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Linewidths of the 0-0 hyperfine transition in optically pumped alkali-metal vapors
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A generalized model for the magnetic resonance signai corresponding to the 0-0 hyperfine transi-
tion in an optically pumped alkali-metal vapor is presented. Under conditions of microwave power
broadening, the model predicts "anomalous" 'light broadening and "anomalous" relaxation narrow-
ing of the magnetic resonance linewidth. Good agreement between theory and experiment was ob-
tained in an experiment that confirmed the prediction of anomalous light broadening. These results
show that the 0-0 hyperfine transition cannot be described as a simple two-level system; rather, the
alkali-atom s nuclear spin plays an important role in determining the magnetic resonance iinewidth.

I. INTRODUCTION

When considering the 0-0 hyperfine transition in an op-
tically pumped alkali-metal vapor it is often convenient to
describe the alkali-metal atom as a two-level atom. In
this approximation it is quite easy to show that the mag-
netic resonance line shape, detected as a change in the lev-
els population difference, is a Lorentzian of half-width

~in = [(I/T2)'+(Ti /T~)~i j'" (1)

where Ti and T2 are the familiar longitudinal and trans-
verse relaxation times and coi is the microwave Rabi fre-
quency. ' In the case of optical pumping, however, these
relaxation times depend on the photon absorption rate 8
as well as phenomenological collisional relaxation rates y&

and y2. 1/Ti B/2+——yi, 1/T2 ——B/2+y2. Since the ra-
tio Ti/Tz alters the magnitude of the power-broadened
linewidth, for the present discussion we will define this ra-
tio as a linewidth enhancement factor (LEF). Thus in
the two-level-atom approximation the LEF is light-
intensity dependent, varying from y2/yi to unity as the
light intensity increases from a very low to a very high
value, and this then implies a light-intensity dependence
of the microwave power-broadened linewidth.

However, in addition to the two-level-atom approxima-
tion, one usually assumes that the duration of the relaxa-
tion collisions is relatively short, in which case y&

——y2.
The significance of this additional assumption is that
Ti/T2 becomes independent of the light intensity, having
the constant value of unity. Thus, with the two approxi-
mations there is no dependence of the microwave power-
broadened linewidth on light intensity, except negligibly
through the term (1/T2) .

Magnetic resonance in optically pumped alkali-metal
vapors, however, differs from the two-level approximation
in two important respects. In the first place the observ-
able in an optical-pumping experiment is not necessarily
the population difference between two levels, and in the
second the strong hyperfine interaction results in two
multiplets rather than two nondegenerate states. These
considerations in the case of the 0-0 hyperfine transition
result in the conclusion that Ti&Tz, though their ratio is

approximately unity. Thus, if one were to assume that
Eq. (1) was reasonably correct as long as the more realistic
values of Ti and T2 were used, one might predict a slight
light-intensity dependence for the microwave power-
broadened linewidth.

In the present work we show that this procedure for
determining the 0-0 linewidth is grossly in error. Specifi-
cally, we find that though the linewidth can be cast in a
form similar to Eq. (1), the resulting LEF is a complicat-
ed function of the degeneracies of the two hyperfine mul-
tiplets, the photon absorption rate, and the phenomeno-
logical relaxation rates yl and y2. Contrary to what one
would predict for Ti/T2, the correct LEF has a strong
light-intensity dependence and can result in a power-
broadened linewidth orders of magnitude greater than the
microwave Rabi frequency.

II. THEORY

A. The Vanier model

Consider a typical alkali-metal atom with nuclear spin
I As a result . of the hyperfine interaction between the nu-
clear and valence-electron magnetic moments, the atomic
ground state is split into two hyperfine sublevels charac-
terized by a total angular momentum quantum number F.
As a particular example of an alkali-metal atom's struc-
ture, Fig. 1 shows the low-lying energy levels of

Rb(I = —,
' ). (Important atomic parameters of some other

stable alkali-metal isotopes are collected in Table I.) In
the vector model of the atom the total angular momentum
is formed by the vector addition of the nuclear and elec-
tronic spin vectors. Following the standard nomencla-
ture, we label the two resulting eigenvalues a and b,
I' =a =(I+—,

'
) and I' =b =(I——,

'
), these hyperfine sub-

levels are separated by a frequency interval hvh~,
=A (I+—,

'
), where A is a measure of the hyperfine in-

teraction strength. In the absence of external perturba-
tions the two hyperfine sublevels have degeneracies
g, =2(I+1) and gb 2I, so that the total gro——und-state
degeneracy is g=2(2I+1). However, in a weak static
magnetic field Ho, defining the z axis of a coordinate sys-
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TABLE I. Some atomic parameters of the stable alkali-
metal-atom isotopes exhibiting the 0-0 hyperfine transition.
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FIG. 1. The figure shows the low-lying energy levels of Rb,
not drawn to scale. Due to the combination of Doppler and
pressure broadening, the excited-state hyperfine splitting was
barely resolved experimentally.

tern, this degeneracy is lifted. The quantized projection of
the total angular momentum on the z axis is then charac-
terized by an 'additional quantum number mF. Since the
gyromagnetic ratios (g factors) of the two hyperfine mul-
tiplets are, to a good approximation, equal but of opposite
sign, the resulting Zeernan sublevels within each hyper-
fine multpilet are shifted by vL —(mFgapa H—o)/h, where

gF and pz are the g factor and Bohr magneton, respec-
tively. Thus, for alkali-metal atoms with noninteger nu-
clear spin the two hyperfine multiplets each contain a
state with mF ——0, which to first order is unperturbed by
the presence of an external magnetic field.

In this section we want to obtain an expression for the
linewidth of the ground-state 0-0 hyperfine transition in
an alkali-metal atom as observed in typical gas cell
optical-pumping experiments. We assume that depopula-
tion pumping by frequency-selected light creates a popula-
tion imbalance between the two ground-state hyperfine
multiplets, and a resonant microwave field is detected ei-
ther by an increase in atomic fluorescence or a decrease in
transmission of the optical-pumping light. Specifically,
we are interested in the effect of the nuclear spin, mani-
fested in the different degeneracies of the two hyperfine
multiplets, on the microwave power broadening of the 0-0
transition. In order to obtain this expression we general-
ize a Rb 0-0 hyperfine line-shape model, developed by
Vanier and colleagues, s to the case of arbitrary nonin-

teger nuclear spin (I & —', ). The key to this generalization
lies in the fact that the symmetry of the Vanier model ex-
tends to any alkali-metal atom of noninteger nuclear spin:
no matter what the actual ground-state degeneracy, the
0-0 hyperfine line shape is obtained by the solution of
only five coupled differential equations.

To simplify our analysis we imagine a laser tuned to an
optical transition for one of the ground-state hyperfine

multiplets. Furthermore, we assume that the laser in-
teracts with all the Zeeman sublevels of this rnultiplet

equally, so that the optical excitation can be described by
one photon absorption rate 8. For an optically thin vapor
the signal S(b, ) (either transmission or fluorescence) is
then proportional to the increased population of the opti-
cally excited multiplet caused by a microwave field near
the 0-0 hyperfine resonance. Letting g be the fraction of
atoms in the absorbing multiplet, we have

S(b, )=qg —g (2)

where the subscript indicates the degree of detuning of the
microwaves from the atomic resonance (i.e., 6=co—coo,

where co is the microwave field frequency and coo is the
0-0 resonance frequency). In terms of the ground-state
density matrix elements,

g =g p(F, m~), (3)

where the tilde distinguishes the optically excited ground-
state hyperfine multiplet, and we define the nomenclature
for the density matrix elements:

p(F, mF ) = 5' 5 g(F, mF', F', mF )

=5FF5, (F,mF
~ p ~

F', mF ) .

p prelax +ppA, +pQpt ~

In general, Eq. (S) represents (2I+1)(4I+3) simultane-
ous complex equations (ignoring normalization). Howev-
er, with the Vanier model this number is considerably re-
duced. The model ignores all but one of the possible
coherences (i.e., the 0-0 coherence) because the Zeeman
sublevels are considered to be well resolved; thus,
2I (4I +3) density matrix elements can immediately be set
equal to zero. Furthermore, since the model assumes that

In the Vanier model the evolution of the ground-state

density matrix is governed by three independent processes:
uniform relaxation of the ground-state Zeeman sublev-

els, ' the microwave interaction, and depopulation pump-

ing;
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all Zeeman sublevels relax equivalently, that within a hy-
perfine manifold they all interact with the optical-
pumping light equally, and that there is no repopulation
pumping, the following relationship holds for the diago-
nal density matrix elements:

p(F, mF ) =p(F, mF )

for F=a,b and m~, m~&0 Equation (6) represents 2I
equations relating the diagonal density matrix elements of
the F =a multiplet and 2(I —1) equations relating the di-
agonal density matrix elements of the F =b multiplet.
Thus, this model reduces the problem of calculating
the 0-0 hyperfine line shape to [(2I+ 1)(4I +3)

2I(4—I +3)—2I —2(I —1)]=5 simultaneous equations
for all cases of noninteger alkali-metal nuclear spin.

In light of the above discussion, it is a straightforward
procedure to generalize the density matrix rate equations
of the Vanier model. %'e thus have

p(E, mF) = Bp(F—,mF)+Bg g p(F, m F)
m F

2Fp(F, mz ) +2Fp(E, mp ) +p(F, O) +p(F, O) =0 .

p( F,O;F,O) =p„(F,O;F,O)exp( i cot )—, (9)

where p„(F,O;F,O) is a slowly varying function of time,
and we use Eq. (9) in Eq. (7d). The equations for the real
and imaginary parts of the coherence which result are

Re[p„(F,O;F,O)]= — —+y2 Re[p„(F,O;F,O)]

Thus, we can express Eq. (7e) as a linear combination of
Eqs. (7a)—(7d). However, since we want to determine
both the real and imaginary parts of the coherence, we are
still left with five coupled differential equations. To ob-
tain the two equations for the coherence we make the
standard transformation

+y, [g ' —p(F, mF)] (mF&0), (7a)

p(E, O) = Bp(F,O)+—Bg ' g p(F, m~)
my

+yi[g ' —p(EO)j

—co&lm[p(F, O;F,O)exp(icot )),

—b, Im[p„(F,O;E,O) j,

Im[p, (F,O;F,O) j= ——+yz Im[p, (E,O;E,O)]2

(10a)

p(F, O) =Bg ' g p(F, mF)+y, [g ' —p(F, O)]

+~)Im[p(F, O;E,O)exp(i~t) j,

p(F, O;F,O) = — —+ye+i coo p(F, O;F,O)
2

LCD)

[p(E,O) —p(F, O) ]exp( i cot ), —

(7d)

p(E, ml; ) =Bg ' g p(F, m~)
mF

+ERe[p„(E,O;F, O) ]

[p(F,O) —p(E, O)] .

Equations (7a)—(7c) and Eqs. (10a) and (10b) offer a
complete description of the evolution of the ground-state
density matrix in the Vanier model. Expressed in matrix
form,

o.= —Acr+I, ,

+y)[g ' p(F, mF) j (mF—&0), (7e)

where o. can be thought of as a "reduced" density matrix
vector defined by

where y&(y2) is the phenomenological longitudinal (trans-
verse) relaxation rate in the "dark. " Note that in the
above equations we have ignored the effect of light
shifts, " since we are only concerned with the signal line
shape.

Normalizing the density matrix results in a relationship
among Eqs. (7), we have with

p(F, mz)(m~&0)

p(F, O)

p(F, O)

Re[p„(E,O;F,O) j
Im[p„(F,O;E,O) ]

(12)



LINE%IDTHS OF THE 0-0 HYPERFINE TRANSITION IN. . . 1443

2B g
g 2

——+ +y1 0 0

2I"B 8(4I+1)
+y1 0

2I'B B
y1 0 (13)

0 0 0 —+y2
B

CO]

2

CO]

2

1

k=y1g
0

Thus, from Eqs. (11)—(14), we have in steady state

(14)
—1 —1 2

S(b,)= rz(ri —rip )~i
g„B+gy, r', +a'+(r, /r„)~',

which is seen to be a Lorentzian of half-width

(21)

into forms similar to the two-level-atom approximation.
Thus, investing these rates with physical significance
should be done with caution. Finally, using Eq. (17) in
Eq. (2) we obtain an expression for the 0-0 line shape:

3

a;=yg ' g (A '); a„,=[r',+(r,/r, p)~', ]'" . (22)

It is a straightforward, though tedious, task to deter-
mine A ' and hence g, but after a good deal of algebraic
manipulation we obtain the relatively simple expression

g, y,
'
r', +a'+(r, /r, .)~',

(17)
g„B+gy 1 r,'+~2+(r, /r, p)~',

where gz and g„refer to the degeneracies of the optically
excited and nonoptically excited ground-state hyperfine
multiplets (pumped and unpumped) respectively; I"2 is the
standard dephasing rate indicated by Eqs. (10),

BI 2= —+y22

and the two terms I
&

and I &p can be thought of as longi-
tudinal relaxation rates:

gt yi(8+yi)P

gq(8+y )) FB—
2Yi(8+yi)(g„B+g'Y))

(g —1)8 +(g+2g )By 1+2gy 1

(20)

In the present context, however, I 1~ and I » are merely
constructs for casting the signal line shape and linewidth

so that the fraction of atoms in the absorbing state be-
comes

3

vl=2Foi+o2 ——y]g
' g [2F(A ')lJ. +(A ')2J] .

~i'-—~i &rz/rip (23)

so that the ratio I 2/I ~p plays the role of a linewidth
enhancement factor. Defining R as the normalized pho-
ton absorption rate, R =8/yb and approximating y~
=y2, the LEF becomes

(2+R)[(g„—1)R +(g +2g„)R+2g]
I 2~1 1P

——
4(1+R)(g +g„R)

(24)

and is plotted in Figs. 2(a) and 2(b) as a function of R for
several values of the nuclear spin. Several important
properties of the LEF are clearly illustrated by Fig. 2 and
are worth discussing in some detail.

(i) First, we note that the ratio I 2/r» is always greater
than unity. Thus, the ratio acts as a true enhancement
factor, so that linewidths less than the Rabi frequency
never occur.

(ii) No matter which hyperfine multiplet is optically ex-
cited, the LEF is an increasing function of nuclear spin.
Thus, power broadening for Cs(I = —', ) is always greater
(given similar conditions) than power broadening for

Rb(I = —,'). This prediction is of fundamental impor-
tance in advanced atomic clock design, due to the naive
expectation that the Q of a Cs gas cell frequency standard

B. Light broadening and relaxation narrowing

As with any line-shape model, one of the most intrigu-
ing predictions of the Vanier model concerns the
linewidth. In particular, in the limit of high microwave
Rabi frequency the 0-0 hyperfine linewidth becomes
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linewidth will no longer be power broadened, but will in-
stead be primarily determined by the dephasing rate I 2

which is an increasing function of the relaxation rate y.
This narrowing-to-broadening behavior in the dependence
of the linewidth on the relaxation rate y is illustrated in
Fig. 3.

III. EXPERIMENT
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FIG. 2. The linewidth enhancement factor I 2/I &p as a func-

tion of the normalized photon absorption rate A ( 8 =8/y;
yl ——yq) for several values of the nuclear spin. (a) and (b) corre-

spond to optical excitation out of the upper and lower ground-

state hyperfine multiplets, respectively.

should be greater than the Q of a s7Rb gas cell frequency
standard if the photon absorption rate, relaxation rate,
and Rabi frequency are equivalent in the two cases; this
expectation is based on the fact that the Q is proportional
to the resonant frequency of the 0-0 hyperfine transition.
However, since gas cell frequency standards normally
operate with some degree of power broadening, ' one
might actually expect the reverse to be true given the pre-
dictions of the present theory.

(iii) The LEF is an increasing function of the photon
absorption rate and hence the optical-pumping laser inten-
sity. Thus, the 0-0 linewidth depends on the light intensi-
ty in two distinct ways. The first is the well-known light
broadening which arises through the dephasing rate 1"z.
The second is an "anomalous" light broadening which is
present even under conditions of extreme microwave
power broadening. This latter is a direct consequence of
the strong light-intensity dependence of the LEF.

(iv) Lastly, the LEF is a decreasing function of the re-
laxation rate y, which implies rather odd behavior for the
0-0 linewidth. For example, assume that the 0-0 transi-
tion is initially power broadened and that R ~~ I. As the
relaxation rate y increases, the linewidth wiH exhibit
"anomalous" relaxation narrowing because of the reduc-
tion of the LEF. However, as y grows larger the

From the preceding discussion it is clear that a crucial
test for the generalized Vanier model lies in the predicted
anomalous behavior of the power-broadened linewidth.
Therefore, we decided to perform an experiment to verify
the existence of anomalous light broadening in the 0-0 hy-
perfine transition of Rb and to see if this anomalous
light broadening was consistent with the theoretical pre-
dictions. To this end, the experiment proceeded through
three separate phases. In the first phase we measured the
amplitude of the 0-0 hyperfine transition as a function of
microwave Rabi frequency. According to Eq. (21) and
the two-level-atom approximation the amplitude should
saturate in the microwave power-broadening regime.
Thus, this phase of the experiment qualitatively indicated
our ability to obtain sufficiently high microwave power.
As evidence of our ability to power broaden the linewidth,
and as a test. of our experimental arrangement, the second
phase of the experiment concerned the linewidth of the
0-0 transition as a function of microwave Rabi frequency:
according to Eq. (23) and the two-level-atom approxima-
tion, the power-broadened linewidth of the 0-0 hyperfine
transition should be a linear function of the Rabi frequen-
cy. Only with the successful completion of these first two
phases did we proceed to the third and last phase, which
was the observation of anomalous light broadening:
operating with full microwave power, we measured the
linewidth of the 0-0 transition as a function of optical-
pumping light intensity. According to Eqs. (23) and (24),
if the Vanier model's LEF had physical significance, we
would observe a relatively large decrease in the power-

100 i i i r r ~ I

—80—

~ 60—

—40
C3

~~20
C3

0.01 0.1 1.0 10 100
Normalized Relaxation Rate y/8

FIG. 3. The normalized linewidth b, ~&~/8 as a function of
the normalized relaxation rate y/8 (yI ——y~); optical excitation
is out of the upper ground-state hyperfine multiplet, and
col/8=10. For y/8 ~1 the figure shows the phenomenon of
"anomalous" relaxation narrowing for several values of the nu-
clear spin.
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FIG. 4. Schematic diagram of the experimental arrangement discussed in the text.

broadened linewidth as the light intensity was reduced. If
the two-level-atom approximation was correct, there
would only be a slight, if any, change in the linewidth.

The experimental apparatus is shown schematica11y in
Fig. 4. A Corning 7070 glass absorption cell which con-
tained an excess of Rb metal and 10-Torr N2 was situat-
ed in a TEO~~ cylindrical microwave cavity (I.=5 cm,
r, =2.8 cm) tuned to the Rb ground-state hyperfine
transition frequency 6835 Mhz; the cell filled the entire
cavity. The N2 was present in order to quench the Rb
fluorescence and act as a buffer to reduce the effect of
collisions with the cell walls. A static magnetic field of a
few hundred milligauss was applied parallel to the cavity
axis in order to define the quantization axis and to split
the Zeeman levels so that only the 0-0 transition was in-
duced by the microwaves. The cavity and ce11 were ther-
mostatically controlled to +0. 1 C at about 37 C and sur-
rounded by three layers of magnetic shielding.

A single-mode A1GaAs diode laser, Mitsubishi ML-
4101, tuned to the D~ absorption line at 794.7 nm, was
used to optically pump atoms from the 5 S,&2(F =2) hy-
perfine multiplet into the 5 S&&2(F=1) hyperfine multi-

plet; the laser intensity entering the absorption cell was
0.42 mW/cm . The Doppler-broadened absorption
linewidth (-500 MHz) was greater than both the laser
linewidth (60 MHz) and the Zeeman splitting ( ~700
kHz). Thus, optical pumping occurred from only the
F =2 hyperfine state, but from all Zeeman sublevels of
that state. Due to the combined effect of Doppler and
pressure broadening, the excited-state hyperfine splitting
was barely resolved.

The diode laser emission was collimated by a short-
foca1-length lens to a diameter of -0.8 cm so that an
aperture (-0.3 cm diameter) allowed only the central
portion of the laser beam to enter the absorption cell. De-

fining the optical depth ~d
'

by I =Ioexp( —'7dz}, where

Io is the incident light intensity and z is the axial position
within the absorption cell, we measured v.d

' ——7.6 cm. '

Thus, since the radial profile of the laser emission is well

approximated by a Gaussian, and since the vapor was op-
tically thin, the intensity distribution in the cell volume
was expected to be fairly uniform. These precautions
were necessary in order to reduce the effects of light-
induced inhomogeneous broadening. '"

The microwave frequency sweep was generated by ap-
plying a voltage ramp to a calibrated voltage controlled
crystal oscillator (VCXO), whose output at —102 MHz
was multiplied up to the Rb hyperfine frequency region.
Placing precision microwave attenuators in the microwave
transmission line allowed us to reduce the microwave
power entering the cavity in a controlled fashion. Since
the microwave power entering the cavity is proportional
to the stored energy in the cavity, reducing the microwave
power by precision attenuators resulted in a well-defined
decrease in the microwave Rabi frequency. A single volt-

age raxnp was initiated by a trigger pulse from a Hewlett-
Packard HP 9825 computer, which also served as a signal
averager. As the microwave frequency swept through the
0-0 hyperfine transition, the change in the transmitted
laser intensity was detected with a Si photodiode and digi-
tized for computer storage by an analog-to-digital con-
verter. Care was taken to be sure that the passage
through resonance was slow, since fast passage can influ-
ence both the signal amplitude and line shape. ' ' All
line shapes used in the data analysis represented a signal
average of 100 passages through resonance.

Due to the presence of the buffer gas, the Rb atoms
were essentially frozen in place in the cavity. ' Thus, the
microwave Rabi frequency experienced by a particular
atom was determined by its spatial position within the
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where r is the radial position and co&z is the peak Rabi fre-
quency. Since the laser beam was centered in the cavity
and had a radius much less than the cavity radius, the
spatial variation of the Rabi frequency for those atoms
probed by the laser was well approximated by

co&(0,z) =co~&sin(~z/L) . (26)

cavity mode. For a TEO&~ mode, the spatial variation of
the microwave Rabi frequency is given by'

r
n, (r&z) =co)p Jo 3.832—sin(mz/1. ) (25)

r,
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Furthermore, for the low laser intensities used in the
present experiment, the greatest contribution to the mi-
crowave resonance signal came from those atoms furthest
from the cell wall (i.e., z=L/2). ' ' Thus, the Rabi fre-
quency corresponding to our power-broadened linewidth
was primarily determined by co~&. This expectation was
tested experimentally by comparing the resonance
hnewidth at full microwave power and very low light in-
tensity (LEF-1) with the peak Rabi frequency measured
by the adiabatic rapid passage (ARP) technique. ' The re-
sults were in excellent agreement, being, respectively,
u~~(ARP)=(1. 9+0.2) kHz and 5,~2 ——(2.00+0.08) kHz.

In Figs. 5 and 6 we show, respectively, the resonance
signal's normalized amplitude and linewidth as a function
of normalized Rabi frequency. The results clearly show
that at the highest microwave power levels obtained the
resonance line shape was power broadened and in qualita-
tive agreement with both the two-level-atom approxima-
tion and the generalized Vanier model. We note that the
intercept in Fig. 6 does not represent a residual linewidth
in the limit of zero Rabi frequency; rather, it is taken as
indicative of the scatter in the linewidth measurements.

To verify the existence of anomalous light broadening,
we measured the linewidth of the 0-0 transition at full mi-
crowave power as a function of light intensity by placing
neutral density (ND) filters in the laser beam path. A
representative sample of the power-broadened line shapes
for ND=O, 0.3, and 1.0 is shown in Fig. 7, and the func-
tional dependence of the linewidth on light intensity is il-

FIG. 6. Experimental measurements of the linewidth of the
0-0 hyperfine transition as a function of normalized Rabi fre-
quency. The linearity of the data points is a clear indication
that the linewidth is power broadened. The intercept does not
indicate a residual linewidth; rather, it is indicative of the scatter
of the data points.

lustrated in Fig. 8. It is clear from both figures that there
is a relatively large change, on the order of 100%, in the
microwave power-broadened linewidth for the experimen-
tally accessible range of light intensities.

IV. DISCUSSION

In order to compare theory and experiment quantita-
tively, it is necessary to know R for at least one value of
the light intensity, since this quantity uniquely determines
the LEF through Eq. (24). Similarly, from the measured
linewidth at full light intensity, Eqs. (23) and (24) can be
used to fit the theory to one experimental point. Since we
had independently determined the Rabi frequency to be
-2 kHz, Eq. (23) resulted in a full light-intensity LEF:
I 2/I ~p

——3.6. This LEF in turn implied a value for the
normalized photon absorption rate at full light-intensity
Ro equal to 16. Thus, the solid curve in Fig. 8 was gen-
erated by reducing this value of Ro appropriately, and as
can be seen the agreement of this one-point theoretical fit
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FICx. 5. Experimental results of the relative signal amplitude
of the 0-0 hyperfine transition, pumping out of the I' =2 hyper-
fine multiplet. Saturation of the signal amplitude is quite clear.

FIG. 7. A sample of the experimental full microwave power-
broadened line shapes for three different light intensities; neu-

tral density = 0.0, 0.3, and 1.0. "Anomalous" light broadening
is readily apparent.
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step function radial light-intensity distribution. They find
that the spatial distribution of polarization in a cylindrical
cell can be written as a sum of diffusion modes:

I'(r, z) =g 2;go(IJ,;r lr, )sin(m. vz /L), (29)

where p; is the ith zero of the zero-order Bessel function
and A;„determines the amplitude of the mode. Using the
parameters of the present experiment we find that a
reasonable approximation is to ignore all terms other than
those with v=1 and to consider only the first six Bessel
functions:

FIG. 8. The full microwave power-broadened linewidth as a
function of relative light intensity. The dots correspond to ex-

perimental data; the solid line is a theoretical curve fit to the full

light-intensity experimental point.

y =yo+ yd = [Rb]uo,„+[N2]uobs+D/r, , (28)

where [Rb] and [Nz] are the densities of rubidium atoms

and nitrogen molecules, respectively, and o.,„and o.
bg are

the relaxation cross sections for spin exchange ' and

buffer-gas collisions, respectively.
Minguzzi et a/. ' have considered the spatial distribu-

tion of polarization in optical-pumping experiments for a

with the measured linewidths is excellent.
As a check on the theory, we can verify that the value

of Ro obtained with the theoretical fit is physically
reasonable. Since Ro ——Bo/y, this can be accomplished by
obtaining estimates of the full light-intensity photon ab-
sorption rate and the relaxation rate y. From our mea-
sured values of the laser intensity and linewidth, it is
straightforward to compute Bo..

Bo=f @(v—vo)o(v —vp)dv (27)

where @(v—vo) is the spectral density of the diode laser
tuned to resonance (the spectral profile of the laser is
Lorentzian), and o(v —vo) is the absorption cross section
for a photon of frequency v. The photon absorption rate
was evaluated numerically, since it was necessary to in-
clude natural, pressure and Doppler broadening into the
absorption line shape. The calculation resulted in

Bp ——740 s
The calculation of the relaxation rate y is actually fair-

ly difficult, because the diffusion of optically pumped
atoms to the cell walls, where they relax, is included

phenomenologically into the density matrix rate equa-

tions; rigorously, a term DV p should have been included

in Eq. (5), where D is the diffusion coefficient for Rb
atoms in N2. We therefore imagine that relaxation is

composed of two terms: a bulk relaxation rate yo
representing spin exchange and buffer-gas collisions and a
diffusional relaxation rate yd. Furthermore, we assumed

that the diffusional relaxation rate could be described by
some characteristic length r, for the hyperfine polariza-

tion distribution in the cell (i.e., we imagine a sheath of
polarization of radius r, surrounding the laser beam' ).
The diffusional relaxation rate can then be approximated

by yd ——D/I;, and therefore we have

6

P(r,z)-sin(mz/L) g .A;IJO(p;r/r, ) .

4B+3rd
T2 3B+8V

(31)

Equation (31) predicts that the LEF saturates at high
light intensities, and that the maximum enhancement in
the power-broadened linewidth is only 16%%uo. Both of
these predictions contradict the experimental data. Thus,

As a crude approximation, then, we can estimate r, as the
radial position where the sum over the Bessel functions
has dropped to one-half its value at r =0 and in this way
obtain r, -0.8 cm. Using this value of r, in Eq. (28) we

find that y-32 s ', which results in Ro-23. Thus, our
experimentally determined value of R o is physically
reasonable.

The above discussion clearly shows that the generalized
Vanier model is quantitatively consistent with the experi-
mental measurements. The question remains, however, as
to a two-level atoms ability to show similar behavior.
Obviously, if one made the additional assumption of
short-duration collisions, so that yl ——y2, the two-level-

atom approximation would be in grave difficulty. Under
this condition the two-level atom s linewidth becomes
b ~~2 ——[(I/T2) +co~]', so that the maximum light-
intensity-related change in the power-broadened linewidth

is Bo/8'&. Since Bo/cu&-0. 06, this model can only give
rise to a -0.04% increase in the linewidth, and this is

clearly contradicted by the experimental data.
One could, however, still choose to use the linewidth

formula obtained with the two-level-atom approximation,
but with more realistic values of T, and T2. In this case
T I /Tz would not necessarily be unity, and one might ex-

pect to predict a more sensitive dependence of the power-
broadened linewidth on light intensity. To make a fair
comparison between this modified two-level-atom approx-
imation and the generalized Vanier model, we will assume
that the optical-pumping conditions are the same as those
used in the calculation of the generalized Vanier-model
line shape: no repopulation pumping, equal optical exci-
tation rates from all Zeeman sublevels, and equivalent dif-
fusional contributions to yl and yq. Furthermore, since
the phenomenological relaxation is dominated by dif-
fusion (yd -23 s ) we are justified in neglecting the ef-
fects of both spin exchange and buffer-gas collisions.
With these considerations the LEF for the modified two-
level-atom approximation is
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there is no simple way to make the two-level-atom ap-
proximation consistent with experiment; however, even if
there were, one would be faced with the task of justifying
the ad hoc assumption of using realistic longitudinal and
transverse relaxation rates in a two-level-atom model.

V. SUMMARY

%'e have shown that one cannot adequately describe the
0-0 hyperfine line shape in optically pumped alkali-metal
vapors with a two-levd-atom approximation. Specifical-
ly, the effect of the nuclear spin, manifested in the dif-
ferent degeneracies of the two hyperfine sublevels, results
in a power-broadened linewidth that can be orders of
magnitude greater than the Rabi frequency. Furthermore,
when the power-broadened linewidth is properly analyzed,
both anomalous relaxation narrowing and anomalous light
broadening are predicted. In the present work the latter
was experimentally observed and compared with the

theoretical prediction.
To conclude, we note somewhat parenthetically that

Bhasker et al. have recently observed power-broadening
enhancement in some optical-pumping experiments on Cs.
Their LEF, however, was fundamentally different from
the one discussed above, since it arose from a physical dis-
tinction between longitudinal and transverse relaxation
rates in the presence of rapid spin exchange. The
enhancement factor under discussion here is more statisti-
cal than physical in origin, though the anomalies associat-
ed with the linewidth are just as striking.
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