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A distorted-wave method is applied to electron-impact excitations of He-like (Li u and 0 vn) and
Be-like (C ur) ions. In the method, the same distortion potential is assumed for both the initial and
the final states, and electron exchange is taken into account only between interacting electrons. The
collision strengths are calculated for the excitations of 2 'P, 2 '5, 2 P, and 2 S states of the He-like
ions and 2s2p 'P and 2s2p P states of the Be-like ion, and compared with the results of more ela-
borate calculations (e.g., the close-coupling-type ones}. Good agreement is found in most cases if use
is made of the target wave functions of the same or comparable accuracy. Also examined is the
Coulomb-wave approximation, in which the distorted wave is replaced by the corresponding
Coulomb wave.

I. INTRODUCTION

Electron-impact excitations of atomic ions are funda-
mental processes in high-temperature plasmas in laborato-
ry and astrophysical systems. ' The difficulty of the mea-
surement of the excitation cross section makes it necessary
to develop a theoretical method reliably applicable to vari-
ous collision systems. In the present paper an approach is
proposed (a) to apply to a wide range of ionic species,
transition processes, and collision energies, and (b) to clar-
ify systematically the physical mechanisms of the excita-
tion processes. As a test of the method, cross sections are
calculated for He- and Be-like ions and compared with
other theoretical results.

There are already many calculations of excitation cross
section. ' Many of them, however, have been carried out
for the primary application to astrophysical problems and
only for a lower-energy region (i.e., near threshold). When
plasmas are in ionization equilibrium, the most important
are the cross sections near threshold. Once a plasma be-
comes out of equilibrium (the situation often encountered
in a fusion plasma), cross section for a wide range of col-
lision energies are needed to analyze properties of the
plasma. Furthermore, high-energy behavior of the cross
section, if known, is very helpful in assessing the reliabili-
ty of the low-energy part of the cross section. Needless to
say, a comprehensive set of data is important in under-
standing the physical nature of the excitation process.
The present study aims at approaching the goal of the
production of a comprehensive set of the excitation cross
section.

The principles of the present approach are as follows.

(I) A distorted-wave (DW) method is employed to treat
collision dynamics.

(2) States of the target ion are represented by' a wave
function as accurately as possible.

function is much more important than that of the treat-
ment of collision dynamics. It is also of significance to
avoid any ambiguity caused by the inaccuracy of the tar-
get wave function. There are elaborate methods (e.g., the
close-coupling or R-matrix method) which may give more
accurate results than the DW one for the cross-section
calculation. It is, however, very laborious to apply those
methods to practical problems. In principle they can be
used in any collision system and at any collision energy,
but in practice their applications are restricted to the exci-
tation of lower states and at the collision energies near
threshold. The DW method is much easier to apply to
any problem. In this sense, the present approach is com-
plementary to those sophisticated methods.

An advantage of the DW method is its flexibility. It
can be modified in various ways depending on the prob-
lem considered. In the present paper, one of the simplest
forms of the DW approximation is proposed to be applied
to a wide range of excitation processes and collision ener-
gies. After its 'validity is examined in a number of cases,
the formula could be modified to be improved, if neces-
sary. The present method does not include resonance ef-
fects. The resonance effects are usually confined in the
threshold region. The present approach, therefore, is con-
cerned primarily with the energy range above the thresh-
old region. In principle, the resonance effects can be tak-
en into account in the DW method. ' It will be one of
the possible ways of future improvement of the present
method.

In Sec. II our DW method is formulated. Some details
of numerical calculation are described in Sec. III. In Secs.
IV and V the cross sections calculated are presented for
He-like (Lin and Ovid) and Be-like (Cur) ions, respec-
tively. Comparisons are made with other calculations
there. A summary of the present calculation is given in
Sec. VI.

II. DISTORTED-Vf AVE METHOD

In the case of the electron-ion collision, it h'as been found
from experience that the accuracy of the target wave

I

The present distorted-ave method is based on the fol-
lowing assumptions.
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(i) Introducing a distortion potential U and regard-
ing the difference between the true interaction and U
as a perturbation, we adopt the standard first-order per-
turbation theory to derive the transition probability. The
same distortion potential is used to calculate distorted
waves both for the initial and for the final states.

(ii) We assume U to be a spherical average of the
electrostatic potential formed by the target ion in its ini-
tial state.

(iii) An electron exchange is taken into account in such
a way that the incident electron is allowed to interchange
only with the bound electron interacting directly with it.

The Hamiltonian of the whole (target ion plus incident
electron) system is written as (atomic units being used
throughout this paper)

H =HO+ T+ V,
where Ho is the Hamiltonian for the target ion, T is the
kinetic-energy operator for the incident electron, and V is
the interaction between the electron and the ion. With the
use of the first-order perturbation theory, the matrix ele-
ment for the transition, a—Fp (a&p) is obtained in the
orm

The (unperturbed) wave function X'+' (XIi ') is a solution
of the equation

X (1, . . . , N +1)=(( (1, . . . , N)F (N+1) .

Here N is the number of the target electrons. The func-
tion F satisfies the equation

( T+ U )F~= (E e~)F~,—
where E~ is the energy of the bound state of the ion. The
interaction V is expressed as

Z
(6)

where Z is the nuclear charge of the ion, r; denotes the
coordinate of the electron i, and r,z

——
~
r; —rj )

. Substitut-
ing (4) (and the corresponding form for Xp) and (6) into
Eq. (2), we have the element of the transition matrix
(direct-scattering part) in the form

(Ifo+ T+ U )X=EX,
with the outgoing (incoming) boundary condition.

When we ignore the electron exchange, we can separate
the wave function X into the target part P and the distort-
ed wave F for the incident electron:

(7)

We take into account the effect of electron exchange by inserting an antisymmetrized wave function
N+1

Xp (1, . . . , N+1)= Q ( —1) +' Pp(1, . . . ,p —l,p+1, . . . , NN+1)F'p '(p)
p=l

in the place of XIr
' in Eq. (2). Then we have the exchange part of the transition-matrix element

N
UDw ~+1 +

j,N+1 IN+1

(9)

The transition matrix T~ is given by the sum Tg,'+Tp~. Equation (9) is the post form of the exchange part. We can
also define the exchange part by antisymmetrizing the initial-state wave function (the prior form). Usually different re-
sults are obtained, depending on which form is chosen (the post-prior discrepancy).

It should be noted that the transition-matrix elements, (7) and (9), can be derived also from the application of the
first-order perturbation theory to the general formula of scattering amplitude. In the present formulation, it is essential
to assume the same distortion potential for the initial and final states. Otherwise the resulting nonorthogonality of the
initial and the final distorted waves would introduce inconsistencies. (This point was discussed rather extensively by
Fano and Inokuti. )

On the basis of the assumption (iii) above, we retain in Eq. (9) only the contribution from the electron exchange be-
tween the interacting electrons. Thus we have

Tp"' ———X p 1, . . . , X—I,N+1 Fp ' W () (1;. . . , N)F +'(N+1)) . (10)

This is not only the simplest form of the exchange-matrix element but also gives the correct result when Z~ oo. Fur-
thermore, with this approximate treatment, we can avoid the post-prior discrepancy.

The differential cross section for the excitation is obtained by

der(a &P) 1 —p
idco 4+ k~

where k~ (k~) is the wave number of the incident (scattered) electron, and Tp is the sum of the direct and exchange
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parts of the transition-matrix elements as stated before.
To numerically evaluate the matrix element T~, we assume that the angular momenta of the whole system are cou-

pled according to the L Ssc-heme. The cross section averaged over the initial direction of the (spin and orbital) angular
momenta and summed over the final direction of them is obtained as (after the integration of the scattering angles of the
electron)

o(aL S ~PLUS~)= kp Sm

ka (2L +1)(2S +1) gggg(2L+1)(2S+1)
~

(T'"') +(T'"')Pa Pa (12)

)pa + f(I p ~
xi xN xX+1)~l' (rN+i)re+i(d) (P)

~N, N +1
(a) —14(1'a

l
xi, xy, xi+i)ui (rg+i)re+i

(a) —1
~N»N+l~&l ~~~+i~~n+i)). (14)

Q,(aL S PL~S~)= m 'k'(2L +1)(2S +1)Here L S (L~S~) are the orbital and spin angular mo-
menta of the initial (final) state of the ion, l (I ) is the or-
bital angular momentum of the incident (scattered) elec-
tron, and LS are the orbital and spin angular momenta of
the total (electron plus ion) system (ML, Mz being their z
components). In Eqs. (13) and (14), g is the target wave
function coupled with the angular (and spin) part of the
wave function of the scattered electron, x; denotes collec-
tively the space and spin coordinates of the ith electron,
and x; is the angular part of x;. The function P is speci-
fied by the channel index I =aL S lLSMIMs. The
target wave function itself is a linear combination of the
configuration state functions, which are properly antisym-
metrized and I.-S coupled.

The radial part of the distorted-wave function, uI ', is
the solution of the equation

X~(aL S PLi'SP) . (IS)

Before closing this section, comments are given on the
comparison of the present D%' method and others. The
present approach of the DW method is very similar to
that applied to neutral He by Madison and Shelton.
They also adopted the same distortion potential for both
the initial and the final states. They assumed further that
the continuum-state wave function be orthogonal to the
bound-state single-particle wave functions. From this as-
sumption they reached the same form of the exchange
part of the transition matrix as in Eq. (10). Since the
orthogonality requirement has no a priori justification, we
do not impose that, but simply retain the exchange term
between interacting electrons. The method of Madison
and Shelton has not been widely applied so far.

Eissner and Seaton ' have developed a DW method in
which a single distortion potential (the Thomas-Fermi
type) is assumed both for the initial and the final states.
In their method, they use the distortion potential also to
determine the bound-state single-particle wave function.
Actually they adjust the distortion potential so as to pro-
duce the best bound-state wave function. In the present
approach, we start our calculation under the condition
that the best target wave function is already given or
separately determined. It is difficult to decide which
method gives more accurate results. Both the methods
probably produce comparably reasonable cross sections, if
the target wave functions employed are of comparable ac-
curacy. In reality, however, a detailed comparison of the
two calculations is hard to do, because it is often difficult
to assess the details of the target wave function of the
Eissner-Seaton method. '

The DW method of Peek and Mann" is somewhat
more sophisticated than ours. They also use as U the
spherically averaged electrostatic potential of the target
ion. They choose, however, different potentials for the
calculation of the initial and final distorted waves. They
retain in Eq. (9) the contribution from the one-electron ex-
change term [i.e., the term including U (N + 1)
+Zlrz+i]j which we ignore. Furthermore they approxi-
mately take account of the electron-exchange effect in the

«tortion potential. As will be shown later, however, our
simpler method gives the collision strength in good agree-
ment with theirs.

r

k' —2UD" — +
ui '(r)=0 (15)

with the boundary condition

(&) ~ k~ sin[ k~r+k~ 'qln(2k r)

2'~i+ni '1 -. (16)

Here the distortion potential is assumed to be spherically
symmetric and has an asymptotic form

In Eq. (16), gi
' is the phase shift due to the potential

U . In the actual calculation, we adopt as U the
spherical average of the electrostatic potential of the tar-
get ion in its initial state and, hence, q =Z —X. The final
DW function uP' is the solution of Eq. (15) but with the
change of a —+p and 1~1'. The evaluation of the angular
momentum part of the matrix elements, (13) and (14), can
be performed in the same way as in the general treatment
of electron-atom scattering by Smith and Morgan.

In the following sections, the results are expressed in
the form of collision strengths defined by

( T )p = IV(4(l pl &I ' &N —l»N~1»N)&l' (&N )&N
~N, N+1

I
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III. NUMERICAL CALCULATION

In the present paper, the configuration interaction (CI) wave function of target ion is obtained by CIv3 code of Hib-
bert. ' When a comparison is made with other calculations, the same wave functions will be used as far as possible. The
distortion potential is calculated from

(19)

where P is the target function of the initial state. In the
following sections, excitations are considered only from
the ground state of the He- and Be-like ions. The spheri-
cal average in Eq. (19) is not necessary there.

Once the equation (15) is solved for the radial part of
the DW function, it is straightfoward to calculate the
transition-matrix element T@,. The angular and spin part
of the integral in Eqs. (13) and (14) is evaluated with the
use of the respective part of the general code, NREM, ' for
the calculation of electron-impact excitation of atoms.
The convergence over the partial waves of the scattered
electron is confirmed for each case. For higher partial
waves (I & 8, in all the present calculations) we can use the
Coulomb wave instead of the DW. Furthermore, the di-
pole approximation' (the so-called Coulomb-Bethe ap-
proximation) is applied to estimate the contribution for
the higher partial waves for the dipole-allowed transition.

0.8—
Li jJ 11S~ 21P

0.6—

0.4—

IV. HE-LIKE IONS

van Wyngaarden et al. ' made a (five-state) close-
coupling calculation for He-like ions. We compare our re-

suits with theirs. To study the dependence on nuclear
charge, calculations are carried out for LiII and Oval.
The wave functions of the ions are taken to be the same as
those used by van Wyngaarden et al. The configurations
considered are as follows.

(i) 1s,2s,2p, ls 2s for 1 'S and 2 'S
(ii) ls2s for 2 S
(iii) ls2p, 2s2p for 2'P and 23P.

The calculated values of energy difference and oscillator
strength are in good agreement with experiment (see Ref.
15). Those calculated values are used in the present calcu-
lation when needed.

A. LiII

Figures 1—4 show the collision strengths for the excita-
tions 1'S—+2'P, 2'S,2 P,2 S, respectively. The electron
energy is expressed in the threshold unit, X=E,/b, E, AE
being the excitation energy. Each figure includes the re-
sults of our DW exchange approximation calculation (re-
ferred to as DWXA to distinguish it from other DW
methods), the Coulomb-Born exchange approximation
(CBXA) and the close-coupling (CC) calculation. Here
the CBXA result is obtained by replacing the distorted
waves, uI' ' and uI' ', with the corresponding Coulomb
waves, or equivalently by using the Coulomb potential,—(Z X)ir~+&,—as the distortion potential in the present
formulation. It is a type of Coulomb-Born exchange ap-
proximation, but the exchange part of the transition ma-
trix is assumed to have a specific form (10). For spin-
allowed transitions, the result of the pure Coulomb-Born
approximation (i.e., no electron exchange being included)
is also plotted in the figures. It should be noted again that

0.2-
0.12-

0.10-

CB

0.08-

0.0 3
X

0.06-

0.04-

FIG. 1. Collision strengths for the 1 'S—2 'P transition
(EE=4.5834 Ry) in Li II as a function of electron energy, X, in
threshold units. The present results of the distorted-wave
method {0%XA,solid line) and the Coulomb-Born approxima-
tion with (CBXA, long-dashed line) and without (CB, short-
dashed line) electron exchange are compared with the close-
coupling (CC, circles) calculation (Ref. 15).

0.02-

0.00 5
X

7 8 9

FIG. 2. Same as in Fig. 1, but for the 1'S—2'S transition
(DE=4.4884 Ry) in Li II.
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0.10—

0.08—
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0.06-

0.04—

0.02-

0.04—

0.02—
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FIG. 3. Same as in Fig. 1, but for the 1'S—2 P transition
(EE=4.5031 Ry) in Li II.

all the calculations use the same wave functions of the
target ion.

The DWXA results for 2'P, 2'S, and 2 P excitations
agree well with the corresponding values of the CC calcu-
lation at X&2. For 2 S excitation, the D%'XA values
have an energy dependence similar to the CC ones, but the
difference in magnitude is as large as 50% even around
X=2. At X&3, the two calculations get closer for
1 'S~2 S. Except for the 2 'P excitation, the DWXA re-
sults near threshold (X—l) deviate much from the CC
ones. The threshold region is usually dominated by reso-
nance effects, which are included neither in the DWXA
nor in the CC calculation. %'e need a more elaborate cal-
culation there.

To make a somewhat more detailed comparison, we
present in Table I the partial collision strength QL for
each I calculated at two energies. An overall agreement
is good between the D%XA and CC calculations especial-
ly for the higher energy. A large disagreement arises
mainly from the contribution of s wave (l =0). Also a
considerable discrepancy is seen sometimes in the very
small terms of QL, though they are of less significance to
the total collision strength. Those terms may be dominat-
ed by a higher-order effect, which is not included in the

I I I I

2 3 4 5
X

FIG. 5. Same as in Fig. 1, but for the 1'S—2'P transition
(hE =42. 171 Ry) in 0VII. The results of DW'XA and CBXA
cannot be distinguished in this scale.

0
0.014—

0.012—

CB

DWXA

first-order perturbation method like the present one.
The Coulomb-Born exchange approximation is expect-

ed to become better with increasing electron energy. As is
seen from the figures, the behavior is different for dif-
ferent excitation processes. For a dipole-allowed transi-
tion (2 'P), the CBXA is very close to the DWXA over
the entire range of X considered. The Coulomb-Born ex-
change approximation is good at X & 5 for 2 'S and 2 P
and at X&7 for 2 S. In particular, the Coulomb-Born
approximation without electron exchange (CB) is very
poor even for the dipole-allowed transition. For 2 'S exci-
tation, it becomes good only at very high energy of elec-
trons. This suggests the importance of electron exchange.

Q
0.12—

i'

0 10 DWXA
Li g 1'S ~ 23S

0.010—

0.008—

0.08— 0.006- /

0.06—

C
0.04—

0.02—

0.004-

0.002-

0.00 2 3 4 5 6 7 8 9 10 0.000

FICi. 4. Same as in Fig. l, but for the 1'S—2 S transition
(4E=4.3450 Ry) in Li II.

X

FICi. 6. Same as in Fig. 1, but for the 1'S—2'S transition
(EE=42.780 Ry) in Q VII.
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0.020—

0.006—

0.005—

l%

CBXA
0 g 1'S~23S

0.004—

Q.015— 0.003—

0.002-

0.010—

0.005-

0.001—

0.000
2 3 4 5

X

FIG. 8. Same as in Fig. 1, but for the 1'S—2 S transition
(DE=41.275 Ry) in OVII.

0.000

FIG. 7. Same as in Fig. 1, but for the 1'S—2 P transition
(DE=41.787 Ry) in 0VII.

B. OVII

The collision strengths for the excitations of
2 P,2 S,2 I,2 S of 0 vII are shown jn Figs. 5—8,
respectively. In this case, the agreement between the
DWXA and CC is very good (within 10%) except for the
2 S excitation. In the case of 2 S, there is a discrepancy
as large as 15%. The Coulomb-Born exchange approxi-
mation (CBXA) gives almost the same results for 2 'P and
2'S as the DWXA. While the CBXA completely agrees
with the DWXA for 2 'P, there remains a small difference
for 2'S. The CBXA is poor at X&2 for 2'P and X&3
for 2 S. It is noted that, at X- 1, the CBXA value for
2 S is larger by a factor of 2 than the corresponding
DWXA one. The CB calculation is very poor also in the
case of 0vn.

From the comparison with the previous case of Li II, we
conclude the following in regard to the Z dependence.

With increasing Z, the present DW calculation (DWXA)
becomes better as expected. In the case of OVII, the
DWXA method reproduces almost completely the CC re-
sult at any electron energy. The Coulomb-Born exchange
approximation also becomes better for higher Z. The dis-
tortion effect, however, is still of importance for a certain
type of excitation at least at lower energies. The effect of
electron exchange cannot be ignored at all except at a very
high energy above threshold. These effects of distortion
and exchange are taken into account properly by the
present DW method in the case of higher Z.

In the case of Ovn, a very accurate calculation has
been made recently with the R-matrix method. ' Except
for the resonance effects near the threshold, the result of
the A-matrix calculation is very similar to the CC values
shown here (for details, see Ref. 16). For a comparison,
the three results (the R matrix, the CC, and the present
DW) at E, =75 Ry are shown in Table II. A good agree-
ment between the present DW and the R-matrix results
indicates both the reliability of the present method and
the less significance of the resonance effects at this ener-

gy. It should be noted that a part of the small discrepan-
cy may be attributed to the slight difference in the target
wave functions adopted. In fact, Tayal and Kingston'
show some difference between their five-state calculation
and the similar five-state close-coupling one by van Wyn-
gaarden et al.

TABLE II. Comparison of the collision strengths of O VII, calculated at E, =75 Ry by the present

DW approximation (D%'XA), the 5-state close-coupling calculation {5CC, Ref. 15), and the (11-state}
R-matrix method (RM, Ref. 16}.

DWXA
5CC
RM
(11 state)

2'S

0.009 04
0.008 92
0.008 3

2'P

0.0466
0.0485
0.0544

2 5
0.002 12
0.001 84
0.002 55

2 P

0.008 78
0.008 55
0.007 77
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V. BE-LIKE IONS

As another test of our method, collision strengths are
calculated for the excitation of Be-like ion (CIir). Both
the Be-like and the He-like ions have the ground state of
ns 'S, but, in the case of Be-like ions, a transition with
4n =0 can occur. Here the excitations 2s 'S~2s2p 'P,
P of CIII are studied. The target states are represented

by the configurations

14—

1.0-

0.8-

2s, 2p, 2s3s, 2p3p for 2s 'S
2s2p, 2s 3p, 2p3d for 2s2p 'P and P.

R matrix I 1S ~ lp

3 4 5 9 IO

FIG. 9. Collision strengths for the 2s 'S—2s2p 'P transition
(A,E=0.95111 Ry} in CIII as a function of electron energy in
threshold units. The present results of the distorted-wave
method (0%'XA, solid line) and the Coulomb-wave approxima-
tion (CBXA, dashed line) are compared with the results of the
R-matrix calculation (open circles, Ref. 19) and the distorted-
wave method of Peek and Mann (solid circles, Ref. 11).

We adopt the exponents of the orbital functions deter-
mined by Tatewaki et al. '

( 1s, 2s, 2p) and Hibbert'
(3s, 3p, 3d). The energy difference and oscillator strength
calculated with the present wave functions are in very
good agreement with the results of more elaborate CI
wave functions (e.g., those used in the R-matrix calcula-
tion described below).

Figure 9 gives the collision strengths for the excitation
of 2s2p 'P. The results of DWXA and CBXA are com-
pared with the 8-matrix calculation' and the distorted
wave exchange (DWX) method of Peek and Mann. " The
target wave functions used in the R-matrix and the DWX
calculations differ from each other and slightly from the
present one. All the wave functions, however, have simi-
lar quality, when judged from the resulting energy differ-
ences and oscillator strengths. All the values of collision
strengths shown in Fig. 9 are in good agreement at X & 2.
It should be hoted that the R-matrix calculation includes
resonance effects, but they are small at X)2.

The collision strength for 2s2p 3P excitation is shown
in Fig. 10. The 0%'XA result in this case agrees with the
R-matrix calculation' (resonance effects being less signi-
ficant at X&4 in this case) or the DWX calculation of
Mann only at I)6.

The excitation energy for 2s 'S—2s 2p P of C III
(b,E=0.478 Ry) is very small compared with the other
cases. The electron energy at X =6 corresponds to E, =3

0.2—

0 5 10 15 20
X

FIG. 10. Same as in Fig. 9, but for the 2s' '5—2s2p P tran-
sition (AE =0.417 10 Ry) in C III. The solid circles are the data
of the D%' method of Mann (Ref. 20).

Ry. Considering this fact, we can understand the
discrepancy shown in Fig. 10. In his DW method, Mann
imposed a unitarization to his original result. We could
reduce the discrepancy at lower energies by a similar pro-
cedure of unitarization. The discrepancy of the DWXA
(and the DWX) from the R-matrix values at higher ener-
gies may be attributable to the small difference in the tar-
get wave functions. The Coulomb-Born exchange approx-
imation (CBXA) is very poor in this case until the elec-
tron energy reaches very high values in the threshold unit
(X-20).

VI. CONCLUSION

We have proposed a simple D%' method for the calcu-
lation of electron-impact excitation of atomic ions. In the
method, the spherically-averaged electrostatic potential of
the target ion in its initial state is used as the distortion
potential both for the initial and for the final states.
Furthermore, the electron exchange is taken into account
only between interacting electrons. The method has been
apphed to the excitations of He-hke (I.i II and 0vrr) and
Be-like (C uI) ions and found very satisfactory when com-
pared with more elaborate calculations.

The present method provides good results unless the en-
ergy of the incident or scattered electron is very low and
in the energy range where resonance effects are not large.
%'hen the nuclear charge Z, or more precisely the effec-
tive charge Z —X, is large, the present DW method is
quite good even near threshold. When Z —2V is small, the
method works well at X & 2—3 for large excitation energy
bE, and at X)5—10 for small AE. As is expected, the
dipole-allowed transition can be treated very well by the
DW method irrespective of these conditions.

For higher electron eriergies, the Coulomb-wave ap-
proximation resembles the DW method more closely.
Especially for dipole-allowed transitions, the Coulomb-
Born exchange approximation (CBXA) gives results very
close to those of the DW method even near threshold.
The applicability of the Coulomb-wave approximation, in
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general, is much more limited than that of the DW one.
As was stated in the Introduction, the DW method is

very flexible. It is not much more difficult to modify the
basic assumption imposed at the outset. There are, for in-
stance, many different choices of the distortion potential.
The treatment of electron exchange can be changed de-
pending on the excitation process considered. After appli-

cations to more ions, we would investigate the possibilities
of modification of the DW method.
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