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Results of ab initio calculations for the interaction energy of the Mg-He, Mg-He+, and Mg-He +

systems are presented, for a wide range of internuclear distances. The importance of using ab initio
methods for the evaluation of accurate pair-wise potentials is discussed. A strong dependence of the
interaction energy on the charge state of the projectile is demonstrated. This effect, which exhibits
marked deviations from the predictions of any parametric theory, is shown to be also crucial in the
behavior of corresponding string and planar potentials commonly used in both experimental chan-
neling and surface scattering studies. The role of long-range binary terms on the construction of
string and planar potentials is also discussed.

I. INTRODUCTION II. METHOD

In studies of the interaction of energetic ions with
solids the atomic interaction potential is always of central
importance. ' Recent years have seen the advent of a
number of different experimental measurements, all high-
ly sensitive to the details of the interatomic potential
operating between the colliding partners and all
demonstrating the need for accurate estimates of the in-
teraction energy, especially over the smaller interatomic
distances, where there is repulsion. In addition, there has
been a rapidly growing interest in theoretical methods
directed at deriving, from first principles, the interaction
potentials to be used in collision theory. " In the
present studies, instead of employing empirical potentials,
a binary potential is adduced using ab initio molecular-
orbital procedures. The increasing attention being paid to
ab initio, as opposed to empirical or parametric poten-
tials, is due both to clear discrepancies observed between
the former and the latter and to marked inadequacies re-
vealed in parametric potentials when attempts are made to
use them in explaining quite sophisticated experimental
range determinations and ion-surface scattering studies. "

The work we describe here is devoted to the ab initio
potentials for the Mg-He system and for the correspond-
ing ionic states Mg-He+ and Mg-He +. A strong depen-
dence of the interaction energy on ionic charge is ob-
served, showing marked deviations from the predictions
of any universal parametric theory presently available. A
proper parametrization is suggested for the complete
range of internuclear distances considered. Application to
the construction of continuum string and planar poten-
tials' ' is also discussed, as is the effect of long-range
binary forces on the calculation of these potentials.

A molecular-orbital method was used to obtain the
Mg-He, Mg-He+, and Mg-He + interaction potentials.
The basic computer program was PSHoNDo, a modified
version of the earlier HoNDo program, ' which includes
the ab initio potentials of Barthelat et al. ' These pseu-
dopotentials are now widely used and have been found to
agree well with all-electron calculations. In particular,
they have been successfully applied to systems which in-
clude monovalent and divalent cations. '

Since we were particularly interested in constructing the
interaction potential for relatively small internuclear dis-
tances (well into the repulsive wall), care had to be taken
in considering the validity of the pseudopotential model
for this region. A correction term (core correction) due to
the neglected repulsion between the frozen core of the
magnesium atom and the helium nucleus had to be in-
cluded. This term was evaluated in the following way.
First, the ground-state energy of the Mg +-He + system
was computed with all the electrons treated explicitly.
Then, in order to ensure a frozen core, this energy value
was taken to be that of the first self-consistent-field (SCF)
iteration, with the antisymmetrized product of the atomic
wave function as the trial function. From the above ener-
gy we subtracted the nuclear repulsion plus the total ener-
gies of the isolated Mg + and He + systems, thus yielding
the desired core correction. In order to verify the adequa-
cy of such a corrective procedure three different pseudo-
potentials, PS-I, PS-II, and PS-III (allowing, respectively,
2, 8, and 10 electrons of Mg to be considered explicitly),
were used to calculate the interaction energy for the vari-
ous internuclear separations of the Mg-He system at the
SCF level. Table I shows the results of such calculations.
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TABLE I. Comparison of the interaction energies (in a.u. ) for the Mg-He system in the strongly
repulsive region of the three different pseudopotentials (see text).

8 (a.u.)

1.00
1.50
1.75

PS-I
(z=6)

2.7351
0.9590
0.5796

PS-II
(z= 8)

3.1103
1.0243
0.5945

PS-III
(z= 10)

3.2178
1.0193
0.5835

PS-I +
core correction

3.2224
0.9961
0.5900

It is readily apparent that the Mg pseudopotential which
treats explicitly only the valence electrons (PS-I) can be
used for internuclear distances as short as 2.0 a.u. Fur-
thermore, for separations down to 1.0 a.u. , the core
correction is very appropriate. Accordingly, all calcula-
tions made for distances shorter than 2.0 a.u. were
corrected in the manner described above. Specific param-
eters for the three pseudopotentials used in the calcula-
tions are reported elsewhere. ' We note at this stage that,
in performing this correction, we have invoked the
frozen-core approximation characteristic of pseudopoten-
tials. The core of Mg is assumed to be the same in the
presence of He, He+, or He +. Nonetheless, we will be
referring to our results as ab initio, so as also to distin-
guish them from those obtained by empirical or sem-
iempirical methods.

The basis set used for testing the adequacy of the pro-
cedure to compute the core correction was of a double-
zeta-plus-polarization quality, i.e., four Gaussians con-
tracted [3,1I and one p-polarization function on each
atom. The basis set used for computation of the energy
profiles was of a triple-zeta-plus-polarization type, i.e.,
five Gaussian functions contracted I3,1,1I and three p-
polarization functions. The Gaussian exponents were op-
timized in atomic pseudopotential calculations using the
ATQM program. ' Table II displays the numerical values
for the basis set.

All calculations were performed with an SCF plus
configuration-interaction (CI) procedure in order to in-
clude the correlation energy. All valence CI calculations
were made according to an improved version of the ctp-
SI algorithm,

' which combines variational and perturba-
tion techniques. A variational zeroth-order wave function
is built from an iterative selection of the most important
determinants, the others being taken into account through

a second-order Moiler-Plesset perturbation. All deter-
minants having a coefficient larger than 0.03 in the first-
order wave function obtained by perturbation have been
included in the zeroth-order wave function at the final
step. The number of determinants in the zeroth-order
wave function was 23 for Mg-He, 70 for Mg-He+, and
44 for Mg-He +, and all ground states were of X symme-
try.

Before proceeding, we emphasize that it is necessary to
be aware that the dissociation limit for the ground state of
the (Mg-He)+ system is Mg+( S)-He('S). Due to the
Rydbergization of the excited states of magnesium, there
exists a multitude of other states between Mg('S)-
He+( S) and the former, with the same symmetry and
high transition probabilities between them. Their relative
energy positions can be constructed from the experimental
ionization potentials. It is clear then that a realistic po-
tential curve under these conditions would require a de-
tailed (and costly) study of the whole spectral region, in-
volving a great number of excited states. In this work we
have restricted ourselves to the potential curve of a single
electronic state of the (Mg-He)+ system, namely, the
Mg('S)-He+( S) state. The results will therefore apply
mainly to keV ion-surface scattering (and channeling) pro-
cesses, where the collision time will be rather short (in
contrast to reactive collisions in quantum chemistry), and
where we may accordingly expect that the probability of
transition between different electronic states will be small.
As a consequence, for practical purposes the assignment
to one particular state can in this case be justified. In an
analogous manner a similar approximation was made for
the Mg-He + state. In this case we found an avoided
crossing in the region between 6.0 and 9.0 a.u. with a po-
tential curve corresponding to an excited state of the
Mg+-He+ system, as shown in Fig. 1. Since transitions

TABLE II. Atomic Gaussian basis sets used in this work.

Orbital
symmetry Exponent

1.661 910
0.785 243
0.134225
0.071 435
0.033 260

Contraction
coefficient

0.063 918
—0.276456

0.340 769
1.0
1.0

Exponent

56.713 556
8.899 423
2.296068
0.890058
0.280 503

He
Contraction
coefficient

0.014 839
0.091 507
0.260 238
1.0
1.0

2.80
0.20
0.07

1.0
1.0
1.0

4.50
0.37
0.05

1.0
1.0
1.0



1384 J. C. BARTHELAT et al. 31

0.10

0.05—

0-
0

C3

"(p -0.05-

-01-

He '(S)+ Mg ( S)

Consequently, whenever we refer to the He+ or He + sys-
tems interacting with one or more Mg atoms, we shall ta-
citly assume the validity of this single-state curve.

III. RESULTS AND DISCUSSION

A. Ab initio binary potentials

-0.15-
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)+He (S)
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FIG. 1. Ab initio results for the Mg-He + system showing an
avoided crossing with an excited state of Mg+-He+ (see text).

between different states are being neglected, an interpola-
tion for the potential in the crossing region was carried
out in such a way as to consider only the potential curve
for the Mg('S)-He +('S) throughout the whole range.

The values of the ab initio interaction energies for the
Mg-(He, He+, He +) systems are presented in Table III.
In the case of the Mg-He system we have found that the
correlation energy has a nearly constant value ( —0.058
a.u.) over the range of interatomic distances treated, in
agreement with the results of Demetropoulos et al. ' As
a consequence of this, correlation has a negligible effect
on the interaction energy, as may be verified from Table
III, and so the results at the SCF level are quite adequate
for study of the system in this region. On the other hand,
for the Mg-He+ and Mg-He + systems it becomes neces-
sary to include the effects of correlation since it gives rise

TABLE III. Ab initio interaction energies (in a.u. ) for the systems considered in this work.

R (a.u. )

1.0
1.5
2.0

2.5
3.0
3.5
3.75
4.0

4.25
4.5
4.75
5.0

5.25
5.5
5.75
6.0

6.25
6.50
6.75
7.0
7.5
8.0

8.5
10
11
12
13
15
18

E(He +-Mg) '
2.9423
1.3290
0.7467

0.4133
0.1619

—0.00003
—0.0508
—0.0862

—0.1097
—0.1240
—0.1315
—0.1340

—0.1330

—0.1253
—0.1200

—0.1091

—0.0934
—0.0905

—0.0080
—0.0060
—0.0044
—0.0032
—0.0019
—0.0009

E(He+-Mg) '

2.8286
1.1557
0.5750

0.3335
0.1935
0.1023

0.0461

0.0147

—0.0012

—0.0056
—0.0086
—0.0104
—0.0115

—0.0119

—0.0115
—0.0110
—0.0097
—0.0083

—0.0069

E(He'Mg) b

3.0139
0.9656
0.3291
(0.3275)
0.1332
0.0678
0.0404

0.0249
(o.025o)

0.0150

0.0087
(0.0085)

0.0026
(0.0025)

0.0006

0.000 10
(0.000 11)

E(He -Mg) '

0.3306

0.1319
0.0679
0.0406

0.0327

0.0090

'SCF energies.
SCF + CI values are given in parentheses. Energy referenced to total energy at R =40 a.u.

'SCF + CI energies from Ref. 10.
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to substantial modifications of the SCF values. The final
corrected values for the three systems are presented in
Table III. As will be seen, both ionic states show a clearly
defined minimum: at a distance of 6.25 a.u. with a depth
of 0.0119 a.u. for Mg-He+ and at a distance of 5.00 a.u.
with a depth of 0.1330 a.u. for Mg-He +.

1

B. Parametrization of the potentials

In order to make best use of the ab initio results in
practical apphcations, an analytical representation of the-
corresponding curves is desirable. Careful analysis of the
results presented in Table III immediately suggests
parametrization of the ab initio potentials for each ionic
state of the Mg-He system in a manner analogous to that
used recently by Cruz et a$. This comprises a Bohr-type
term representing the core-core repulsion, and dominant
at very small interatomic distances, plus a Born-
Mayer —type term for the softer valence part, written as
follows:

Zft2
Vo(R)= (ARe +e ~ ),R

in atomic units (e /ao, where ao is the Bohr radius). R is
here the interatomic distance (in units of ao), Z~ and Z
are the atomic numbers of each atom, and A, a, and P are
quantities which are obtained from adjustment to the
ab initio results.

The strong change in curvature observed in the case of
the ionic systems for intermediate nuclear separations
may be explained in terms of an induction energy, due
fundamentally to the interaction between the ionic charge
and the polarized electronic cloud of the neutral system.
It is well known ' that the multipolar character of the
induction interaction as well as parity considerations of
the ion-atom states produce relevant long-range terms
which behave as R (charge —induced-dipole) and R
(induced-dipole —induced-dipole). In this connection we
could, in principle, perform a parametrization which
should come as close as physically possible to a more real-
istic expression with the functional form

V(R) = Vo(R)+C(R +C2R

with, Vo given by Eq. (1), and where the constants C& and
C2 could be obtained in terms of adjustable parameters
which yielded a good fit to the ab initio points. In this
work, however, we have chosen an alternative expression
for the long-range terms which is simple and permits an
accurate description over the full range of internuclear
distances considered. We accordingly propose the follow-
ing expression for the Mg-He and Mg-He+ systems:

V(R) = Vo(R) C—R exp( —yR ), (3a)

+C'R exp( —y'R ), (3b)

where C' and y' are also obtained from adjustment to the
ab initio results. The numerical values of the parameters
A, C, C', a, P, y, and y' are displayed in Table IV.

It is certainly worth mentioning at this stage that the
exponential factors appearing in the long-range terms in
Eqs. (3) serve the purpose of providing a rapid cutoff as R
decreases. It is also stressed that, although chosen on the
basis of physical intuition, no direct physical meaning
may be assigned to these terms unless this functional form
is used consistently with Eq. (2). In their present form
Eqs. (3) constitute simply an accurate description of the
ab initio potentials over the range of distances studied.
The extra term appearing in Eq. (3b) is a direct conse-
quence of the fact that, for this system, an avoided cross-
ing occurs at medium distances. This behavior cannot be
reproduced by a single 8 term. As may be clearly seen
from Fig. 1, the ab initio points deviate from the
parametrized curve in precisely the manner to be expected
due to the presence of the competing state.

Equations (3) have been used to parametrize the
ab initio results for the entire range of interatomic dis-
tances reported. The results are shown in Fig. 2. For dis-
tances less than 0.5 a.u. , the Thomas-Fermi-Moliere po-
tential was considered as an asymptotic limit since the
ab initio potentials coalesce into a single curve (see Fig. 2)
suggesting, as expected, correct and proper use of univer-
sal potentials for very short interatomic distances. It is to
be noted that inclusion of the long-range terms permits an
extremely satisfactory description over a wide range of in-
teratomic distances. In particular, the very good agree-
ment of the parametrized potential with the ab initio re-
sults for the Mg-He + system at large distances (R ) 10
a.u. ) should be noted.

Although for the neutral (Mg-He ) system the region of
the potential minimum is not contained in our calcula-
tions, the corresponding parametrized potential predicts
the existence of such an extremum at R =9.8 a.u. with an
energy of —6.76 X 10 a.u. Recent full-CI calculations
of Chiles and Dykstra with a saturated basis set show
the existence of a minimum at R = 10.6 a.u. with an ener-

gy of —1.0&&10 a.u. for this latter system. This agree-

where Vo is again given by Eq, (1), and C and y are quan-
tities obtainable from the ab initio results. For the Mg-
He + system, we propose the alternative expression (see
below)

V(R) = Vo(R) CR— exp( —yR ')

TABLE IV. Numerical values of the parameters used in the analytical expressions to fit the ab initio potentials (all values in atom-
ic units).

System

He Mg
He+-Mg
He +-Mg

0.0542
0.2083
0.2580

0.9921
1.0530
1.0415

2.2500
3.0030
3.6652

158.13
6300.0

536 366.0

1888.8
67.578
26.437 5650.0 700.0
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FIG. 2. Potential-energy curves for the parametrized
ab initio potentials. The curve labeled CD corresponds to an al-
ternative parametrization including the van der Waals minimum
reported in Ref. 23 for the neutral case {see text). Also included
are the following selected universal potentials: (1.) Lindhard
(Ref. 12), (B-Z) Biersack-Ziegler {Ref. 24), and {M) Thomas-
Fermi-Moliere (Ref. 2). Note the changes of scale.

Vca(R) = Vo(R) CR ' exp( —yR ), — (3c)

with C=1.13&(10e ao and y=4394.45ao.
Together with the parametrized potentials, Fig. 2 shows

the predictions of several universal potentials widely re-
ferred to in the literature. ' ' ' It is readily apparent
that for internuclear separations of about 1.0 a.u. the
ab initio and universal potentials tend to coalesce into a

ment may be construed as an expression of confidence in
the choice of the analytical potential function employed,
if we take into account the small numerical values in-
volved. However, there remains a large percentual
discrepancy regarding the depth of the potential well,
which is of a van der Waals type. Of course, attempts to
reproduce such a small value with the basis set here con-
sidered were not successful. We did not perform the cal-
culation in the region of the van der Waals well due to the
large computational cost involved in "saturated" calcula-
tions. However, we have used the results of Chiles and
Dykstra for the position and depth of this potential well
in order to properly account for it. The curve labeled CD
in Fig. 2 corresponds to an alternative parametrization
which, in addition to our ab initio points, includes values
reported by these authors. In this case the pararnetrized
potential takes the form

single curve. However, for intermediate distances and
beyond, quite marked deviations are evident. A very
strong dependence of the potential-energy curve on the
projectile charge state is observed in the ab initio results.
For instance, even though the region between 1.0 and 2.0
a.u. is characterized by the same qualitative behavior,
there are relatively large differences in the numerical
values. The Biersack-Ziegler potential provides a
reasonable average over the three curves for the repulsive
component. At still larger distances the marked
minimum shown by the ionic systems is, of course, not at
all found in the predictions of the universal potentials.

The pairwise interaction potentials described here may
be directly used in studies of the penetration of ions into
solids. In this case the neutral system may well be the
most appropriate, because of the high probability of neu-
tralization of a moving ion as its velocity decreases. So
far, penetration studies dealing with range calculations
have employed the repulsive part of the interaction only,
with quite satisfactory results provided that accurate pair-
wise potentials are used (see, for example, Refs. 6, 7, and
11). On the other hand, surface scattering and planar and
axial channeling experiments with low-energy ion beams
(energies above 1 keV) apparently show good agreement
with calculations using continuum string and planar po-
tentials' based on the superposition of the gas-phase pair-
wise repulsive interaction of projectile and solid atom. As
a consequence, more accurate and reliable descriptions of
the basic interaction are also now being increasingly used
for the construction of continuum potentials.

V(z)=d ' f V(+x +z )dx, (4)

Vp(z) =2mNdp f V(Yp +z )pdp

(for continuum string and continuum planar potentials,
respectively), where z is the distance from the projectile to

. the string or plane and where, as usual, d is the interatom-
ic distance between neighboring atoms in the string. The
product Xdz in Eq. (5) represents the average number of
atoms in a plane, with X the atomic density and d& the
distance between atomic planes in the crystal. Finally, V
is the binary potential between the projectile and an atom
in the plane (string).

As we shall see further below, Eqs. (4) and (5) are par-
ticular cases of a more general expression involving the
periodicity of the surface lattice. Following Cabrera
et al. ' the total potential between the projectile and the
solid surface may be expressed as the Fourier sum:

u(r) = g uG(z) exp(iCs. R), (6)

with r=(x,y,z) the position vector of the projectile with
respect to an origin fixed at the surface, 6 a two-

C. String and planar potentials

According to Lindhard, ' ' there is a direct and funda-
mental relationship between the basic pairwise potential
and the continuum string and planar potentials derived
from it:
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dimensional reciprocal surface lattice vector (see Ref. 25),
and R a vector on the surface such. that r=(R,z). The
expansion coefficients UG are readily obtained:

uG(z) =s ' f u(R, z) exp( i(—s R).d R, (7)

where the subscript s indicates integration over a unit sur-
face cell of area s. If the interaction potential between a
given projectile and the solid is written as the direct super-
position of projectile and solid-atom pairwise potentials
then

u(R, z)= g V(
~

r —r~
~
),

N

where r& denotes the vector position of an atom in the
solid and the sum is taken over all X atoms. Using Eqs.
(7) and (8), and taking into consideration the different
planes p that form the solid, Cabrera obtains finally for
the expansion coefficients

uG(z) =2ms ' g exp(ipCx. R3)
p=0

string potentials are obtained as follows:

V, (z) =I,(z) Cd—'z f dxv'x/(1 —x)g (x)

Xexp( —yx /z ),
with

z x

[using Eqs. (3a) and (3c), respectively],
1

V,+(z)=I,(z) Cd —'z f dxv'x/(1 —x)

Xx exp( —yx/z ),
Vg

+ (z)=I, (z) 2Cd '—z

X x x4 1 —x'exp —yx z
0

1+C'd-'z 'f -dxx/v'1 —x

X exp( —y'x' /z'),

(1 la)

(1 lb)

(1 lc)

(1 ld)

X ~ p'+z+p~, ''"
XJo(pG)pdp, (9)

where R3 is the tangential component of a primitive vec-
tor entering the surface with a normal component v, k (v,
not necessarily an integer), p is the magnitude of the
tangential component of the vector r —r~, and Jo is the
zeroth-order Bessel function.

The physical meaning of the expansion coefficients,
uG(z), has been discussed by several authors. ' The case
G=O represents the average of the projectile-surface in-
teraction, while the G&0 components correspond to dif-
fracting potentials in atom-beam diffraction experiments.
Moreover, for a single plane of atoms the average poten-
tial ( G=O) given by Eq. (9) reads as follows:

Vo(z)=2rrs ' f V(+p +z )pdp, (10)

which corresponds to the continuum planar potential [Eq.
(5)] proposed by Lindhard. An equivalent expression for
the continuum string potential [Eq. (4)] may be readily
obtained. from Eq. (9) if we recognize that the string is a
particular case of the plane.

An important feature of the average string and planar
potentials given by Eqs. (4) and (10) is that they do not de-
pend functionally on the detailed crystal structure of the
solid, except for the area of the unit cell, s, in Eq. (10)
(e.g., for a simple cubic lattice s =d and for face-
centered cubic s = —,d ).

The quantity of importance is the pairwise potential V.
We now use Eqs. (3), (4), and (10) to construct the average
planar (string) potentials for the He, He+, and He + sys-
tems and a plane (string) formed by Mg atoms, paying
particular attention to the effect of the long-range attrac-
tive terms of the binary interaction on the string and pla-
nar potentials, respectively.

Substituting the binary potentials for the Mg-
(He,He+, He +) systems into Eq. (4), the corresponding

where I,(z) is the contribution from the repulsive term,

2Z JZ2I,(z) = [AzKi(az)+Ko(Pz)] .
d

(1 le)

with

V~(z) =2trs '[I~(z) ——,
'

Cy 'h (z)], (12a)

1 —exp( —y/z )
h(z)= '

y [1—(1+y/z )exp( —y/z )]4

[using Eqs. (3a) and (3c), respectively],

Vp+(z)=2ns. 'II~(z) ——,
' C. y [1—(1+y/z )

(12b)

X exp( —y/z')] j,
(12c)

Vp+(z) =2ms '[Ip(z) Cz f(y,z)—

+ —,C'y'[1 —exp( —y'/z )]j, (12d)

f(y,z) =6z'/y' (6z'/y" +6z'/y'—
+3z /y +z/y) exp( —y/z),

and

(12e)

I~(z) =Z, Zz[Aa ( I+az)e +P 'e ~'] . (12f)

The integrals appearing in Eqs. (11) were evaluated nu-
merically by means of a 200-point Chebyshev procedure,
maintaining in all cases an accuracy of 10 ~. We have
specifically considered the Mg((X}01) surface, for which

A, C, C', a, P, y, and y' are the parameters with corre-
sponding values given in Table IV, and Xo and KI are
modified Bessel functions of the zeroth and first order,
respectively. Similarly, from Eq. (10) the following ex-
pressions for the planar potential are obtained for each
case:
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FIG. 3. Average string (a) and planar (b) potentials for the
neutral, single, and doubly charged systems treated in this work
(see text). Curves labeled CD were obtained with an alternative
binary potential (see caption of Fig. 2). Also shown are the
string and planar potentials constructed from the Lindhard (L)
and Thomas-Fermi-Moliere (M) binary potential curves, respec-
tively. Note the changes of scale.

s =v 3/2d and where d=6.05 a.u. is the closest packing
distance in the Mg-hcp structure. Figures 3(a) and 3(b)
show, respectively, the average string and planar poten-
tials for the cases described above. Corresponding curves
obtained for some selected universal potentials are also
shown for comparison. The general trend of the curves
reflects the structure of the pairwise source potential from
which they are derived. Well-defined minima appear in
all cases. For the neutral system, use of the binary poten-
tial given by Eq. (3a) predicts a minimum for the planar
potential of —0.020 eV at a distance z=8.3 a.u. from the
plane. However, when the binary potential accounts prop-
erly for the van der Waals minimum [Eq. (3c)], the
predicted value for the depth of the planar potential well
becomes —2. 15X10 eV at z=9.1 a.u. [curve labeled
CD in Fig. 3(b)j, in better agreement with the correspond-
ing value ( V- —3&&10 eV at z-7 a.u. ) reported by au-
thors ' ' who have used the jellium model for the metal.
This model allows for self-consistent calculation of the in-
teraction including collective states of the metal surface,
as perturbed by the presence of the projectile. The differ-
ences observed between their predictions and those report-
ed here for the depth and position of the minimum may
be attributed to differences in the approximations of the
theoretical models. In our case we have the additive ap-
proximation (the use of binary gas-phase potentials to
represent the interaction of the projectile with atoms in
the solid) and use of only a single plane of atoms to simu-
late the surface. However, despite this, the surprisingly
good agreement observed indicates the importance of an
accurate knowledge of the van der Waals terms in the
construction of a reliable surface potential for He-metal
interactioris, in accordance with recent reports. The
same general trend is observed with the string potential, as
may be verified from Fig. 3(a). The minimum for the
double and single charged systems appear at z=4.2 a.u.
( V- —6.7 eV) and z=5.6 a.u. ( V- —0.73 eV) in the
string case and at z=3.4 a.u. ( V- —15.45 eV) and z=5.0
a.u. ( V- —2.01 eV) in the planar case, respectively.

Recent studies of Evdokimov in low-energy ion
scattering suggest three atoms to be the minimum number
necessary to define a string, in agreement with nonempiri-
cal ab initio pseudopotential calculations previously re-
ported by Cruz et al. for interaction of helium with a
string of berylium atoms. However, in the work of
Evdokimov only the repulsive part of the potential is em-
ployed, and the effect of a long-range attractive term is
therefore not included. In order to examine this specific
effect we constructed a simple model for a plane, consist-
ing of a regular mesh of Mg atoms, with a simple-cubic
unit surface cell of side d=6.05 a.u. The interaction ener-
gy was calculated by direct summation of pairwise poten-
tials between projectile and atoms in the plane (string) for
different mesh (string) sizes and for two extreme locations
of the projectile with respect to the plane, namely the
eclipsed (Z) position, referring to the projectile sitting
right on top of an atom on the plane, and the centered (C)
position, where the projectile sits in the center of the unit
surface cell.

Figure 4 shows, as an example, the results of this calcu-
lation for the potential between a He+ ion and the string
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FIG. 4. (a) Potential curves for He+ interacting with a string of Mg atoms and (b) potential curves for He+ interacting with a
plane of Mg atoms. Curves labeled E and C correspond to potentials calculated along eclipsed and centered positions, respectively,
and as indicated. Convergence to the average potential ( A) is achieved with N =11 and 121 atoms for the string and plane, respec-
tively (see text). Curves labeled AR are the corresponding potentials constructed with the purely repulsive part of the binary interac-
tion. Note the changes of scale.

(plane) of Mg atoms mentioned above. The corresponding
average potential is also shown, for completeness. We
started by defining a string with N=3 atoms, and then
added one at a time to each extremum, calculating then
the potential for various distances along the E and C posi-
tions, respectively. Similarly, a plane was constructed be-
ginning with %=9 atoms. As expected, the E and C
curves tend to coalesce for relatively large distances from
the string (plane), yielding a unique and smooth potential
curve. However, complete convergence of E and C to the
average potential curve (A) is only achieved when the
number of atoms is N ) 11 for the string and N & 121 for
the plane (increasing the number of atoms further causes
negligible changes in the interaction energies). This result
indicates that in this case at least 11 atoms are necessary
to define the string, and 121 for the plane in order to
describe properly the region around the potential well. On
the other hand, a glance at the E and C curves of Figs.
4(a) and 4(b) shows that only 3 and 9 atoms are necessary
to account for the repulsive region in the string and pla-
nar potentials, respectively, even with the incorporation of
the attractive part of the pairwise potential. This strongly
supports iridependent conclusions reached previously. '

Finally, the curves labeled AR in Figs. 4(a) and 4(b}
represent the average string (planar) potential constructed

with the purely repulsive part of the binary interaction.
As must be clear, the influence of the attractive part on
the shape of the potential curve becomes important for
distances greater than 2 a.u. for the string and 1 a.u. for
the plane. Since the potential curves for the singly
charged system represent an intermediate situation be-
tween the neutral and doubly charged systems, we may
expect for it the same general trends as discussed above
for the latter cases.

IV. CONCLUSIONS

We have calculated ab initio interatomic potentials for
the Mg-(He, He+, He +) systems and have shown that
there exist substantial differences between these and well-
known universal potentials for distances larger than about
1 a.u. The ab initio results also show a marked and signi-
ficant dependence of the potential on the charge state of
the system, which empirical potentials cannot account for.
In general, the Biersack-Ziegler potential behaves properly
as an average of the (He, He+, He +)-Mg curves in the
repulsive region and over a wide range of internuclear dis-
tances (up to -4 a.u.). A parametrization of the binary
potentials which accurately describes the interaction for
internuclear distances up to 8 a.u. has been achieved and
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this is expected to be valid for all distances beyond (see
below).

Another ab &nitio potential for the neutral Mg-He sys-
tern, restricted to the repulsive region, has also recently
been described by Demetropoulos and Lawley. ' Al-
though the computation carried out by these authors in-
volved a larger basis set, and a more complete CI than we
have used, the good agreement between our results and
theirs (see Table III) persuades us that the pseudopotential
approximation and the basis set employed in our work are
adequate. This, in turn, strengthens our confidence in the
quality of the profiles of the potentials obtained for the
ionic systems, although a single-state curve had to be con-
sidered in the study of the (Mg-He)+ case, due to the
strong Rydbergization of the Mg excited states, and also
for the (Mg-He) + case, where an avoided crossing ap-
pears for internuclear distances between 6.0 and 9.0 a.u.
In agreement with Chiles and Dykstra, we find no po-
tential minimum for the neutral system in the region up
to 8.0 a.u. On the other hand, for the ionic systems we
find well-defined minima for distances below 7.0 a.u.

The van der Waals minimum reported by Chiles and
Dykstra for the neutral system falls outside the range of
our calculations. It is reasonably predicted, however, by
our corresponding parametrized curve, thereby giving
confidence in the adequacy of. the suggested parametriza-
tion of the binary curves. Nevertheless, in order to in-
clude this minimum properly in our calculations, an alter-
native parametrization has been proposed.

The parametrized potentials described were used to con-
struct average potentials for the He, He+, and He + sys-
tems interacting with both a string and plane of Mg
atoms. It was found, of course, that the effect of the
long-range part of the binary potential is crucial in deter-
mining the minimum number of atoms needed to define a
string and plane at relatively large distances. For short
distances the effect of long-range terms may for all practi-
cal purposes be neglected, and 3 or 9 atoms are sufficient
to define the string or plane, regardless of the ionic state
of the system.

It is interesting to note that superposition of binary
gas-phase potentials even appears to be a rather good ap-
proximation for the study of atom-metal surface interac-
tions, provided that the long-range terms in the binary po-
tential are accurately known. In the case of the He-Mg
interaction, for example, we included the van der Waals

minimum of Chiles and Dykstra, in the He-Mg surface
potential, obtaining good agreement with jellium calcula-
tions. It is well known that the pairwise sum method is a
fairly well justified approach for collisions which probe
the highly repulsive wall of the binary potential, as is the
case in keV-ion surface scattering. However, for
thermal-atom surface scattering studies, where the
long-range part is very important, this method is only a
rough approximation. The projectile interacts simultane-
ously with several surface and near-surface (bulk) atoms
and important collective (many-body) effects appear,
particularly for atom-metal surface interactions, where
the polarization forces play an important role. In contrast
to the atom-metal case, a sum of pairwise terms is more
generally accepted in atom-insulating material surface in-
teraction studies, due to the more localized electronic
clouds (tight-binding approximation). We stress at this
point that no many-body terms have been taken into ac-
count in the work we have described. Whilst these could
be of a relatively minor importance in the neutral case, for
the ionic interactions they could well play a major role
since there is already evidence that large nonadditive ef-
fects are present for small ionic systems.

Work currently 'in progress aims at accounting for
many-body contributions to the He-Mg surface potential,
from an ab initio point of view Sev.eral planes of atoms
are introduced and a realistic structure for the corre-
sponding Mg surface is employed.
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