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Comparison of the isolated-resonance approximation and multichannel quantum-defect
theory for dielectronic recombination
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The effect of overlapping resonances on dielectronic recombination cross sections and rate coeffi-
cients is examined using a simple two-channel model. Results obtained by multichannel quantum-
defect theory and the isolated-resonance approximation are found to be closely similar, for realistic
choices of scattering parameters and of radiative widths; i.e., except just below threshold where reso-
nances strongly overlap.

I. INTRODUCTION

The importance of the dielectronic-recombination (DR)
process in low-density, high-temperature plasrnas has been
recognized since the work of Burgess' in the early 1960's.
Over the past 20 years, many calculations of DR rate
coefficients (a ) for ions of coronal significance, and
more recently for ions occurring in fusion plasmas, have
been performed. Usually, such work makes use of the
isolated-resonance approximation (IRA), combined with
either distorted-wave ' (DW) or close-coupling theories.
However, approaches based upon configuration interac-
tion (CI) with the continuum, or the multichannel
quantum-defect theory (MQDT) of Seatons are possible;
see the review article by Seaton and Storey.

In practice, the MQDT and CI methods have been ap-
plied to the study of the structure of only limited numbers
of interacting DR resonances. It has proved difficult to
apply these procedures systematically over an entire DR
energy range, where hundreds or perhaps thousands of
resonances can appear. In particular, MQDT is not easily
applied when states of very low n are involved or where

radiative widths are large. Hence rate coefficients, which
involve a sum over the entire spectrum of resonances,
have not been produced in quantity by these methods. In-
stead, the more manageable IRA has been used extensive-

ly to provide these u values. '

The IRA may seem suspect, however, when either the
Auger width (I, ) or the radiative width (I, ) becomes
comparable to, or greater than, the spacing between adja-
cent resonances. This can be the case and could lead to
important corrections to a if, for instance, (1) the ionic
charge (Zt ) is large, and a continuum electron of large or-
bital angular momentum is captured to a moderately high
Rydberg state (HRS), or (2) Zt is small, and a continuum
electron is captured to a very HRS.

Recently, a model calculation of the DR cross section
(tr ), based upon MQDT, has appeared. This model is

simple, and can be obtained from it analytically, for
all values of the energy, and for all values of I „. Most

importantly, o. can be computed in both the isolated
resonance regime, and in the region of energies where the
resonances are overlapping.

In the following, we compare the detailed predictions of
this model, based upon MQDT, with an IRA calculation
for the same model system. As will be seen, the two
theories yield closely similar results except when reso-
nances overlap.

We describe the model in Sec. II. In Sec. III A we ap-
ply MQDT to the model system, and examine the proper-
ties of the derived o . Section III B considers the
characteristics of the IRA, when applied to the same
model system. Sections IV A and IV 8 describe o.

values obtained over ranges of the model parameters for
the MQDT and the IRA, respectively. A comparison of
the two approaches appears in Sec. V.

II. THE MODEL

The object here is to reduce to its essential features the
DR process, described by

where A is any Zt-times ionized atom, e (k„l, )

represents a continuum electron of energy k, (Ry) and or-
bital angular momentum /„y denotes an emitted photon,
and e indicates an excited state of the recombined ion
(single or double excitation). Following Ref. 9, we consid-
er a two-state target, for which both the ground and excit-
ed states are s states; we assume further that only the con-
tinuum /, =0 partial wave can produce a target excitation.
Therefore, the continuum electron is always captured into
an s state. The reaction (1) becomes

e (k„l,=0)+n s~(nds)(ns) —+(n s)(ns)+y,
where n and nd are the initial- and intermediate-state
principal quantum numbers, respectively, for the active
electron of the target, and where "radiative" stabilization
occurs via an s to s transition. The difference between the
target energies is labeled 5 (Ry). Throughout, spin is ig-
nored.

Just above the threshold for target excitation, k, )b„
the R-matrix elements describing the scattering are ap-
proximated by real constants, R» —=P, R22 =a, and
R i2 ——R2i —=y, where a, P, and y are arbitrary parameters
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within the model. Further, it is assumed that for all
k, & 4 these constants remain invariant. Finally, the ra-
diative probability I, is defined as another arbitrarily
chosen constant in the model. The model contains alto-
gether four free parameters.

Z„=n+ tan
1

27K

—2a
1 +P2 ~2

—6(ReZ„)

This function has simple poles at values of Z =Z„, where
n is an integer greater than or equal to 1, and

r

III. THE T%O THEORIES

A. MQDT
[ 1 +2(~2+P2)+ (~2 P2)2]1/2

2 I+(~+0)' (12)

Below the threshold for inelastic scattering, the elastic
phase shift ri is given (in MQDT) by

where 6(x)=1 for x)0, and 6(x)=0 for x &0. For
Z=Z„, one has that

g =tan 'IP —y[tan(~Z)+a] 'y I,
where

Z = I /[(b, —k, )]'i

(3)

(4)

S= 4i a—P/[a + ( 1 i P—) ]

k, —5+, + wZ„
iI,

Z.' 2

(13)

The elastic S-matrix element is, as usual,

(5)

The Z„values determine both the quantum defects p„,
and the Auger widths l, (n) (Ry). The effective quantum
number n is related to the quantum defect by

while the cross section for elastic scattering is

ere( ——
2 /

1 —S
[

2 .
C

(6)

n =n —p~

while

n* =ReZ„.

(14)

(15)

o;„,i —— 2(1 —iS i ),
k,' (7)

It is a consequence of (3) that o,&
shows characteristic

peaks due to resonance scattering (unless a=P, when
i~/»I).

The inelastic cross section, given by

The Auger width is given by

( ) 4 ImZn
(n')'

provided that ImZ„&& n*.

(16)

is zero for k, & 5, unless I „&0. For nonzero I „,we add
a negative imaginary part to the excited-state energy;
viz. ,

b,~b, i I „/2 . — (8)

tan(nZ) =—2 + i8 (10)

and both 2 and B are real functions of k, . The S-matrix
element itself is given by

r

(1+iP)tan(m Z) +a
(1—iP)tan(mZ)+u

Upon making this substitution,
i
S

i
& 1, and then

o;„,t&0. Here, I, (Ry) models the radiative decay of the
inner-shell electron; the HRS electron decay is too slow to
be important. However, both of these possibilities are in-
cluded in a more general way in Ref. 10.

To simplify matters further, we require additionally
that detR =0, or aP= y . Now, Eqs. (3), (5), and (8) taken
together yield

(9)

where

B. IRA

k, 0 k, b+, + ——,' [I,+I,(n)]

(17)

In evaluating this expression we take model values of I „,
and values of n* and l, (n) given by Eqs. (15) and (16).
Equation (17) is expected to be valid provided that
I', +I,(n) «1/n —1/(n+1) . However, see the re-
marks of Shore concerning this point, " i.e., it was sug-
gested that this result might have a wider validity.

IV. RESULTS

A. MQDT

In order to facilitate comparison between the two
theories, we rewrite Eq. (9) as

According to a well understood prescription, ' the DR
cross section, in the isolated-resonance approximation, is
given by

l, (n)

cr;„,1 —— 2 apsinh(2x )(cos x++sinh x ) I a (cos x++sinh x ) +a[sin(2x+ )+f3sinh(2x )](cos x++sinh x )
C

+ —,(I+P )[sin (2x+)+sinh (2x )]I (18)
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where

and
w—=r, /2(b —k, ) (20)

x = (1+& )'~ +1 '~ 19
M2(h —k')' '(1+W')' '

[I+(~+P)'] .

(2) If I,» 1, then x+ « 1 and

4n p/a
inel— I,

(21)

(22)

as deduced from Eq. (10).
The following cases are thought to be of interest.
(i) Resonances strongly overlapped due to "large" I „:

k, ~b„ I „&0. From Eq. (19), we obtain the following.
(1) If I „«1, then x+ » 1, giving

(ii) Isolated res-onance regime: I,/(6 —k, ) « 1. This
condition im lies that both x+-m. /[(b, —k, )]'~ and
x (ml „/ 2)/[2(b. —k, )] ~ . Consequently, the in-
elastic cross section becomes, if cos x+ )&x and
sin x+ »x (usually satisfied),

4m CX X

k, [a cos x++a sin(2x+ )+2apx +(1+pz)sin2x+ ]
This function has peaks when

tan(2x+ ) = —2a/(1+ p —a ),
i.e., when x+ —~ReZ„, from Eq. (12). The value of the cross section at the peak is

sm a x
k, I (a +p +1)+4apx —[(1+pz)z+a~+2a~ —2a2p2]'~3

I

(23)

(24)

(25)

Three cases may be distinguished.
(1)

I
a

I
«1,

I P I
«1; from Eqs. (12) and (16),

1,(n)=4aP/nn'3 and

2' I p 1= r.(1)a ~0",y y'+ (4y'+ r,')1

l, (1)

2mx /k, 4m 1,
(x +ap/2) k, l, (n)

(2) I~ I
&)1,

I
a

I )) I pI; I,(n)=4p/man and

4m/k, ux 4n.l „
(p+2~x ) k,'r. (n)

(3)
I p I

»1
I p I

» I
~

I

' r.«)=4/~pa" »d
4m. /k, Px 4m. l „
(a+2px ) k,'r. (n)

(26)

(27)

(28)

ml, (1)

3/2

I,(l)

tan ' +d'(r, (1)),

for I,(1)« l.
We have the following two cases.
(1) I F«1

o;„,)= r, (1) .1nc —
2g 0

(30)

(31)

The value of (a;„,&),„ is identical in all these three cases.
We next consider the IRA predictions, for a similar range
of conditions.

B. IRA

(i) Resonances strongly overIapped due to "large" I „:
k, ~b„ I „&0. From Eq. (17), one has that

CO 3
DR ~I

I „+,I'.(1)n' " n3

(29)

where we assume that n=n' and r, (n) ~n . Upon
converting the sum to an integral, this becomes

(2) 1 „»1;in this case the sum must be done explicitly
and gives

4.81m I', (1)
lncl

T

(32)

(ii) Isolated resonanc-e region: I- „/(6—k, ) « 1. From
Eq. (17), the maxima of the inelastic cross section are
given by

(o;„,))m,„=4m I,/k, l, (n) . (33)

This expression agrees with the MQDT results obtained in
Eqs. (26)—(28). We have not established the equivalence
of the areas under the resonance peaks, determined by the
MQDT and IRA methods. And, indeed, these areas are
not, in general, equal. However, having shown that the
peak heights are identical, that the widths are identical (by
construction), and that the shapes are similar (Lorentzian
in the IRA, and nearly Lorentzian in MQDT), we con-
clude that the areas are abnost equal, in general. Explicit
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FIG. 1. Plot of the ratio hf vs a, for selected values of P; see

Eq. {34).
FIG. 2. Estimated dependence of o.„vs n (bottom curve,

abscissa in relative units), and M vs n for ions of ZI -+3.

calculation for a range of a,P values confirms this asser-
tion.

V. DISCUSSION

Comparing the predictions of the MQDT and IRA cal-
culations, we see that in the isolated resonance region of
energies the theories are closely similar, independent of
the values of a and P; i.e., see Eqs. (26)—(28) and (33). At
energies just below threshold, however, where the reso-
nances are strongly overlapped, the theories can be dif-
ferent. For example, when k, ~6 and I, && 1 the
MQDT predicts cr;„,lect „' whereas the IRA predicts
o.;„,l~ I, '; see Eqs. (22) and (32). More interesting physi-
cally is the case of k, ~A and I „&&1, for which the ratio
of the two cross sections is found to be [from Eqs. (21)
and (31)]

M-= ( ~inel) IRA

( inel )MQDT

where I,(1) is given by Eqs. (12) and (16). For extremes
of a and P, such as (1) ~a

~
&&1 and ~P( &&1, (2)

~a~ &&1 and ~a~ && (P~, and (3) ~P~ &&1 and
[P[ » [a (, one has that M-0. 5 . If [a [

= )P[ »1,
then M-ln(2a), the worst case. But, if both

~

a
~

and
~ P

~

are of the order of 1 then M-1; see Fig. 1. Physi-
cally, one expects that

~

a
~

& 1 and
~ P

~

& l.
Finally, we emphasize that in our experience it is the

isolated-resonance region which dominates the DR rate
coefficient and DR cross section. ' For instance, when
ZI & 15 then typically I „&1,(n) for all n How. ever, for
these cases one has that I, «ZI ln so that resonances
are very widely spaced. This remains true until n values
are attained (n:n, &20) s—uch that for n &n„cr„be-
comes negligible. Therefore, for high-Z ions overlapping
resonances are unimportant. Now, if instead one consid-
ers ions for which 1 &Zl &5, then I „&1,(n) until very
large n values are reached (n =ne & 100). For such cases,
usually, I, (n) &Zi/n too, so that resonances do not
overlap until n & n, . However, the contribution to the to-
tal DR cross section from all n &n, is again small com-
pared to the contribution from n &n, since, as before,
O.„-n in the n )n, region. These remarks are illus-
trated in Fig. 2. Hence, over the entire range of ZI, it is
the isolated-resonance region which dominates o
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