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Co11apsed close-coupling method: A systematic alternative to the multichannel optical potential
for solutions of the Schrodinger equation in a truncated subspace

Grazyna Staszewska, * David W. Schwenke, and Donald G. Truhlar
Department of Chemistry, Uniuersity ofMinnesota, Minneapolis, Minnesota 55455

(Received 2 November 1984)

We derive a new general method for reducing the number of coupled channels in scattering calcu-
lations, and we test it for electron —hydrogen-atom scattering in a truncated Hilbert space. The new

method yields encouraging results.

INTRODUCTION

The systematic approach to calculating scattering am-
plitudes for collisions of composite bodies is to expand the
scattering wave function in a basis of internal states times
functions of the relative scattering coordinate and to solve
larger and larger sets of coupled equations for the varia-
tionally best scattering functions for the given basis. '

This standard approach is called the close-coupling
method. In most cases though the expansion requires
many internal states for convergence, and the cost of solv-
ing the close-coupling equations, including the required
number of internal states, may be prohibitive. In such
cases it may be very useful to be able to include a large
number of states but only approximately. In the present
paper we propose an approximation to the close-coupling
equations in which they are replaced by two coupled equa-
tions, one for the projection of the scattering wave func-
tion in the elastic channel and one for the scattering wave
function in an artificial channel whose properties are cal-
culated from all the nonelastic channels. This channel
will be called a collapsed channel and the method will be
called the collapsed close-coupling method. This name is
meant to signify that a large number or infinite number of
higher channels are collapsed into one. In the version
considered here, this reduces the number of close-coupling
equations to two. Generalizations in which one keeps two
or more real channels plus one or more effective channels
are possible and are of great interest as subjects for later
study, but will not be developed in detail in the present
paper.

After presenting the theory, the two-channel collapsed
close-coupling approximation will be tested by application
to electron —hydrogen-atom scattering without exchange.
We must emphasize, however, that the goal of the compu-
tational part of the present study is not to improve on the
best existing electron —hydrogen-atom calculations, which
are very sophisticated, but to provide a test of the new
general approach to coupled-channels problems. If suc-
cessful, this approach may be applied to a variety of col-
lisional systems because it is very general.

In Sec. IV we will compare the collapsed close-coupling
method to related methods including perturbation
theory, ' the Feshbach optical potential approach, '

a smoothing procedure for obtaining local optical poten-

The Hamiltonian is given by

H =T„+T,+ V(x, r)

=H;„,+ T,+ V;„„„(x,r),
(la)

(lb)

where T„and T, denote the kinetic energy of the bound
and scattering particles, respectively, V(x, r) is the poten-
tial energy, H;„, is the internal Hamiltonian of the target,
and V;„«, is the interaction potential of the scattering par-
ticle with the target. Thus

T,= —(6 /2p)V', , (2)

where p is the scattering reduced mass and r is the
scattering coordinate. Also,

tials, ' the pseudostate expansion method, ' optical model
potentials, and —the technique most closely related to
the new one presented here—the matrix effective potential
method. 3' We also briefly discuss the possible exten-
sion of the present approach to larger collapsed close-
coupling expansions based on two or more real channels
plus one effective channel.

The close-coupling method is quite general and may be
applied to any scattering problem in which two particles
collide and two emerge. In Sec. II we will use a general
notation for the case of a structureless particle scattering
from an unspecified target with internal coordinates x
where the basis functions diagonalize the target Hamil-
tonian, the scattering particle's orbital angular momen-
tum, and the total angular momentum. For the numerical
example this will be specialized to electron —hydrogen-
atom scattering without exchange. The extension to more
complicated cases involving local potentials is straightfor-
ward. For rearrangements or other problems involving
nonlocal potentials, ' ' ' ' ' " the method presented
here can be applied if the nonlocal potentials are first re-
placed by approximations that are local in the coordinate
representation. For problems involving derivative cou-
pling operators, it is first necessary to transform to a dia-
batic representation, either accurately or approximate-
ly
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V;„„,(x,r) ~ 0 .
P—+ oo

The close-coupling expansion is

(3)

%(x,r) =r ' g f;(r)g;(x,r), (4)

where g;(x, r) is a basis function corresponding to orbital
angular momentum quantum number l; for the scattering
particle and total angular momentum L, and f;(r) is a
function to be determined. The close-coupling equations
are block diagonal in L and have the following form for
each block:

In particular, since f, (r) appears unchanged from Eq. (5),
the phase shift riL of Eq. (9) is also the same as obtained
from Eq. (5). Next we show that such a construction is
possible, although W&2(r) and Wzz(r) depend on the f;(r).
Since we would have to solve Eq. (5) to obtain these func-
tions, the formally exact construction does not save any
effort, but it does motivate the next step in which we ap-
proximate W~2(r) and W22(r) in such a way that they do
not depend on unknown functions. This yields an approx-
imate f&(r) and hence an approximate iiL, . This is called
the collapsed close-coupling method.

First we write

d2 N

z f;(r)= g UJ(r)fj(r), i=1,2, . . . ,N,
dr

(5) g(r)=a(r) g U~z(r)fz(r),
j=2

(14)

where

U~(r) = (2p—/fi )fdxdr g;*(x,r) V~„«,(x,r)pj(xp)
P

l;(l;+1) —k2

Note that k; is the scattering particle wave number de-
fined by

k; =(2p/iri )[E—fdxdr f';(x, r)H;„,QJ(x, r)] .

As mentioned in the last paragraph of the Introduction
we have assumed here that

where a(r) is a new unknown function. Comparing Eqs.
(5), (12), and (14) shows that

W&2(r) = 1/a (r), (15)

, a(r)U~, (r)f, (r)
dr

N
= g a(r)U„(r)U„(r)f, (r)

which, when we obtain a (r), will specify Eq. (12a). Equa-
tion (12b) is obtained in the following way. Multiply the
sth equation of the set (5), for s =2,3,. . ,N, by .a(r) Ui, (r)
and rearrange to obtain

f dxdrg;*(x, r)H;„,f/(x, r)=0, i~j . (8)

Note also that the U matrix is Hermitian.
We assume that the target ground state is nondegen-

erate and the target is initially in this state. Then I& ——L
and the boundary conditions for open channels (those
with k; positive) are

f, (r) -exp[ —i(k, r ——,
' Lir)]

—exp[2iilz +i(k, r —,'Lm. )], a—s r~ oo,

(9)

+2 a(r)U„(r) f, (r)
dr dr

d2
+f,(r) a(r)U»(r), s=2, 3, . . . ,N .

dr

Now, defining

S,J(r) = g U„(r)U J(r)
$=2

(16)

(17)

f;(r) -const && exp(ik;r ), r~ oo, i &1 . (10) and summing the (N —1) equations from (16) yields [us-
ing Eq. (14) and the Hermiticity of the U matrix],

The phase shift is rii, and if more than one channel in the
block is open it is complex. The boundary condition for
closed channels is that f;(r) must vanish at r = oo. In ad-
dition, for all channels (open or closed) it is required that

f;(r =0)=0 .

In the collapsed close-coupling method we seek to re-
place Eqs. (5) by

fi(r) = U()(r)fi(r)+ W)2(r)g(r) (12a)
dr

2g(r)=fi(r)a(r)S&&(r) + g fj(r)a(r)S& (r)
dr J=2

N

+ g 2 [a(r)U„(r)] f, (r)

d+f,(r), [a(r)Ui, (r)]
dr

(18)

g(r) = W2i(r)f ((r)+ Wi2(r)g(r),
dr

Comparison to Eqs. (12) yields

such that

W]2(r) = W2[(r) . and

W»(r) =a(r)S~~(r) (19)
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N

W2z(r)= a(r) g U~J(r)fj(r)
J=2

X g a(r)fj(r)S,J(r)
J=2

d+2 a(r)U~&(r) fz(r)
dr ' dr

d2
+fj(r), a(r) U), (r) (20)

The function a(r) can now be obtained from Eqs. (13),
(15), and (19) which yield

a(r) =[S»(r)] (21)

Equations (13) and (15) and the Hermiticity of the U ma-
trix then yield

N

W~z(r) = W2t(r) = g ~

U, (r)
~

J=2

' 1/2

(22)

(23)

i.e., we use the same averaged interaction potential and
centrifugal potential in the collapsed channel as in the
ground-state channel, and we set the threshold energy
equal to the true threshold energy.

III. EXAMPLE

The example we consider is electron —hydrogen-atom
scattering without exchange. %e use a six-state basis con-
sisting of three hydrogenic eigenfunctions, 1s, 2s, and 2p,

Equation (22) for the coupling potential is a practical
formula involving only known functions, namely the first
row of the original potential matrix, exclusive of the diag-
onal element. Equation (20), however, involves the un-
known functions f~(r). Since W&2(r) has a direct effect
on f, (r) in Eq. (12a), but W2z(r) has only an indirect ef-
fect through its effect on g(r) in Eq. (12b), it seems that
we might obtain a reasonable approximation to f&(r) by
retaining Eq. (22) but approximating Eq. (20). We will
use the approximation

\

W22(r) = Uii(r)+kz —k, ,

0'tOt 0 el +O'abS (24)

All calculations are for an impact energy of 2E&
(1Eg ——1 hartree; 2Eh ——54.4232 eV). Phase shifts were
calculated from the coupled-channels equations for
L =0—50, and elastic cross sections were converged by
adding polarized Born phase shifts for L =5 1—300, as
calculated by the approximate formula of O' Malley
et al. (The magnitude of the elastic transition matrix
element from the collapsed close-coupling calculation
agrees with the value calculated from this approximate
formula within 18% at L=50.)

Some of the complex phase shifts are given in Table II,
and the cross sections are given in Table III. Table II
shows that the real part of the phase shift obtained from
the contracted close-coupling calculation agrees with the
accurate value within 16% for L=O, disagrees more for
L = 1—10, then agrees within 14—10 % for L = 15—20.

and three pseudostates, denoted 3s, 3p, and 3d. The basis
is specified in detail in Table I. The 3s function is taken
from Burke and Mitchell, and it accounts for short-
range radial correlation effects. The 3d function is the
same as used by Damburg and Karule, and it accounts
for the full quadrupole polarizability of the ground state.
The 3p function is obtained by orthogonalizing the 2p
function of Temkin, which accounts for the full dipole
polarizability of the ground state, to the 2p eigenfunction.
Counting only channels with the right parity to couple to
the ground-state channel, the number of channels corre-
sponding to this six-state basis increases from 6 at L =0,
to 9 for L = 1, to 10 for L )2. The close-coupling results
for the six-state basis are considered as the exact solutions
to a model problem, and the new collapsed close-coupling
method is judged in terms of its agreement or disagree-
ment with this reference calculation.

The close-coupling equations were solved by the
Numerov method. Phase shifts gi. , elastic integral
cross sections o,~

and differential cross sections do.,~/dQ
as a function of scattering angle 8, and elastic momentum
transfer cross sections o.

l were extracted by standard for-
rnulas. Absorption cross sections o,b, were defined as the
sum of all inelastic cross sections for the close-coupling
calculations and are set to the cross section for exciting
the one collapsed channel in the collapsed close-coupling
calculations. The total cross section is given by

TABLE I. Radical functions and excitation energies for the six-state target basis (in a.u. ).

State

1$

2p

3$

3p

3d

R (r)'
—r

(
1 )1/2( ] 1

)e
—r/2

2 2"
( 6 )

—1/2' —«/2
2

[( 3M
)

1/2
(

529
)
1/2 +( 3 )1/2 "2] r/2—

(1 g2) —1/2~[ & (6)—1/2g (
3& )1/2(l+ &

&)e r/2]e r/2— —
2 129 2

32 )1/2 2( 1 + /3}

AE

0.000 000
0.375 000

0.375 000

0.489 040

0.539 032

0.560 750

'Radialfunction. Thenormalizationis f drr ~R (r)~ =l.
bIn a.u. , the excitation energy AE~ equals (k1 —k~ )/2.
cg (

4 )6(43)—1/2
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TABLE II. Phase shifts (in radians, modulo m in the real

part) for e -H scattering at 2EI, .

0
1

3
'5

7
10
15
20

1s-2s-2p-3s —3p —3d

0.6958 + 0.0641 i
0.2401 + 0.0402 i
0.0472 + 0.0407 i
0.0222 + 0.0222 i
0.0127 + 0.0104i
0.0061 + 0.0035 i
0.0022 + 0.0007i
0.0010 + 0.0002 i

Contracted
close coupling

0.8044+ 0.1219i
0.3334 + 0.1093i
0.0962 + 0.0548 i
0.0406 + 0.0238 i
0.0200 + 0.0098 i
0.0082 + 0.0028 i
0.0026 + 0.0004 i
0.0011 + 0.0001 i

Interestingly, the error for the imaginary part of the phase
shift is already only 35% at L =3 and is only 20% or less
for I.= 5—10. Table III shows that the momentum
transfer and absorption cross sections predicted by the
contracted close-coupling calculation are remarkably ac-
curate, . and the major error in u,&, do,~/dQ, and o„, is
due to a systematic overestimate of the small-angle elastic
differential cross section.

IV. COMPARISON TO OTHER METHODS

There are several other techniques available for obtain-
ing the effect of missing channels on the scattering in a
selected subset of one or more explicitly included chan-
nels. We will now contrast a few of these, with represen-
tative references, to the present approach.

The most straightforward way is to include the effects
of missing channels by second- or higher-order perturba-
tion theory. This may be applied to the transition matrix
elements (or scattering amplitude) directly, ' or it may
be applied to calculate an effective potential. " '" The
second approach is more similar to the collapsed close-
coupling method, and both methods have the advantage
that the dynamics in the explicit channels can be treated
with great flexibility, e.g., close coupling, the distorted-
wave approximation, or variational methods. %'hen
second-order perturbation theory is applied directly to cal-

culate the transition matrix, a complete calculation is dif-
ficult and it may be inaccurate if it is oversimplified for
computational convenience.

The Feshbach optical potential' ' is a rigorous
method to account for the effects of channels not included
explicitly. Computation and use of the exact Feshbach
optical potential suffers from several practical difficulties,
especially nonuniqueness, nonlocality, and the fact that
converging the calculation of the optical potential is in
general as difficult as converging a close-coupling calcula-
tion in which all channels are included explicitly. The
nonlocality can be overcome by exploiting the nonunique-
ness to specify a local potential ' (as suggested, e.g. , by
Wolken '); unfortunately this leads to a highly singular re-
sult. Recently a practical algorithm has been prepared for
smoothing the singularities, but at the cost of losing the
exactness. ' The optical potential approach replaces the

. original ¹ hannel problem with local potentials by a
single-channel problem with nonlocal, exact, energy-
dependent potentials, and the Wolken and smoothing pro-
cedures convert these to local, singular, energy-dependent
and local, nonexact, energy-dependent potentials, respec-
tively. Generalized optical potentials replace the original
¹channel problem by two-or-more-channel problems
with nonlocal, exact, energy-dependent potentials. The
present procedure, in contrast, attempts to replace the
original ¹channel problem with a two-channel problem
with local, nonexact, energy-independent potentials. The
closest analog is the matrix effective potential
method, ' which also involves multichannel, local,
nonexact, energy-independent potentials. The coupling
potentials in the matrix effective potential method have
been computed by first solving the scattering equations
for the adiabatic limit, and then embedding this limit ex-
actly in a two-channel version of the equations. In con-
trast the collapsed close-coupling method obtains the cou-
pling potentials without invoking the adiabatic limit.

An alternative way to reduce the order of the coupled-
channels equations is the pseudostate method. * '

This is a variational method in which one uses a linear
combination of target eigenstates as a single basis func-
tion. The collapsed close-coupling method, like the ma-

Cross section

TABLE III. Cross sections (in ao and ao/sr) for e -H scattering at 2EI, .

1s-2s-2p-3s-3p-3 d
Contracted

close couplmg

tot
do,i{9=0)/d Q
do.,1{8=20)/dQ
do.,i(8=40 )/d Q
do,~(0=60')/d Q
d~„(e=80')/d Q
do„(0=100')/d Q
d o,~(8= 120') /d Q
d o.,i(8= 140')/d Q
do,~(8=160 )/dQ
do.,i(8= 180')/d Q

2.02
0.64
6.39
8.42
6.85
0.930
0.263
0.124
0.068
0.040
0.028
0.022
0.018
0.017

3.22
0.60
7.40

10.62
12.43
1.98
0.365
0.116
0.053
0.030
0.020
0.015
0.013
0.012
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trix effective potential method, does not involve an actual
pseudostate, and hence it is nonvariational. These
methods directly approximate the potential matrix in a
nonvariational close-coupling coritext.

The single-channel optical potential method has served
as a formal foundation for a number of more approximate
approaches. Approximate single-channel optical poten-
tials are often called optical model potentials. Such po-
tentials have been obtained many ways, e.g., by combining
a charge polarization model with dispersion relations, by
frequency-dependent-susceptibility analyses of the
second-order approximation to the exact optical poten-
tial, by binary-collision models, ' and by phenomeno-
logical fitting. Equations (20) and (22) could presum-
ably serve as prototype foundations for similar investiga-
tions of multichannel optical model potentials.

As mentioned in the Introduction, it would be interest-
ing to extend the present method to three or more chan-
nels. Extension of the derivation in Sec. II to this case
shows that the unknown functions f;(r) do not cancel out
of either the coupling potentials or the diagonal potentials

in this case; thus a three-channel contracted close-
coupling scheme would be more arbitrary than a two-
channel one. However, the three-or-more-channel format
allows for much greater flexibility in modeling the full
problem, and it would be very interesting to see how much
additional accuracy could be gained by such an approach.

V. CONCLUSION

We have derived a new general method for approximat-
ing the solution of coupled-channels scattering equations.
This method, which we call the collapsed close-coupling
method, is tested in its two-channel formulation for a
model problem of electron —hydrogen-atom scattering, re-
placing between six and ten channels by two. The results
are very encouraging, and this method should provide a
useful alternative to existing approximation methods.
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