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Electron doubly differential cross section for 0.5-MeV H -He detachment collisions
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A comprehensive theoretical treatment is presented for the electron detachment cross section, dif-
ferential in both electron momentum and direction, for collisions of 0.5-MeV H projectiles on He
targets. Our calculation, which assumes that the residual H atom is left in the 1s state, employs the
usual first Born approximation as well as the closure approximation (in order to sum over all He tar-
get final states). Electron correlations within the H system are treated in detail within the frame-
work of the adiabatic hyperspherical coordinate approximation. In particular, for the first time for
this collision process, angular correlations are included. The s, p, and d partial-wave components
of the detached electron hyperspherical coordinate wave function are also included. The helium tar-
get is described by the atomic form factor and the incoherent scattering function tabulated by Hub-
bell et aI. as well as by an average He excitation energy, IH, . The prescription of Lee and Chen for
IH„which for small scattering angles gives the value 35 eV is found to result in the best agreement
of our calculated doubly differential cross sections with experiment, both in shape and in predicted
peak energies. . The unique feature of the experimental doubly differential detachment cross section
of Menendez and Duncan, that for electron-scattering angles less than 4' there is a double peak, is
reproduced in our calculations. However, the predicted higher-energy peak is smaller in magnitude
and higher in energy than that observed experimentally. This difference is attributed to the influ-
ence of excited H-atom states, which are measured in the experiments. Fictitious calculations are
carried out for the doubly differential cross sections in which the s-wave electron phase shift is fixed
at zero radians instead of its true monotonically decreasing value with increasing electron energy
from the value m at threshold. These fictitious calculations demonstrate the disappearance of the
double-peak structure of the cross section and confirm the origin of the double peak in the s- and @-
wave interference and in the initial m phase shift of the s partial wave. Though our single differen-
tial cross sections differ quantitatively from previous calculations of Maleki and Macek, the approx-
imate factor of 2 discrepancy between the theoretical predictions and the absolute experimental mea-
surements remains unexplained.

I. INTRODUCTION

Electron doubly differential cross sections provide
much more detailed i~formation on ion-atom collision
dynamics than do total cross sections for electron produc-
tion. ' Until recently, however, nearly all theoretical and
experimental work on detachment collisions of negative
ions with neutral atoms focused on the energy dependence
of the total electron production cross section. This work
has been surveyed by Risley. In recent years, however,
Menendez and Duncan have studied experimentally
the doubly differential collisional electron detachment
cross section of H by He, primarily at an incident ion
velocity of 0.5 MeV. More specifically, they measured the
energy distribution of the detached electrons at several
fixed laboratory angles for the following process:

H +He~0" +He*+e

The asterisks on the right in Eq. (1) indicate that the cor-
responding atoms may be either in an excited state, bound
or continuum, or in the unexcited ground state. The ex-
periment does not distinguish among these cases. A key
feature of the experimental data is that for electrons de-
tached at angles close to 0' in the laboratory frame, the in-
tensity distribution of electrons, as a function of electron

kinetic energy, has two peaks, separated by about 30 eV,
instead of the more usual single peak predicted by the
binary encounter theory. The observed higher-energy
peak, which occurs at an electron velocity equal to the in-
cident H velocity, decreases in intensity with increasing
laboratory-frame scattering angle, and it disappears alto-
gether for angles greater than about 4'.

This experimental work has led to a number of theoreti-
cal studies7 ' for the dominant process in Eq. (1), i.e.,

H +He~H( ls ) +He*+ e

in which the hydrogen atom is not excited during the col-
lision. Qualitatively, the main features of the experimen-
tal data are now understood theoretically. In particular,
the double-peak structure seen experimentally has been
shown to arise theoretically from an interference of s and

p partial waves for the detached electron. This interfer-
ence is most visible in the projectile-frame doubly dif-
ferential cross section. A recent study has shown both
experimentally and theoretically that this interference is
more significant the larger the mean excitation energy of
the target atom or molecule, thereby explaining why it is
particularly apparent for He targets. However, quantita-
tive agreement between theory and experiment is poor:
The energy positions of the observed peaks and their rela-
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tive magnitudes are not well predicted theoretically.
The poor quantitative agreement between theory and

experiment has several probable causes. First, all such
theoretical calculations are very sensitive to electron
correlations in the H+e system, particularly for the
small projectile-frame electron energies at which the s and

p partial-wave interference effects are most significant.
Moreover, the theoretical calculations carried out to date
have treated the H+e system very approximately. In
particular, they all focus exclusively on treating only radi-
al correlations and not angular correlations.

Second, all of the theoretical calculations treat the sum-
mation over the final states of the He target approximate-
ly. They are thus subject to any inaccuracies in the calcu-
lation of the He form factors. More important, however,
given the demonstrated sensitivity of the detachment col-
lision process to the target's mean excitation energy, is the
choice of this mean excitation energy.

Finally, both experimental '" and theoretical' evidence
points to the importance of excited states of the hydrogen
atom to the experimental doubly differential cross sections
measured for the process in Eq. (1). Experimentally, it
has long been known" that n =2 states of the residual H
atom are important contributors to the total detachment
cross section for the process in Eq. (1). Recently, both
theory' and experiment have indicated the likelihood
that excited states of the H atom are important contribu-
tors to the higher-energy peak seen in the doubly differen-
tial detachment cross section. However, without an accu-
rate calculation for the dominant process, given in Eq. (2),
it is not clear what fraction of the high-energy peak
should be attributed to states in which the H atom is
unexcited and what fraction should be attributed to states
involving excited H atoms.

The present paper presents a comprehensive calculation
of the dominant detachment process in Eq. (2) for an in-
cident projectile energy of 0.5 MeV. Calculations of the
doubly differential detachment cross sections are carried
out using the first Born approximation and including s, p,
and d partial waves for the detached electron. Both radial
and angular correlations are treated for the H+e system
through our use of adiabatic hyperspherical coordinate
wave functions. ' [Thus, for example, our hyperspherical
coordinate wave function for the H ground state incor-
porates angular correlations of the form ss, pp, dd, and

ff; our calculated H ground-state energy is —0.52592
a.u. (upper bound) as compared to the "exact" result' of
—0.527 751 a.u.] Similarly, wave functions for the
'S, 'P, and 'D final states are calculated also in the adia-
batic hyperspherical approximation. '

To sum over the final states of the He target we have
employed the usual closure approximation. ' %'e have
used the form factor and incoherent scattering function
for He as tabulated by Hubbell et al. ' Our calculations
have been carried out using two prescriptions' ' for the
average excitation energy of He. We find that the
prescription of I.ee and Chen, ' involving an average
momentum transfer for small-angle scattering, provides
the best agreement with the experimental data. "

Our aim is thus to present quantitatively accurate pre-
dictions for the dominant detachment process in Eq. (2)

for comparison with the experimental data4 6 for the de-
tachment process in Eq. (1). Differences between our re-
sults and experiment thereby serve to indicate the magni-
tude of contributions from excited states of H to the pro-
cess in Eq. (1).

In Sec. II we review the theoretical formulation of the
doubly differential detachment cross section in the first
Born approximation. In Sec. III we discuss the further
approximations and soine numerical details of the present
calculation, in particular the calculation of the H form
factor in hyperspherical coordinates. . Our results for the
doubly differential detachment cross section are presented
in Sec. IV and compared with experiment as well as with
previous theoretical calculations. Finally, we summarize
our findings and conclusions in Sec. V.

II. FIRST BORN APPROXIMATION FORMULA
FOR THE DETACHMENT CROSS SECTION

(3)

Here k is the momentum, dao is the solid angle, and E is
the energy of the detached electron; v; is the relative velo-
city of the projectile with respect to the target
(v; =4.47135 a.u. for 0.5-MeV H incident on He); K is
the momentum transfer,

K=k —kf

where k; and kf are the initial and final momenta of the
projectile; P is the azimuthal angle of the scattered projec-
tile; E,„and E;„are the maximum and minimum
magnitudes for the momentum transfer; V is the electro-
static interaction potential between the projectile and tar-
get; and %f and 0; are the final- and initial-system wave
functions. Atomic units are used throughout this paper.

We have computed Eq. (3) in the projectile frame,
which is most convenient theoretically for computation of
the detached electron wave function. In this frame the
target (He) has an initial relative velocity of —v; and ini-
tial and final momenta of —k; and —kf, respectively. To
compare our results with experiment, we must transform
projectile-frame cross sections to the laboratory frame.
To do this we note that under any Galilean transforma-
tion, do is invariant, as is

dk=dk„dk~dk, =k dk dco=k dE des . (5)

Comparison of Eq. (5) with Eq. (3) shows that
k '(do /de dE) is Galilean invariant. The desired
laboratory-frame doubly differential cross section is thus
obtained by multiplying the projectile-frame doubly dif-
ferential cross section by the factor (kL /kz), i.e., the ratio
of the detached electron momenta in the laboratory (L)
and projectile ( P) frames, respectively.

The doubly differential cross section for electron de-
tachment following collision of a projectile ion (H ) with
a target atom (He) is given in the first Born approxima-
tion by ' 8

r 'I

2 f f ((%f ~
V[%;) [ KdKdp.
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&q„-„1y
1
q~&=, eo"„{K)[eo"„'{K)—25o„] . (6)

In the Born approximation each of the initial- and
final-system wave functions 0'; and Vf consists of a triple
product of a plane-wave wave function, describing the rel-
ative motion of the projectile and target nuclei, and elec-
tronic wave functions describing the states of the projec-
tile and target systems. Since H and He are each two-
electron systems, %'; and %f are functions of fifteen coor-
dinates: twelve to describe the motion of the four elec-
trons and three to describe the relative nuclear motion. In
computing the matrix element of the electrostatic poten-
tial V among the nuclei and electrons, use is made of a
theorem of Bethe' to integrate over the relative nuclear
coordinates. The remaining integrations over the elec-
tronic coordinates are described by the transition form
factors for the H and He systems.

The final result for the electrostatic matrix element be-
tween the system wave functions %'oo and 9'„q where 00
indicates that initially both H and He are in their
ground states and where nk indicates that in the final
state the He atom is excited to the state n and the H ion
has been ionized leaving the atom in its ground state 1s
and the detached electron with momentum k, is

2

eex (K)=((lx g exp((IC r ) ()el
i=1
2

ee„*(K)—= (()„gexp( (K.p—) tie'l .
i=1

(7)

(8)

f

In Eq. (7), go(r&, r2) and P~ (r~, r2) describe the initial and
final H states as functions of the electronic coordinates
r& and r2. Similarly, Po(p&,p2) and P„(p~,p2) in Eq. (8)
describe the initial and final He states as functions of the
electronic coordinates p& and p2.

The Born approximation result for the doubly differen-
tial cross section for the detachment process in Eq. (2) is
obtained by substituting Eq. (6) in Eq. (3) and summing
over all final states of the He target:

In Eq. (6) the minus superscript on the final-state wave
function indicates that incoming wave boundary condi-
tions are used. ' The term —2 in the square brackets
arises from interaction of the H electrons with the He +
nucleus. This interaction contributes to the transition ma-
trix element only when the He target is unexcited during
the collision, i.e., when n =0, as indicated by the
Kronecker 6 function. The transition form factors are de-
fined as follows:

4k max

, f dd„, f, ,
dK

1
eok {K)I'Iso:(K)—2&o. I'

dc' dE „U; o +~to~" ~ E (9)

In Eq (9) the .sum over n implies also integration over
singly and doubly ionized continuum states. Further-
more, the index n on the limits of integration over the
magnitude of the momentum transfer indicates that these
limits are dependent on the final state of the target, as is
clear from the definition in Eq. (4).

III. FURTHER THEORETICAL APPROXIMATIONS

22 1&o":{K)I'= X &Pole ' ' lbo&
n&0

=S;„,(K),

(I la)

(1 lb)

. A. Closure approximation

If we ignore the dependence of the integration limits in
Eq. (9) on the final state n, having wave function P„, of
the He target, then the following closure relation may be
employed to sum the absolute square of Eq. (8) over final
states n:

1{1„&&4„1= 1 —10&&0
neo

(10)

The Born approximation result in Eq. (9) requires for
its numerical evaluation additional approximations in or-
der to sum over all final states of the He target and in or-
der to calculate the transition form factors for He and for
H . We examine each of these necessary approximations
in turn.

where S;„,(K) is the incoherent scattering function, which
is dependent only on the magnitude E of the momentum
transfer since it is defined in terms of ground-state expec-
tation values. Substituting Eq. (11) in Eq. (9), we obtain

~max&O'f '"
J(K1)1 "'{K)

l

I

Here the index 0 on the limits of integration in the first
integral indicates that K;„(0)and K,„(0) are appropri-
ate for the case in which the He target remains unexcited,
while the index IH, in the second integral implies that
K;„(IH,) and K,„(IH, ) are calculated for some average
excitation state of the He target having excitation energy
IH, . The function J(K,k) is defined by

The result is
J(K,&)= f 1 e()g (K)1'deaf . (13)
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It is thus an average of the absolute square of the H
transition form factor over all azimuthal scattering angles

pf of the He target [N.B., in the projectile (i.e., H ) frame
the He target is the scattered particle]. Because of the
averaging over the azimuthal scattering angle, J(K,k) is a
function of the magnitude K of the momentum transfer
as well as the momentum k and scattering angle 9 of the
detached electron. In our calculations we have employed
the atomic form factor P~'(K) and the incoherent scatter-
ing function S;„',(K) that have been tabulated by Hubbell
e~ ar"

B. Integration limits

By definition, the maximum and minimum values of
the momentum transfer needed to carry out the integra-
tion in Eq. (12) are

C. H wave functions

The H transition form factor in Eq. (7) is very sensi-
tive to the form of the initial- and final-state wave func-
tions used. We treat the important electron correlations
involved by means of an adiabatic hyperspherical coordi-
nate representation. ' The exact two-electron wave func-
tion p(ri, r2) may be expanded in terms of a complete set
of adiabatic eigenfunctions p„(R,a,r„r2), which depend
parametrically on the hyperspherical radius
R = (r I +r 2)' and are functions of the five angular vari-
ables a=tan '(r2/ri ), ri, and r2. The form of f is thus

P(R,a, ri, r2)

=(R sinacosa) 'QF&(R)p&(R, a, ri, r2) .
P

K me=xkf+kl i

+min ki kf ~

where

kg
——pU; .

(14a)

(14b)

(14c)

The angular function P is defined to satisfy the following
differential equation in atomic units (fi=e =m = 1):

I I.
da cos a sin a

K,„=2k;=2IMul =1.31299)&10~a.u. (15)

The lower limit requires more careful consideration.
We write it in terms of the initial and final kinetic energy
of the projectile, E; f=k; f /2p, as fo—llows:

k; kf (k' kf )/—P E; Ef—2 2 2 2

Now by energy conservation, we may equate the initial-
and final-system energies in the projectile frame to obtain
the following results for E; Ef and hence—for IC;„:

IH +k /2
(17a)K;„(0)=

for no target excitation and

Kmin(IHe )
I„+I„,+k'/2

Ug

(17b)

for the case of an average target excitation IH, .
In our ca1culations I is 0.027751 a.u. and two alter-

native values of IH, are used. One common alternative is
to set IH, equal to the energy necessary to excite the
lowest excited state of the target. ' For He this is the
ls2s( S) state. We have chosen instead to set one of our
alternative IH, values equal to 0.77975 a.u. , correspond-
ing to the 1s2Ii('P) state. Lee and Chen' have described
another alternative: They calculate an angle-dependent,
average momentum transfer and excitation energy. For
the small projectile scattering angles significant here, IH,
is approximately 35 eV or 1.28625 a.u. ' We have chosen
this value as the second of our two alternative IH, values.

Here k; and kf are the initial and final momentum vec-
tors for the projectile and iM is the reduced mass of the
projectile and target system. Because of the large momen-
tum of the incident 0.5-MeV H projectile, we may, in-
dependently of the excitation state of the He target, ap-
proxirnate the upper limit as follows:

+ 2R
Z Z+ . —(1—sin2a cos8i2)

—1/2
cosa sina

4y, g gl I (R a)+I I LM(ri r2)
1),l2

where

I, I,Lsr«i r2)

(20a)

X I limi(rl) +lgm2(r2)(l I lli I l2II22
I
l1 l2L'M)

m&, m2

(20b)

and then solving the resulting set of coupled differential
equations [after suitable truncation of the number of an-
gular momentum pairs (l i 12 )] for the functions
gal (R,a). Upon substituting Eq. (18) in the two-electron

1 2
Schrodinger equation and using Eq. (19), one obtains the
following set of coupled differential equations for the ra-
dial functions F&(R):

U„(R)+ e

M.2 + 2 + PP, 2 +2E F~(R)
P

$2$+g

BP ~

"' M FA (R)=0 .a
(21)

= U~(R)Pp . (19)

Here L
&

is the squared orbital angular momentum opera-
tor for the ith electron, ei2=—cos ri.r2, Z is the nuclear
charge, and U„(R) is the eigenvalue, which is parametri-
cally dependent on R. The solution of Eq. (19) is carried
out' by expanding the angle functions in one-electron
spherical harmonics,
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XF„(R)p„(R,a, r „r2),
1l„z(ri,r2) = (R cosa sina)

XF&E(R)p&(R,a, ri, r2) .

(22a)

(22b)

Note that the final-state wave function in Eq. (22b) is
given in terms of the energy-normalized radial function
F„E(R), which satisfies the following asyinptotic boun-
dary condition:

In Eq. (21) the coupling matrix elements (P&,B"P& /M"),
n =1,2, involve integration over the five angular variables
only and are thus parametrically dependent on R.

In calculating our wave functions we make an adiabatic
approximation' in which we keep only a single term p in
the summation in Eq. (18). For the ground state this term
corresponds to the dominant 1s ('S) configuration; for
the final state this term corresponds to the dominant
1sel ( I.=l) configurations. However, this adiabatic ap-
proximation is not an independent particle approximation;
much correlation is included. [For example, in calculat-
ing P& for the initial state, using Eq. (19), an expansion of
the form in Eq. (20) is made in the angular momentum
pairs ss, pp, dd, and ff; similar expansions are made for
the final-state angle functions. ] In our adiabatic approxi-
mation we include the diagonal coupling matrix element

(Q„,B P&/M ) in solving Eq. (21) for the radial function
F„(R) but ignore all of the other off-diagonal coupling
matrix elements. For the 'S ground state of H, this ap-
proximate solution of the eigenvalue equation, Eq. (21),
may be shown to give an upper bound on the exact sys-
tem energy. Our value of —0.52592 a.u. may be com-
pared with the best variational estimate of Pekeris, ' who
obtains —0.0527 751.

To calculate the H transition form factor we therefore
represent the initial- and final-state wave functions as

tPO(ri, r2) = (R cosa sina)

r] ——R cosa and r2 ——R sino, ', we see that
1/2

sin(kr, —l ~/2+5' )
I"] Iji

2
iji z«i r2)

)

mk

(27)

D. H transition form factor

To calculate the H transition form factor in Eq. (7)
we expand the plane wave in the integrand in spherical
partial waves, i.e.,

oc 1

exp(iK r;)= g g 4'(i'j)&(Kr, )
1=0m= —1

X Yi,~,(ri) Pi, (r2) Yoo(r2)
P I2

as ri~co . (25)

Finally, the desired incoming-wave, momentum-space
normalized final-state wave function, which is needed to
compute the H transition form factor in Eq. (7), is ob-
tained from the standing-wave, energy-normalized wave
function in Eq. (22b) as follows: '

. 1 ~

(i) "exp( i 5—i, )k '~ Yi* (k)P„E(ri,r2) .
l~t y apl

(26)

In Eq. (26) the spherical harmonic Yi*,(k) projects the
P

spherical wave state 1& m& into the direction k. All
spherical wave states must be summed for completeness.

. 1
The two complex factors, (i) "exp( i5i )—, assure that the
incoming wave boundary conditions are satisfied, ' and
the factor k '~ assures that the following orthonormali-
ty relation holds:

F~ E(R) —&

1/2

sin(kri —l m. /2+5' )P P

as R cosa ( =r, )~ 0o . (23)

XYi* (K)Yi (r;), (28)

and substitute Eqs. (20), (22), and (26) for the imtial and
final wave functions. The result, after carrying out all an-
gular integrations analytically, is

Note in Eq. (23) that as the coordinate ri of the detached
electron tends toward infinity it becomes equal to the hy-
perradius R. Also, I&, 61,, and k are, respectively, the
orbital angular momentum, phase shift, and momentum
of the detached electron in the final-state chan@el p'. In
addition, the final-state angle function P„ for the channel

p has the asymptotic behavior

p& (R,a, ri, r2) ~ "i Pis( 2) Yoo(r2) Yl, ,(rl)

as R cosa (=r, )~oo, (24)

since we assume the H atom is not excited. Substituting
Eqs. (23) and (24) in Eq. (22b) and using the relations

eoi, (K)= g exp(+i5i, )
1 ~ =0

A. A.

XPi,(K.k)Q„"„(K,k) .
P

(29)

In Eq. (29) the (l„)th partial-wave transition form factor,1,
Q„"„ is defined by

1,
Qpp (K,k) = (4vrk) '~ (21„+1)

X I dR Fp(R)F„E(R)I„~~(K,R ), (30a)

where I, which depends on R but not on k, is defined by

1, 2 II l]
1 ~/I„"„(K,R)—:g(2i2+1)' 0 0 0 ( —1) ' I dagp& (R,a)[gpI (R,aj)i(KR sina)+gp& (R,a)ji(KR cosa)]. (30b)

l~ 2



31 ELECTRON DOUBLY DIFFERENTIAL CROSS SECTION FOR. . . 1341

E. Integration over azimuthal angles

In order to compute the doubly differential cross sec-
tion in Eq. (12), we must average over all projectile azimu-
thal scattering angles Pf, as in Eq. (13). From Eq. (29) we
see that the dependence of the H transition form factor
on the scattering angle Pf, comes from the argument of
the I.egendre polynomials,

do 4

(k, 8)= g (cos"8)A„(k),
ddt dE 0

max
A„(k)=— z I, , Z„(K,k)

i
zoo'(K) 2—

i

~

min~

8~k max He+' 'Z XkS" X "~

(34a)

(34b)
K.k= k .

K

If we choose k; to be along the z axis, then

(31a)

IV. RESULTS
k;.k =k;cosO, (31b)

kf k —kf [cos8fcos8+ sin8f sin8 cos(Pf —P )], (3 lc)

where 8 and P define the direction of the detached elec-

tron, k, and 8f and Pf define that of the scattered projec-
tile, kf. In our calculations we have approximated the
H transition form factor in Eq. (29) by truncating the
sum over partial-wave angular momenta l& for l'& greater
than 2 so that

Substituting Eqs. (31) and (32) in Eq. (13) we obtain

4
J(K,k) = g (cos"8)Z„(K,k), (33)

where Z„(K,k) is defined in the Appendix. Note that in
averaging over Pf we eliminate any dependence of J(K,k)
on P.

Substituting Eq. (33) in Eq. (12) we obtain finally the
detachment doubly differential cross section (DDCS) in

terms of a power series in cos8:

H~o„(K)= exp(iso)g„'„(K, k)+ exp(N, )(K k)g„'„(K,k)

+ exp(i52)0. 5[3(K k) —1]Q&z.(K,k) .

(32)

A. galilean-invariant doubly differential detachment
cross section in the projectile frame

We present here our results for k '(do/dcgd. E) since,
as discussed in Sec. II, this quantity is invariant under
Galilean transformations and hence is the same in the
projectile and in the laboratory frames for electron mo-
menta k=(k, 8) related by the Galilean transformation
between the two reference frames.

In Table I we present the coefficients C„(k) for the ex-
pansion of k '(doldcodE) in powers n of cos8 in the
projectile frame. The coefficients C„(k) are simply the
coefficients A„(k) in Eq. (34a) divided by k. In our cal-
culations we have computed these coefficients for
0& n &4 and 0& k & 1.0 a.u. The restriction on the max-
imum value of n stems from our inclusion of only s, p,
and d partial waves in our calculation. Although we have
computed coefficients C„(k) for k values up to 1.0 a.u. ,
we show in Table I only coefficient values for k (0.5 a.u.
This is done because our truncation in partial waves and
our use of single-channel adiabatic hyperspherical wave
functions is expected to become increasingly less accurate
as k increases.

In Fig. 1 we show a three-dimensional plot of the de-
tachment DDCS in the projectile frame as a function of
k=(k, 8). Our results in Fig. 1 employ an effective exci-

TABLE I. Coefficients C„(k) for the doubly differential, Galilean-invariant detachment cross section expressed in powers n of
cosO, where the detached electron has momentum k and direction 0 in the projectile frame. The coefficients C„(k) are equal to
k A„(k), where the coefficients A„(k) are defined in Eq. (34a). The integers in parentheses indicate the power of ten multiplying
the preceding number.

0.02
0.06
0.10
0.14
0.1&

0.22
0.26
0.30
0.34
0.38
0.42
0.46
0.50

+2.5280
+2.3874
+2.2080
+2.0348
+ 1.8685
+ 1.7122
+1.5761
+ 1.4684
+ 1.3803
+ 1.3027
+ 1.2288
+ 1.1542
+ 1.0783

Ci

—3.5742 ( —1)
—9.6598 ( —1)
—1.3725
—1.4474
—1.1680
—6.1943 ( —1)
+4.0243 ( —2)
+6.9223 ( —1)
+ 1.2509
+ 1.6598
+ 1.9048
+ 1.9984
+ 1.9742

C2

+3.0552 {—3)
—3.7969 ( —3)
—1.0084 ( —1)
—1.6127 ( —1)
+3.6891 ( —3)
+3.7914 ( —1)
+&.5064 ( —1)
+1.2813
+ 1.5727
+ 1.6851
+ 1.6251
+ 1.4391
+ 1.1&33

+7.1711 ( —3)
+1.6134 ( —1)
+5.2421 ( —1)
+8.9285 ( —1)
+ 1.0950
+1.0840
+8.7752 ( —1)
+5.1912 ( —1)
+6.4764 ( —2)
—4.0421 ( —1)
—8.1187 ( —. 1)
—1 ~ 1114
—1.2913

C4

+9.6537 {—4)
+6.1504 ( —2)
+2.9689 {—1)
+5.8228 {—1)
+6.9230 ( —1)
+5.7395 ( —1)
+2.8419 ( —1)
—8.8392 ( —2)
—4.6735 ( —1)
—7.7972 ( —1)
—9.7838 ( —1)
—1.0570
—1.0341
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FIG. 1. Galilean-invariant, detachment doubly differential cross section (DDCS) in the projectile frame vs k=(k, O). The three
trajectories on the surface map the Galilean-invariant cross sections in the laboratory frame as a function of electron momentum for
three fixed laboratory angles for the detached electron (i.e., 01.——0.3', 1.5, and 4.0'). The results shown employ an effective excitation
energy IH, of 35 eV for the helium target.

tation energy IH, of 35 eV for the helium target. We have
computed similar results, shown elsewhere, using a value
of 21.2 eV for IH, . Qualitatively, our two results have the
same features as obtained by Maleki and
Macek. Namely, for k =-0, there is a large peak for 8=m.
(i.e., for detached electrons traveling with the H atom); for
k=—0.5 there is a large peak for smaller angles 8 corre-
sponding. to the so-called binary encounter peak. ' These
two regimes are divided by a "valley" in the cross-section
surface extending from (k =0, 8=0) to (k =0.5,
8=3vr/4) The orig. in of this valley is discussed below.

Quantitatively, our results are sensitive to the choice of
IH, . The cross sections obtained with use of the ls2p('I')
value (i.e., 21.2 eV) for IH, are considerably larger than
those shown in Fig. 1, which were calculated using the
value 35 eV (Ref. 12) obtained from the averaging pro-
cedure of Lee and Chen' for small scattering angles. Our
results differ quantitatively also from those of Maleki and
Macek due primarily to our differing H wave functions,
which include angular correlations, our differing value for
IH„and our use of different values for the He atomic
form factor and incoherent scattering function.

B. Doubly differential detachment cross section
in the laboratory frame

The trajectories drawn on the cross-section surface in
Fig. 1 trace the laboratory-frame Galilean-invariant
DDCS as a function of electron momentum for the three
fixed laboratory angles, 81 ——0.3, 1.5, and 4.0. Because
of the valley in the projectile-frame DDCS, one sees that
these laboratory-frame trajectories have two maxima.

Two-dimensional plots of the ordinary laboratory-

frame DDCS's [cf. Eqs. (12) and (34)] corresponding to
these trajectories are shown as a function of laboratory-
frame electron kinetic energy in Fig. 2 at four fixed de-
tachment electron-scattering angles, OL. One sees that the
DDCS decreases with increasing OI. Furthermore, the
double-peak structure disappears by OL & 4.0'.

30 I . I I I

CJ

u) 25-V) g
o 20—
LIJ

l5—
CC
LL

tt: 10— / /
/

CL /
CQ

0 I I I

163 200 250 300 350 400
ELECTRON KiNETIC ENERGY (eV)

FIG. 2. Laboratory-fr'arne DDCS's vs electron kinetic energy
for the four fixed detachment electron ejection angles, OL,

——0.3,
1.5', 4.0', and 10.2'.

g, =03
O

——g =40
L—.-g =102L

C. Origin of the double-peak structure
in the laboratory-frame DDCS for small scattering angles

The valley in the projectile-frame DDCS shown in Fig.
1 and the resulting double-peak structure for small angles
in the laboratory-frame DDCS shown in Fig. 2 stem from
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FIG. 3. Fictitious calculation in which the s-wave phase shift for the detached electron is fixed at 0 rad. All other data and the
description are the same as in Fig. 1 except that only the 01.——O. 3 trajectory is shown.

an interference of s and p partial-wave contributions to
the DDCS. This interference may be seen analytically by
examining the structure of J(X,k), as done by Macek
et al. ' The function J(K,k) contributes to the DDCS as
in Eq. (12). It is defined in Eq. (13) as the average over
azimuthal angles of the absolute square of the H transi-
tion form factor. The interference is visible, however,
only when the transition form factor is expanded in
partial-wave components, Q„'„(EC,k), as in Eqs. (29) and
(30) and Eqs. (Al) —(A5) in the Appendix. Prom these
latter equations we may write

J(rt, k) = (Q„„)+(Q„'„)[I—g'+(3g' —1)cos 8l&2

+2/ cos8 Q„„Q„'~cos(5, —5O) + (35)

where we have left out terms involving partial-wave tran-
sition form factors with l &2. The coefficient g depends
on IH, as in Eq. (A3). Thus, the larger the average target
excitation energy, the more pronounced is the interfer-
ence. Cancellation occurs in Eq. (35) between the terms
even and odd in cos8 for k=0. For 5~=5o=0 this can-
cellation occurs for 8=m.. In H, however, the s-wave
phase shift 50, is approximately equal to m for k=O.
Hence the cancellation in Eq. (35) occurs near 8=0 for
k =0, as shown in Fig. 1.

To demonstrate this exp1anation explicitly, we have car-
ried out fictitious calculations using the same data as were
used to compute the DDCS's in Figs. 1 and 2 (i.e., the
same Q&& for 0& l &2, the same g, and the same 5~ for
1&1&2) but replacing the true s-wave electron phase
shift 50(k) by zero. The results for the projectile frame
and the laboratory-frame DDCS are shown in Figs. 3 and
4. Figure 3 shows that there is no longer any valley; the
cancellation which does occur . is at 0=m. The
laboratory-frame DDCS at 8L ——0.3', which has the tra-
jectory shown in Fig. 3, is shown in Fig. 4. One sees that
in contrast to Fig. 2 there is only a single-peak structure.
Hence we have demonstrated exphcitly that the double-
peak structure in the laboratory-frame DDCS is due to

the s-wave phase shift's value of m for slow detached elec-
trons from H and to the resulting s- and p-wave in-
terference.

More precisely, our calculation shows that interference
of the s wave with the p- and d-wave terms is responsible
for the valley in the cross-section surface in Fig. 1. How-
ever, Table I shows that the s-p interference term C~ is
much larger than the s-d interference term C2 for small
k. Thus, it is the s-p interference which is primarily re-
sponsible for the valley. Note also that s-d interference
produces structure which is symmetric around 8=90',
whereas the valley in Fig. 1 is a decidedly asymmetric
feature. Such asymmetric features can be caused only by
s waves interfering with odd partial waves. We conclude,
therefore, that the s-p interference is responsible for the

50 I I I I

8, = Oz

~ 20—

lX

rL 10—
D
~l—

5
CQ

OI a t l I

200 250 500 550 400
ELECTRON KINETIC ENERGY (eV)

FIG. 4. Fictitious calculation in which the s-wave phase shift
for the detached electron is fixed at 0 rad. All other data and
the description are the same as in Fig. 2 except that only the
8L, ——0.3 DDCS is shown.
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valley in Fig. 1 and for the two peaks in the laboratory-
frame results at small energies and angles.

D. Comparison with experimental results

Comparisons of our laboratory-frame DDCS's with the
relative experimental measurements of Menendez and
Duncan ' are shown in Figs. 5 and 6. Our results in Fig.
5 employ an average He excitation energy IH, of 35 eV
while our results in Fig 6.employ value of 21.2 eV. The
experimental results have been normalized so that the
lower-energy peak height agrees with our theoretical re-
sult.

Comparison of Figs. 5 and 6 shows that the energy po-
sitions of the DDCS peaks are predicted much more accu-
rately using 35 eV for IH„according to the averaging
procedure of Lee and Chen. ' This averaging procedure
provides an angle-dependent value of IH, . We have sim-
ply chosen the value appropriate for small angles. '2

The shapes of our predicted DDCS's are in excellent
agreement with experiment for all angles OL greater than

approximately 4', for which there is only a single peak.
For smaller angles, the predicted lower-energy peak agrees
reasonably with experimental results, but the predicted
higher-energy peak occurs higher in energy and is lower in
magnitude than observed experimentally. As the only ap-
proximation we have made in our calculations which we
feel might have a substantial effect on our results is the
restriction of the H atom to the ls level, we feel that our
results offer indirect proof of the importance of H-atom
excitation states to the observed higher-energy peak. This
conclusion is supported by the direct calculations (includ-
ing excitation of H to the 2s level) of Wright et al. ' and
the new experimental results of Duncan et al. measured
at and near 01 ——0'.

The only absolute experimental data available are those
for the single differential cross section (SDCS) for elec-
tron detachment. These results are plotted as a function
of electron ejection angle in the laboratory frame in Fig. 7.
Also shown in Fig. 7 are four theoretical results: our
present results employing the optimized (OP) and first op-
tically excited state ('P) values for IH, of 35 and 21.2 eV,
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FICx. 5. Laboratory-frame DDCS's vs electron kinetic energy for the four fixed detachment electron ejection angles, OL ——1.0, 1.7',
5.2, and 10.2. Solid lines: present theoretical results employing IH, ——35 eV. Dashed lines: experimental results of Menendez and
Duncan (Refs. 4 and 5). The experimental low-energy peak heights are normalized to our theoretical prediction.
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FIG. 6. Laboratory-frame DDCS's vs electron kinetic energy for the four fixed detachment electron ejection angles, OL,
——1.0', 1.7',

5.2', and 10.2. Solids lines: present theoretical results employing IH, ——21.2 eV. Dashed lines: experimental results of Menendez

and Duncan (Refs. 4 and 5). The experimental low-energy peak heights are normalized to our theoretical prediction.

respectively; results of Macek et al. using the techniques
and approximations of Ref. 9; and electron-scattering-
model (ESM) results of McCarthy et al. on the SDCS of
300-eV electrons incident on He. One sees that our best
results (OP) are lower than those of Macek et al. for
81 (2 and higher above 2'. Throughout the range
0'( 8L ( 10' our best results are about a factor of 2 higher
than experiment. This discrepancy is at present not un-

derstood either theoretically or experimentally.

V. CONCLUSIONS

Our aim in this paper has been to present quantitatively
accurate predictions for the dominant detachment process
for H projectiles incident on He, namely, those in which
the residual H atom is unexcited. Differences of our re-

sults in comparison with experiment thus serve as indirect
evidence of the magnitude of contributions of excited H-
atom states to the detachment cross section. In our calcu-

lations we have treated electron correlations within the
H system more completely than have previous theoreti-
cal calculations. In particular, we have included angular
correlations for the first time within the framework of an
adiabatic hyperspherical coordinate treatment. ' We have
also used the most accurate estimate' for the average ex-
citation energy of the He target as well as precise values'
for the atomic form factor and incoherent scattering func-
tions for He.

Our principal conclusions are, first, that the higher-
energy peak observed experimentally has significant con-
tributions from excited states of H, in agreement with the
direct calculations of Wright et al. ' We find that the
positions and shapes of the peaks are predicted best when

the description of Lee and Chen' for the average He exci-
tation energy is used. Though our single differential cross
sections differ quantitatively from previous calculations,
the factor of 2 discrepancy of the theoretical calculations
with the absolute experimental data remains unexplained.
Finally, we have performed fictitious calculations in
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where

(Al)

i„—: J (K.k)"deaf . (A2)

g—= (2mH, IH, +E: )/(2k;E),

as follows:

(A3)

The values for the integrals in Eq. (A2) may be expressed
in terms of cos8 and a parameter g, where

2 I I I I I I I I I

0 ) 2 5 0 5 6 7 8 9 't0

8,{deg)
FIG. 7. Single differential cross sections for electron detach-

ment vs detached electron-scattering angle. OP: present results

employing the optimized value for IH, of 35 eV. 'P: present re-

sults employing the 1s2p('P) excitation energy for IH, of 21.2
eV. MACEK: results of Macek et al. from Fig. 5 of Ref. 5.
EXPT: experimental results of Menendez and Duncan from
Fig. 5 of Ref. 5. ESM: electron-scattering results for 300-eV
electrons on He of McCarthy et al. (Ref. 25) from Fig. 5 of Ref.
5.

which the s-wave phase shift is fixed at zero radians and
have shown that the double-peak structure of the DDCS
at small laboratory ejection angles disappears. We have
thereby confirmed explicitly the origin of the double-peak
structure as due, first, to the interference of s and p par-
tial waves for the detached electron and, second, to the
zero-energy s-wave phase shift of ir degrees.
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lp= 1

i i
——gcos8,

2iz ——(1—g )+cos 8(3$ —1),
2i3=cos8[3$(1—g )]+cos 8(5$ —3g),

Si4 ——3(1—g ) +cos 8( —30/+36/ —6)

(A4a)

(A4b)

(A4c)

(A4d)

To (Q„„)+—(Q„„)/4 Q„„—Q„„cos(5z 5p),— (A5a)

Ti =2gpp Qp„cos(5i —5p) —Qpp Qpp cos(5z —5i), (A5b)

Tz ——(Q„& ) —3(g&& ) /2+3Q&z Q&„cos(5z 5p), —(A5c)

T3 —3Q„'„Q„„cos(5z—5i )

T4 ——9(g~„) /4.
(Asd)

Comparing the two expressions for J(K,k) in Eqs. (33)
and (Al) and using the results in Eqs. (A4) and (A5), we
have then. for the desired coefficients Z„(X,k) the follow-
ing expressions:

+cos 8(35/ —30$ +3) . (A4e)

The coefficients T„are given in terms of the coefficients

Q„& and the detached electron's phase shifts, 5i, defining
the H transition form factor in Eq. (32), in which only s,
p, and d partial-wave angular momenta l are kept:

APPENDIX

We provide here analytic expressions for the coeffi-
cients Z„(IC,k) defined in Eq. (33), We do this in two
steps. First we obtain J(X,k) from its definition in Eq.
(13) and from our approximate expression in Eq. (32) for
the H transition form factor as follows:

Zo=To+(1 —0 )Tz/2+3(1 —0 )T4/g,

Zi gTi+3$(1 g——)Tz/2, .
—

Z, =(3g —1)T,/2 —(l~g+lg' 3)T,/4,
Zz (5$ 3g)T3/2——, —

Z4 ——(35+—30$ +3)Tg/g .

(A6a)

(A6b)

(A6c)

(A6d)

(A6e)
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