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Finite-temperature corrections to the van der Waals potential
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We evaluate finite-temperature corrections to the two-photon exchange potential between polariz-
able systems. We find a complex (additive) correction of the form: Re V —1/r, Im V -const, for
r &1/T; and Re V —1/r, Im V —1/r, for r ~ 1/T. These results are to be compared with the
Feinberg-Sucher zero-temperature answer, Re V = -1/r, Im V = =—0.

I. INTRODUCTION

In 1968 and 1970,' Feinberg and Sucher studied the van
der Waals interaction V2r (r) arising from two-photon ex-
change between neutral spinless systems A and 8. They
extended the result of Casimir and Polder by showing
that for separation r much larger than the size of either
system, the potential has the form

V2r(r) =
3 7 23txEGE+23cxgcxg
1 A 8 2 B

(4m) r

—7cxg A'g —70!g cog
B 3 B

where aE and az are the electric and magnetic polariza-
bility of the system. Recently there has been, for a variety
of reasons, increasing interest in computing finite-
temperature corrections to (zero-temperature) field-theory
results. For the most part, these calculations have re-

I

X5 (k+k' —q)d(k, k') (3)

with q =pt, —pb ——p, —p, . d(k, k') is given by

quired evaluation of one-loop corrections for fixed values
of external momenta or for decay amplitudes. In comput-
ing the finite-temperature corrections to the van der
Waals potential we encounter a somewhat richer exercise;
we need to compute a finite-temperature one-loop scatter-
ing amplitude.

We follow the treatment of the zero-temperature case
given in the book of Itzykson and Zuber. They write

V(r)=i(2~) (4m, mb) ' J d3q e'q'w (q),

where q is the momentum transfer, and the two-body
scattering amplitude (for a +b ~a'+b') ~ is given by

d'k d4k'~ (q) =(2~) f (k +is)(k' +i@)

d(k, k')=8g2g2K& z
(k)K""'t' (k')+[4g&gz(p~t't +pro )K 't' (k)Kt (k')+(a~b)]

+g)g)[(p~p+pIp' )K ' (k)K~ ~ (k')(p pp+ppp" )+(k~k')] .

In (4) the tensor K, the propagator numerator for the
field Fz, is given by

P'(k) =, —2~ix(k')(e ~
"~"—1)-'1

k +ie (8)
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atE+a
2m 4

g2= — a .

Using (2)—(5) Itzykson and Zuber recapture the result of
Feinberg and Sucher' of Eq. (1).

We modify the calculation of Eq. (3) by replacing the
zero-temperature propagator (k +i@) '=P(k) by its
finite-temperature value

and (5) results from a phenomenological Hamiltonian
density of the form

~=g, a.yaga &Ft', +g,y'P'

with

and compute the corrections due to the extra term in
P (k) and P (k').

Our calculations based on Eq. (4) in the real time for-
malism can be compared with those of Dzyaloshinski
et ah. in the imaginary time formalism. These authors
compute the temperature dependence of the van der
Waals force between parallel plates in a dielectric medi-
um. They find, for rT &&1, a linear dependence on T, as
we do. However, because the finite-temperature correc-
tion is isolated in (8) as an additive term, calculations in
the real time formalism have the advantage of yielding the
finite-temperature corrections explicitly.

It should be emphasized that our calculations are based
solely on the correction of Eq. (8) to the photon propaga-
tor. Thus we omit several corrections of order T/m such
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as temperature corrections to fermion and composite par-
ticle propagators and corrections to photon particle ver-
tices. We also consider only the van der Waals force be-
tween ground-state systems so that our results are only
relevant for ensembles with T/bE less than, say, +0,
where bE is the lowest excited state.

This approximation allows us to base our calculations,
as in Feinberg and Sucher' and Eq. (2) above, on polariza-
bilities coupled to the fields quadratically rather than
products of transition dipole moments coupled to the
fields linearly since the latter sum to the former with
these approximations as shown in the original work of
Casimir and Polder. Finally, we note that we do not
compute the (temperature-dependent) correction to the po-
tential that arises from the nonzero velocity of the polar-
izable system.

II. CALCULATIONS

There are two kinds of corrections to (3) from the prop-
agator (8). The real part of the finite-temperature poten-
tial V (r) is modified by the cross term between the prin-

I

4

&( f dqq sin(qr) f 2
5(k' )n(co)d(k, k'),

k

where k'=q —k and we have written n(co) for

(e i" i —1) '=(e —1)

(9)

In evaluating d in (9) we use the approximation
p =(m, 0), for p„p, , pb, and pb, and the approximation
q=(0, q). These approximations are equivalent to assum-
ing that T is much less than m. We use the fact that

cipal value of the first term in P (k) and the second term
in P (k'). The second effect is that V (r) gains an imagi-
nary contribution from the product of the finite-
temperature parts of P (k) and P (k') plus the cross
terms between the finite-temperature parts of (8) and the 5
function from the first term in (8). We begin with the real
part.

The correction to the real part of the potential is

T= 1

4mamb(2m) r

fd k5(k' )= f dko f „dkk
& +k —koin

(10)

where z is the cosine of the angle between k and q, k =
(
k

~

and q =
) q ~, and k =k.k and q =q.q. With this infor-

mation (9) becomes

b, V2t —— f dq q sin(qr) f dko f dk 2
— n(co)

2 1 k

4ma mb (2n ) r q k0 —k

X I q [8g2gz+2(m, g ~g2+mbg ~g2)+rn, mbg &g &]

+4m, mbg;g, ko(2ko —q )I .

In writing (ll) we have used the fact that terms in d
proportional to k result in contributions to b. VR of the
form dq q

"+' sin(qr) and hence vanish. Equation
0

(11) can be evaluated in closed form with the help of two
Fourier sine'transforms

and

4m mb(2m)'
x f8g 2g2+2mamb(g 1g2+g2g 1 )+mambg 1g 1 ] (15)

00 x+af dx sin(xy)ln
0 x —a

=—sin(ay),
1 a b8= a~bg 1g 1

4(2m)

Using the well-known expansion

(16)

sin(xy) n. ny
~

~dx coth
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(13) 1 x
cothx =—1+

X 3

x4 2x'
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Using these results we have

5 VR ———8—AD + —,68—D r+ 48D —D rT T 4 ~ 1 4 ~ 21 z

r 16 r

we have, for rT ~&1,
5 6—8w(2~) T

( ~ pg
)

945 r
(18)

T

1 m- 2mr—coth
r 2 P

where we have written D =d /dr and defined

(14)

For rT ~&1, (14) becomes

—96m T (19)R

Comparing with (1), one sees that VR/ V2r is of the or-
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der rT for large T; it is not suppressed by any factors of
T/m. Also, the sign of the finite-temperature contribu-
tion is the same as that of the T =0 contribution for all
values of rT.

The imaginary part of 6V can be similarly evaluated:

EVI ——

2m mbr(2m)'

dqq sin qr

X fd4k 6(k2)5(k')

For rT»1,
12Ep-—
r5

(27)

g( 4n r /p—
) (28)

and, by changing to a new variable u =r/py, the n =2
and n =4 contributions are again small:

1 d „~ "~~ dQ 8 1 KeK„=— r" +
dp p~ dr4 p u~ 2 4u

Xn(p3)[n(p1)+ l]d(k, k') . (20)
Therefore in both limiting cases, we have the general ex-
pression

In the nonrelativistic limit, we have

d =8m, mb(21r) q [A+4B(2y —y )], (21)

xo.
r

For rT «1, this gives

b, VI ——— (AKp+ —8BK4 4BK2 ), —T 1

r
where

(22)

with A and B as given in (15) and (16) and where y =@/q.
Substituting (21) into (20) gives

b, VI ———,', (21r) AT

and for rT»1,
12AT

I 6

(30)

(31)
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We are able to obtain an analytic expression only for the
case n =0. It is

Thus for rT«1, AVI is suppressed compared to AV&
by a factor of rT. For rT»1, the temperature and r
dependence of 6VI is the same as that of 6V~, the imagi-
nary part is suppressed by only a factor of 8m.

We also consider briefly the force between a charged
particle and a spinless neutral particle. The T =0 value
has been computed by Feinberg and Sucher;" they obtain
from the two-photon exchange a potential

In the region where rT && 1, (24) implies

Kp- —,', (2n)rT—. (25)

QQE
V2&(r) =

2r
(32)

dP dr
1 d Sln(ir)

o

—W(rT (rT)") . (26)

In this limit the n =2 and n =4 contributions are negligi-
ble since

for r & rz (rj3 denotes the Bohr radius). The
temperature-dependent corrections to this potential can be
computed with the procedure used above for two neutral
particles. However, in this case there is a lower-order
(tree) diagram in which only one photon couples to the
charged particle while the second is absorbed or emitted
by the heat bath. The contribution for photon absorption
by the heat bath is

TV 1 +J2 2 ~P 3 +74 ) 2 (P 1 +p 3 ) (P 4' 2 +I34J 2 )[«~~,—k,~.)(q,g 132.
—q 11g,2 ) + (~~p )]

q

4eg2
(73+Pl ) (k„e.—k e„)[(p1—u3)"g"—9 1

—S 3)"g" ] (33)

where we have used the momentum transfer q =p& —p3 and the momentum of the absorbed photon k =p&+@2—p3 p4.
From (33) we computed the differential cross section for the one-y exchange process

2 2 2 2, , [~ ZE1+~21 V 1+ 4 q )]
6& p Iq

E) —m 1X f dcoco 1+
0 e +1 (34)

where m, E], and p& are the mass, energy, and 3-momentum of the charged particle. The integral can be done explicitly
in the limits EI,—m »T and E& —m «T with the result
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E) —m
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To compare, we see that (32) gives a differential cross sec-
tion

do cx cxE Ey2 2 2

dq 2 (2m. ) 8p&q ra
2

where P is the pressure and B„ is the nth virial coeffi-
cient. By convention one writes B]——1, corresponding to
ideal gas behavior. The second virial coefficient B2(T) in-
corporates deviations from this. In one low-density ap-
proximation it is given by

sin(qrz ) +qr~ cos( qr~ ) qr~—
2

(36)
Bz(T)= —2m f dr r Iexp[ PV—(r)]—lI .

where we have cut off the divergent r integral at the Bohr
radius rz.

The ratio R, at T =0, of (do/dq )
~ qr to the az term

in (d o /dq z) ~,r is

3 cxR=—
4 (2m. ) r (E,—m)

2

X sin(qrz ) +qr~cos(qr~ ) qr~—
2

(37)

R is less than one only for E& —m greater than about 100
eV. Thus this one-photon exchange effect is small in, for
example, electron-atom scattering for E, —m below ioni-
zation energies. By detailed balance the process where the
photon is emitted by the heat bath gives the same result.

III. DISCUSSION

P—= g B„(T)p"
n=],

We interpret the fact that the finite-temperature correc-
tion to the potential between neutral, spinless, polarizable
systems falls off less rapidly than the T =0 van der Waals
potential (r versus r ) as a reflection of the fact that
the heat bath can play a role in polarizing the neutral par-
ticles. Similarly, the heat bath produces an imaginary
part in the potential at energies below the excitation ener-

gies of systems A and B because it can absorb (or provide)

energy in the scattering process.
Applications of our results to physical scattering pro-

cesses are not immediate. Van der Waals forces are not
observed in scattering processes directly. The finite-
temperature correction will dominate the T =0 force for
rT ) 1. For an ideal atomic gas we must require T & 1 eV
since above this energy ionization processes and excited
states become increasingly important. For T-1 eV the
correction is important for r ) 10 cm; this corresponds
to interatomic spacing in gases with densities on the order
of 10 atmospheric densities.

Connection between the van der Waals force and exper-
iment is provided by the virial coefficients of gases. Ex-
perimental data on the equation of state of a gas are gen-

erally fitted to a polynomial in the density p obtained by
truncating the so-called virial series:

For a complex potential V (r) at finite temperature, we
might modify this expression by replacing V(r) by

~
V(r)+ V (r)

~

and attempt a measurement of B2(T) as a
function of temperature to explore the temperature depen-
dence of V(r).

We do not consider it too likely that deviations from
the ideal gas law are easily studied for gases at 10 K at
such low densities; at higher densities or lower tempera-
tures the scattering would be sensitive only to the shorter
range part of the potential for which the T=O potential
dominates.

Another possibility for observing experimentally the
van der Waals force and its temperature-dependent
corrections is to look at large aggregates of matter. Since
the van der Waals potential goes as X~%2, where ¹ is the
number of polarizable atoms in the ith aggregate, it dom-
inates the gravitational potential for r small enough —on
the order of, or less than, 0.01 cm. Happer has em-
phasized the fact that experiments potentially sensitive to
the van der Waals force could be performed using neutral
colloidal suspensions in water or other solvents. Such ex-
periments could well be capable of detecting temperature-
dependent corrections.

A third place to consider possible corrections would be
in astrophysics. If we view the nucleon-nucleon potential
as a van-der-Waals-like effect of a quark-quark potential
in color singlet states, we can estimate the temperature
and densities at which temperature could be important.
Since the nuclear force falls sharply for r & 10 ' cm, we

expect the correction to be significant only for tempera-
tures approaching 100 MeV. They should thus be negligi-
ble at the time of cosmic nucleosynthesis where T-0.1

MeV. However, in supernova temperatures rise to 10
MeV or more. It is therefore possible that nuclear cross
sections in supernova are significantly different from the
T =0 cross sections. Van der Waals calculations at zero
temperature have also been done in the context of com-
posite models of quarks and leptons, but the model Ham-
iltonian of Eq. (6) does not support quantitative estimates
of these effects.

This elusiveness of finite-temperature correction in the

present problem is similar to other cases' in which this

theoretically interesting effect has minimal practical sig-

nificance.
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