —1) . Then it is expedient to replace the weight func-
tion p~, which is complex at such negative energy, by

w =(g ) (g —g ') +'I (I+1—T)/I ( —l —T), (A25)

which is real at both negative and positive energies assum-
ing real 1,, with pI iw——I exp( im—T) /. si n(mT) Th. e two
branches can then be chosen as

+E7TT2&e I
qn =q'n +

sin(n. T)
~Ipn

+q„goes over into q„as the energy becomes positive on
the physical sheet, where the series for q„+ converges,
while q„acquires an additional factor of exp( 2m—t).

Now we can collect the reward for this rather lengthy
discourse on the analytic structure of the Pollaczek func-
tions by identifying functions, q„, which remain
smooth when passing from positive to negative energies,
much in the spirit of the quantum-defect idea. Denot-
ing the real part of ~q» in Eq. (A26) by q „affords the
splitting

+l -l - l
qn =q n+&~pjpn (A27a)

for E real positive so that q „ is the principle value of the
integral in Eq. (A19) when k and A. are real positive, and

=q» —2lTw(p» cot(vTT) (A27b)

for E real negative, which separates q„+' into a back-
ground contribution q „, and a resonance contribution
with poles at each bound state when T —l is a positive in-
teger. This splitting proves essential to the numerical sta-
bility of the calculation of two-photon ionization ampli-
tudes in Sec. III. Although for moderately negative ener-
gies the hypergeometric series converges best for q„+'
directly and not for —+q„, for very small or large energies,
when g is close to 1, it is of advantage to use the analytic
continuation

q+'=2wg —p„'[~cot(m T)+ln(g —1)j

n +2l +1+»+1
v= —21 —1

( —n) (l+1—T)„l ( —v)(1 —g )

(2l +2),

( —n)„(l + 1 —T)„h„(1—g )'
(2l+2) (v!)

2(l+1 —T)„+,(g —g-')" +'

g(n +1)!(n+2l +2)

X3EQ(n +l+2 —T, l, l;n +2l+3, n +2;1—g' ) (A28)

where

h:= g(v+2l+2)+g(v+1) P(n+1 ——v)

—P( —l —v+ T),
which is not simply a sum of 2E&'s but has the logarith-
mic term because two of the parameters of the hyper-
geometric function in Eq. (A17) differ by an integer.
When

~ g —1
~

is less than 1, Eq. (A28) gives not only a
convergent sum for q„+, but also for the other branches+I
~q»+, through Eqs. (A23) and (A26) and, at real E and A,

for their real part, q„. The expression for q„corre-
sponding to Eq. (A28) but with —T and g

' in place of T
and g' converges for

~

1 —g'
~

&1 to give an alternative
direct route to q„sometimes useful at negative energies.

3. The resolvent matrix

Now, equipped with the two linearly independent solu-
tions satisfying the appropriate boundary conditions, it is
easy to obtain the coefficient matrix in the formal basis
set expansion of the resolvent of HI, ' ' '

G~+(r, r', E)=g gp„(r;A)G(E»;»A)qr„(r';A),
n n'

(A29)

as

—Xp„(x;A, )q»+ (E;k)
G»„(E;A,) = (A30)2(E+A/8)(n + 1)~(~, ((n'+ l lp( ~ )

where n& and n& are the lesser and greater of n and n',
as might be expected from the close analogy between the
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three-term recursion (A10) and a second-order differential
equation. At the special, energy-dependent, Sturmiam '
choice of Slater exponent, A, =V' 8E—, where ~=T and

g =0, the matrix collapses to the diagonal form
G„+„=5„„T/[(n+ 1)2(+i( T n——1 —1)].

Following an arguxnent similar to that in Appendix B
leading to the orthogonality of the Pollaczek polynomials
establishes the integral representation:

lG.n = dpi(x')p„'(x')p„' (x')

2(E+l'/8) 1 (& —x'((&+((21+1(~'+((21+I

~nn„'5n, n'

(E +A,'/8)S„„
(A31)

where, following the notation in Appendix A2,
N

G „„=g Q„J.Q„~/(E EJ ), — (A33)

which includes the exactly represented bound state and
I

The last term appears only if T —1 =n„+1 is a positive
integer and gives the normalized contribution of the one
exactly represented bound state of radial quantum num-
ber, n, . Subtracting and adding the residue in the in-
tegrand at x'=x so regularizes part of the integral to al-
low an exact Gauss quadrature of degree N & n,

G„+„=G„„(E;A,)
+l l l~tv pnpn'

2(E+A/8)p~(n , +1)2/+i(n'+1)2/+i

(A32)

the pseudostates.
Clearly, the quadrature approximation is good when

n& is sufficiently smaller than N hand ~g~ &1. Just as
for the approximation for qo+' in Eq. (A22), choosing
ImA, &0 decreases

~ g ~, improving the quadrature repre-
sentation by rotating the pseudostate eigenvalues away
from the real positive energy axis, but only helps signifi-
cantly at intermediate energies.

Finally, other branches of the resolvent matrix are ex-
pressed with the other branches of the Pollaczek function
in Eq. (A30), where Eq. (A26) also leads to the back-
ground and resonant splitting at negative energies.

4. Large-n behavior of the Pollaczek functions

The success of employing, and especially accelerating
the convergence of, such basis-set expansions as Eq. (A6)
for the wave function and Eq. (A29) for the Green's func-
tion hinge on a thorough understanding of the asymptotic
behavior of the Pollaczek polynomials and functions.
Clearly, neither of the formal sums converges in n uni-
formly in r, or for that matter in E. To mimic the actual
oscillatory wave function at larger and larger r, more and
more of the exponentially decaying basis functions are re-
quired. The only hope is that the description of the physi-
cal process of interest involves either a matrix element
with a short-ranged operator or an exponentially dying
function or that the large-n behavior is smooth and re-
veals itself at low enough n to allow accurate extrapola-
tion.

The very-large-n behavior is exposed by a Kummer's
transformation of Eq. (A17):

+'(E A, )= ~ ~,F, ( —1 T,1+1—T;—n +1+2 T;(1—g ')-')—
(1+1 —T)„+,

(A 17')

Denoting n +1+1 by m and using the Stirling formula
for gamma functions and the 2F, in Eq. (A17') as an
asymptotic series gives

q„+ (E;A, )= —21 (1+1 —T)( —g)~

&&[m(1 —g' )] + [1+0(m )] as m~oo,
but this is only the dominant behavior for m »T and
m +1»( —1 —T)(1+1—T)(1—g ) . At least this re-
veals the Weyl's solution behavior of q„+', ' decreasing
eventually exponentially with P for

~ g ~
& 1 and oscillat-

ing indefinitely when
~ g I

= 1.
On the other hand, the asymptotic behavior is of little

use near threshold. In the extreme case, when
~

T
~

~ oo

at fixed n, it is not hard to see that the simultaneous lim-
its g' ~1 and T~oo cause the hypergeometric series in
Eqs. (A8) and (A17) to flow together into the confluent
hypergeometric functions

p„(x;A, )- ( —1)"L„'(4~) as T~ oo,

q„+'(x;A, ) ——2(n +21 + I )!(—1)"(4r) '+'

&(f(n+21+2;21+2; 4~+i0) .—

The more complicated expansion in Eq. (A28) is consider-
ably more useful in this respect, however, for the only in-
finite sum there, the 3F2, has two gamma functions in the
denominator to ensure a useful asymptotic expansion in n
even when the large value of T in the numerator multi-
plies with the argument to give a finite limit and eventual-
ly an 2F2.

Approximating the three-term recursion relation in Eq.
(A10) as a difference equation in the continuous vari-
able, m =n +1+1, gives a second-order differential equa-
tion in m whose asymptotic behavior can be unified by a
&KB approach. The study shows q„+ to act as an Airy
function with increasing m, switching from real oscillato-
ry to exponentially decaying when m =T /~, which can
only occur at negative E. At positive E, on the other
hand, q„+ remains complex oscillatory, but with ampli-
tude smooth in n The final . P+ behavior sets in late,
when m=T /4~. The —+q„, in contrast, act as other
branches of the Airy function, with smooth-amplitude
complex oscillations at all real energies. Naturally, the p„
exhibit the typical polynominal behavior, with oscillations
in the region of the pseudostate eigenvalues and exponen-
tially increasing in absolute value at higher and lower en-
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ergies. . The conclusions to be drawn are that the p„are1

not so suitable for extrapolation techniques, the q„+ suit-
able only when T is not large real positive (just below
threshold) and the +—q„' at all real energies.

Initialize: 1/ro.- ——0, pg ..——I.
Recur from n =0 to N —1:

r„+~
——[ (2n +2l +2)x +2r(1 —x)

(n+21+—1)/r„]l(n+1) .
I I IThen p„+~

——m+1 pn.

(A34)

It turns out that even for large l, where the second term
might be expected to magnify the error, the ratio r„grows
fast enough to ensure stability.

The situation is quite different for the Pollaczek func-
tions of the second kind, however. Examining the large-n
behavior of q„+' given below Eq. (A17a) reveals scheme
(A34) to be unstable for

~ g ~
& 1, and especially so at neg-

ative energies. Here, a recursion downward damps round-
off errors, as might be expected from the nature of the
q„+ as Weyl solutions fulfilling a boundary condition at
large n,. ' At intermediate energies, the Gauss continued
fraction ' directly for r„'=q„+ /q„& provides an ex-
tremely efficient initialization. When g is too close to 1

for the continued fraction to converge well, the logarith-
mic expansion in Eq. (A28) can be used, where the 3F2
sum converges best at the highest n values needed to start
a downward recursion. The error estimates given by
Luke ' for a special case of the Gauss fraction help in
choosing which of the two initial values should be com-
puted, to give the following al'gorithm.

Initialize: r~' q~ /qz, fr——om Gauss fraction or Eq.
(A28).

Recur down from n =IV —1 to 0:

5. Stable algorithms for the Pollaczek functions

Because the three-term recursion (A10) involves so few
arithmetic operations, the temptation to use-it directly to
generate the desired set of q and p is hard to resist. Yet,
especially with diffuse Slater exponents, and hence large r,
needed to represent highly excited Rydberg states, the
coefficient of p„ in Eq. (A10) becomes large, magnifying
r'oundoff errors disastrously in each step. A simple
remedy is to recur instead for the ratio of two neighboring
functions and then multiply out later. In fact, this
scheme is very efficient and stable enough to use for the
Pollaczek polynomials and, letting r„=p„/p„&, runs as
follows.

very accurate values are required, for example to test the
stability of recursions (A34) and (A35), it is always possi-
ble to compute precise values for the first and last func-
tions and to solve the recursion as a system of linear equa-
tions with iterative improvement. This has the advan-
tage of explicitly displaying the recursion error, but is
considerably less efficient. Although the careful attention
to numerical stability leading to Eqs. (A34) for p„and
(A35) for q„+' proved to be essential in the applications
presented in Secs. II and III, this last refinement was only
needed as a check.

APPENDIX B: ORTHOGONALITY
OF THE POLLACZEK POLYNOMIALS

(82)

where the integrand is well behaved on the integration
path. To compute the residues at the poles inside the unit
circle contour, start with the bound-state singularities in
Eq. (A17) for q„+ where T —l —1 =ni, —l —1, positive in-
teger or zero. The corresponding g& lies on the real g axis
between —1 and +1, again assuming I, real, and using
the notation of Eqs. (A24) and (A26),

The orthogonality of the Pollaczek polynomials was
demonstrated by Szego soon after their introduction us-
ing a generating function approach but with the parame-
ters limited to correspond here to the repulsive Coulomb
case, thus avoiding the sum over bound states. Although
the extension of that method to include the attractive
Coulomb spectrum is straightforward, it is more construc-
:ive for the physical understanding to make explicit use of
the Pollaczek functions. The proof starts by reexpressing
the orthogonality integral over the continuous spectrum in
terms of a closed contour integral containing a product of
a Pollaczek function with a Pollaczek polynomial, which
is evaluated as a sum of residues at each bound state and
at one additional pole present only when the two polyno-
mials are equal.

To that effect, examine

I„„(A,) = J dx pI(x;A, )p„(x;A,)p„' (x;iL) . (81)

%'ithout loss of generality, assume n & n' and express p~p„
using Eq. (A24) in terms of q„+ and q„. Then change
the variable of integration to g=(T r)I(T+r) f—rom Eq.
(A8), transforming the path of integration, assuming
r=2/A, is real positive, into the upper unit semicircle in
the complex g plane. An inspection of Eq. (A23) and Eq.
(A17) reveals that q„on this upper unit semicircle is just
q„+ on the lower unit semicircle, giving

I„„=(4mi) ' f dg(g —1)q„+'p„

r„=(n +2l +1)/[2n +2l +2+2&(1—x)

(n+1)r„+)] . — (A35)

Res —,
'

(g —1)q„+'p„'
4b

Initialize: q'
~
———2[(2l)!].

Recur up from n =0 to X qn rn qn —]

The other branches, +—q„, as well as q „can be obtained
once q„and p„are known, or especially at energies near

+l

the bound-state poles, directly from the upward recursion
(A34) initialized with qo from the Gauss fraction. If

= —2T 'm([2T~I(2 —T )] p„'p„'
~ r (B3)

To determine when a pole appears at the center of the cir-
cle, use Eqs. (AS) and (A17) in the limits of (~0, i.e.,
T =~, giving
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9n Pn' (n +21+1)!I(tt'+1+1 —7)+l l

(n + 1)!I(n +I +2 r—)

X( —g)" " '[1+O(g' )] as g 0. (84)

2mt Res ptp„'(xb)p„' (xb)
~b 1+1 b

+5„„(n+1)2t+,/(n +I + I —r),
thus affording the desired orthogonality relation

(85)

Since n & n ' was assumed, a pole occurs only when n =n ',

barring a complication when ~—I is a positive integer, to
be treated as a special case below.

The sum of all the residues gives

') dptpnpn ——&nn (tt +1)2t+]/(rt +I +1—~),
where dpt is a weight function of the Stieltjes sort, taking
jumps of 2—sri Respt at each bound state and rising
monotonically from x = —1 to x =1. This requires some
stretching of the Stieltjes concept, however, since the
jumps in dpi at the first few bound states as long as
nb & r are negative resulting in negative orthogonality fac-
tors in Eq. (86) for n +1+1&r. The cautious reader can
check with the help of Appendix A that the terms in the
sum in Eq. (86) become O(nb ) as nb gets large, causing
the sum to converge.

The very useful special case when r=n„+1 +1, where
n„+ 1 is a positive integer, causes some trouble by plant-
ing the bound-state pole for nb=i on top of the ortho-
gonality pole at /=0. This modifies Eq. (86) to

5„„(n+1)2t+~/(n+I+1 —w) if n, n'~n„
(rt, +1)2t+~/2r if n =n„and n'=n„
(rt, +1)2t+z/2r if n =n„+1 and n'=rt,

I' d

—(n„)2t+2/2r if n =n„nad n'=n„1,—

where g indicates omission of nb =r in the sum. The deviations from orthogonality in Eq. (87) could be foreseen from

the linear dependence of p„+&, p„, and p„& when the coefficient of x vanishes in Eq. (A10) at a=n„+1+1. More-

over, this choice of r sends what was a zero of each p„ for n & n, off to x~ ac (/=0), thereby reducing the degree of the
polynomial. Hence, simply omitting p„ from the set of polynomials gives an orthogonal set.
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