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The well-known magnetic or optical Bloch equations are extended to the case of unstable systems
such as, e.g., spontarieously decaying particles and molecules undergoing chemical reactions or de-
caying from excited states back to states other than those involved in resonance. The modified
equations are derived from a general theory of irreversible processes where quantum Markovian
master equations and the corresponding completely positive dynamical semigroups dictate the time
evolution of density operators. The results are of particular importance in those situations where de-
cay occurs level-selectively and all relaxation and decay constants are of comparable order of magni-
tude. The obtained generalized Bloch equations are of direct applicability to problems of time-
resolved magnetic or optical resonance spectroscopy.

I. INTRODUCTION

The usefulness of Bloch equations for the description of
magnetic resonance phenomena is well known, ' " and
analogous equations are also of wide use in optical spec-
troscopy. Strictly speaking, they are valid only for
stable two-level systems whereas in many situations the
system of interest is unstable, e.g. , when particles decay
spontaneously or molecules take part in chemical reac-
tions, or when there is decay from excited states back to
states other than those involved in resonance. Although
some approximate approaches have been proposed from
an experimental point of view, " the problem has never
been solved in a satisfactory way. Theoretically, quite dif-
ferent methods are available for a treatment of similar
problems, ranging from wave-function descriptions of
closed systems' to quantum-statistical density-operator
formalisms for open systems. ' ' In the latter case, the
main difficulty consists of finding a tiine evolution for the
density operator such that for all times the von Neumann
conditions of positivity and trace preservation are ful-
filled. If this is not guaranteed very strange inconsisten-
cies may arise. ' ' The only tractable theory of irreversi-
ble processes which pays full attention to these difficulties
is based on quantum Markovian master equations'
and on an associated powerful structure theorem 3' s

which entirely determines the infinitesimal generator of a
completely positive quantum-dynamical semigroup. Vfe
will not repeat details, merely referring the interested
reader to the review articles by Gorini et al. , by Spohn
and Lebowitz, ' and the literature cited therein.

II. THEORETICAL BACKGROUND

A. Quantum-dynamical semigroups

For an open quantum system Q coupled to a reservoir
R in a Markovian approximation, there exist mathemati-
cally well-defined techniques' ' to derive an ap-
propriate master equation for the density operator p(t)
which describes the generalized states of Q and acts on a

corresponding Hilbert space A . Since we envisage the
treatment of magnetic-resonarice phenomena iri decaying
spin systems it will be sufficient to consider finite-
dimensional spaces with dim% =N (N-level systems).
We denote by A (A ) the algebra of bounded linear opera-
tors on A . Under the trace metric ~~C~~=Tr(C'C)'
CRAP(A ), A(A ) is a Banach space. Then, we intro-
duce the subset P'(A )C:9F(A ) containing all density
operators p=p' with Trp=1 and p&0.

If the time evolution of Q is governed by

p( t) =6 (t)p(0),

6 =
I 6 (t): t )0I is called a positive quantum-dynamical

semigroup, if it fulfills the following requirements:
(a) 6(t) is linear, t &0.
(b) G (t) is positive, i.e., p )0 implies

G(t)p) 0, Vp&P'(4 ), t &0 .

(c) 6 (t) preserves the trace, i.e.,

Tr[G(t)p]=Trp=l, VpEW(A ), t)0.
(d) 6 (t) is strongly continuous, i.e.,

lim
( [6(t)p—6(s)p[ (

=0, Vp&W(A ), t, s )0 .
fJs

(e) 6 is a semigroup, i.e.,

6(t+s)=6(t)6(s), t,s)0.
Under these conditions it follows from the Hille-Yosida
theorem that one may write

6 ( t) =exp(Lt),

or a differential equation corresponding to (1),

p(t) =Lp(t),
where the dot denotes the partial derivative with respect
to time and L is the (time-independent) infinitesimal gen-
erator of the one-parameter semigroup G. Linearity, con-
dition (a), is required because the time evolution must
preserve the convexity- properties of the state space.
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Again, it must be emphasized that conditions (b) and (c)
are indispensable for any time evolution of density opera-
tors which have to satisfy the von Neumann axioms re-
quired by quantum theory, and conditions (d) and (e) for-
malize the mathematical existence and properties of the
Markovian limit as obtained from a general master equa-
tion by a weak- or singular-coupling assumption. '

Of course, for any applications Eq. (3) is only usefu'1 if
the detailed mathematical structure of the generator I. is
known and can be related to characteristics of the open
quantum system such as, e.g., a Hamiltonian and various
relaxation processes. In fact, L describes a rather general,
mixed dynamics comprising reversible and irreversible
processes. Now, Gorini, Kossakowski and Sudarshan
have proven the following important structural theorem.

Theorem Li.s the generator of a completely positive
quantum dynamical semigroup, if and only if it has the
following structure (in the Schrodinger representation):

N2 I

Lp= i [IIp—]+—, g a J I [F;,pFJ*]+[Fp,F*)I, (4)

where
H =H*, Tr(H) =0,
Tr(F;) =0, Tr(F;FJ*)=5;J,

(5)

(6)

A=Ia;~I)0, ij =1, . . . , N 1. —
Here, H is the Hamiltonian for the open quantum system
including the energy shifts due to the interaction with the
reservoir. The positive semidefiniteness of the matrix A
of coefficients a;J in (4) is a powerful statement on the
range of admitted values of physical parameters which
can be cast into a set of inequalities among them. For ex-
ample, the w ell-known and experimentally well-
established relation

quired by the structure theorem in II A, it will be neces-
sary to explicitly construct an appropriate operator set
I Ft ~i =1,2, . . . , 8I which in terms of

Pk= ~i)(k ~, i, k =1,2,3,
is given in Hermitian form by

F1 =P12+P21 F5 = i (—P13 —P31)

F2 ( 12 P21)~ F6 P23+ 32

(10)

3 11 P22~ F7 t (P23 P32) ~

1
F4 P13+P31& F8 (P11+P22 2P33)

3

These rules can easily be extended to X dimensions. The
unit operator is Fo=P11+P22+P33 and the list of alge-
braic relations needed for further calculations is as follows
(ij =1,2, . . . , 8):

F; F,' , T=r(F,.) =0, Tr(F;FJ )=25;J,
8

[F;,FJ]=2i g f;,;F, ,
k=1

8

IF FJ I = 3Fo&o+2 g d JkFk
k=1

(12)

(13)

such that the components of the coherence vector for
given p are obtained by

where I, I denotes the anticommutator. The fJk's are
the completely antisymmetric (with respect to interchange
of any pair of indices) and the d,jk's the completely sym-
metric structure constants of the Lie algebra of the F s.

The density operator p is conveniently decomposed into
8

P( t) =—,
' Fo+ —, g uk ( t)Fk (15)

k=1

uk(t) =Tr[Fkp(t)],
and the Hamiltonian may be written as

(16)

for the longitudinal and transverse relaxation times in
magnetic resonance (spin- —,

'
systems) is a strict conse-

quence of (7).
For physically interesting situations time evolution

drives the system towards a unique final destination state
po~

lim G(t)p=po,t~ oo

for all pEW(A ). This class of completely positive semi-
groups is called "uniquely -relaxing. "

For further general details of the dynamical semigroup
aspect of irreversible processes the reader is referred to the
review by Spohn and Lebowitz. '

As a preparation for the derivation of Bloch equations
for decaying spin- —, systems it is first necessary to derive
some general results on the time evolution of a three-level
system as done in the next section.

B. Time evolution of a three-level system

We consider a three-level system with Hilbert space
A =C and choose a formal spin-1 treatment. As re-

8

H =H'= Q hkFk,
k=1

(17)

V(t)=(U1(t), U2(t), . . . , U8(t))T,

written in compact notation as

V(t) =(H —I )[V(t)—V'] .

(18)

Here, H is the Hamiltonian part, I =I' '+I"the relax-
ation part, and V the asymptotically stationary state.
The matrix elements of H and I are

8

Irk„=2 g h f; k

where the hk's are real. Choosing for 3 the special repre-
sentation 3 =8+C, where B is a real symmetric matrix
with zero diagonal elements, and C is Hermitian with
purely complex off-diagonal elements, and inserting (15)
in (4), yields eight coupled differential equations for the
coherence vector '
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8
(b)

ykn =4 X bij (fimnfjmk+fjmnfimk ) (21) 0 b12 b13

I ' '=4 b12 0 b23 (29)

8

yk". =4 g
T

8

Ciifimkfimn + g Cij (fimkdjgg\n fjngkdgggggg )
j=lJ)l

b13 b23 0

C22 +C33 0 0

+b38 X (f3mnf 8mk+f 8mnf 3gggk ) (22)

I (c) 4 0

0
C11 +C33

0 C11 +C22

(30)

The prime in the summation (21) indicates that the term
proportional to b38 has been omitted and incorporated in
(22). Finally, the stationary solution V is obtained from

where M =(M„,M», M, ) is a solution of

(H —I )M =Q=S(C23g CI3gcI2)". (31)

(H —r)V'=Q,
where the components t q„j of Q are given by

8
16

qn =
3 ~ Cijfijn

(23)

(24)

All these elements follow from (20), (21), (22), and (24).
The 81och equations for an anisotropic spin- —,

' —system
result from (27) when considering the more special case
I 'b'=0. Then, due to the positive-semidefinite property
of the matrix A (see Appendix A), the diagonal relaxation
parameters

Thus, apart from positive definiteness, the elements of the
matrix A have to fulfill the condition that (H-r) be non-
singular in order to guarantee the existence of a unique
solution for V in (23), in which case only the associated
semigroup is uniquely relaxing.

III. BLOCH EQUATIONS WITH DECAY

A. Static field case

y„=4(c22+c33 ),
yy ——4(CI I +C33 ) g

yz 4(CI I +C22) g

say, are restricted by the inequalities

8C11 =fy+Pz gx )0

8C22 =yx+'V —
XY & 0

(32)

(33)
The derivation of Bloch equations including decay of

the system will be formulated in such a way that, in the
limit of no decay, one gets the familiar equations for a
spin- —, system. It is instructive first to see how in this
three-level version, where the third level is reserved for the
decay products, ordinary Bloch equations for stable sys-
tems are obtained by just letting the third level play a
dummy role. For this purpose the relevant components of
the coherence vector, ul(t), u2(t) and u3(t) can directly be
related to the magnetization (divided by the Bohr magne-
ton) since, Fl, F2 and F3 are simply the Pauli matrices
trivially complemented by a third dimension.

To keep a familiar notation we write

C12 ——(C I I C22 ) Z3
1/2

C13 (CIIC33) Z2
1/2

C23 =(C22C33) Zl
1/2

(34)

8C33 3 x+7y 3 z &0 ~

and, furthermore, in terms of a real vector z=(zl, z2,z3),
the off-diagonal elements or, equivalently, certain linear
combinations of the asymptotically stationary magnetiza-
tion components of M, as obtained from (31), are con-
nected to the inverse relaxation times through the follow-
ing relations:

M(t) = (M„(t),M»(t), M, (t) )T, (25) where

where M„=v1, M„=v2, and M, =v 3 is understood.
Then, the appropriate elements of the matrix A in (7) and
H in (5) are set equal to zero,

aJ. =O, 4&i,j &8,
(26)

h;=0, 4&i&8,
and the magnetization obeys the equation

0&Z1+Z2+Z3 & 1
2 2 3 (35)

This agrees with the results of Ref. 23, where some fur-
ther details may be found. We note, in particular, that for
axially symmetric systems y„=y» =1/T1 holds and, with
the definition y, =1/T~~, the third of Eqs. (33) yields the
relation well known in magnetic resonance,

(36)

0 —h3 h2

H=2 h3 0 —h1

—h2 h1 0

M(t)=(H —I )[M(t) —Mo]

with the explicit matrices

(27) It must be stressed that this type of useful inequality is
obtained directly via the structural theorem for the gen-
erator L, and, consequently, without solving differential
equations, whereas working with purely phenornenologi-
cally derived master equations first requires their solution
and then, from physical arguments one may deduce simi-
lar inequalities. This clearly shows a particular advantage
of using completely positive dynamical semigroups.
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%'e now return to the genuine three-level case and con-
sider the simple model of an open system as in Fig. 1,
where the upper levels

~

a) (:—
~
1) ) and

~
p) (—:

j 2) ) are
spin-down and spin-up states. The solid arrow I
represents the partly irreversible transitions described by
the matrix elements in (21) and (22), whereas the dotted
arrow stands for the Hamiltonian evolution given by (20).
0 does not couple to the third level and only irreversible
decay from ~a) with rate k and from ~P) with kti to
the final state

~
3) is considered. Thus, e.g. , in chemical

systems a species X may undergo a first-order reaction

X~ gvP;
k P i=1

(37)

to ni final diamagnetic products P; with stoichiometric
weights v;, or similarly, react with a second species Y
under pseudo-first-order conditions,

X+I' ~ g v;P;, F=const .
a' s i=i

(3S)

It is therefore natural to introduce, in addition to the
magnetization, as fourth observable, the normalj. zed parti-
cle number (or concentration)

/1& =/~&

/~& =/t3&

To adapt this still quite general choice for A to the par-
ticular model of Fig. 1, we look at the relaxation of the in-
dividual diagonal elements of the density matrix and find
the relations

Sc45 ——4(c~+c55 )=k

Sc67 4(c——66+c77)=kg,
(42)

which force the matrix A into a block structure (see Ap
pendix A). The final results will depend essentially upon
the average and the difference of the decay rates,

FIG. 1. Open three-level system with reversible (H) and ir-
reversible {I ) contributions to the infinitesimal generator of the
dynamics of the coherence vector.

N(t) =Tr[(P»+P22)p(t)] k = —,
' (k~+kp), hk = —,

'
(k~ —kp) . (43)

2 Fo+Fs P(t)
3

(39) Again, we put

M(t) = (v, (t),v2(t), v&(t) )

It follows from this definition that 0&N(t) &1 and
N(0)=l. Thus, the components vi, v2, vi, and vs of the
coherence vector are the relevant quantities where U8 is re-
lated to %by

(M„(t),M, (t),—M, (t) )T

and form a four-component vector

R(t)= (M(t), M~(t), M(t), N(t))r, (44)

a; =0, 1 &i &3 &j&7 and 4&i &8=j,
h;=0, 4&i &7 .

(40)

(41)

N =(vs+2/v 3)/v 3 .

A careful inspection of all matrix elements of I shows
that the dynamics of these four components is decoupled
from the remaining ones by choosing

which obeys the differential equation

R(t) =(H —I )[R(t)—RD], (45)

where RD is now the asymptotically stationary coherence
vector including decay, in contrast to the-earlier intro-
duced M in Eq. (31). The explicit calculations yield the
4&(4 matrix

—(y„+k)

4
2h 3 C38 4b12v3

—2h 2+ c28 —4b13v3

4—2h 3+ C38 —4b 12v3
—(yy+k )

2h1 — c18—4b 23v3
0

4
2h2 — c28 —4b13v3

4—2h1+ c18—4b23v3

—8c23

8c13

—8c12 —Ak

(46)

It may be verified by direct computation that RD ——0 is
the only solution to (H —I )RD ——Q, where Q is found to
be

(47)

Physically, this expresses the fact that, after complete

irreversible decay to the diamagnetic products, there are
neither any magnetization nor any paramagnetic particles
left. Further inspection of the matrix H I shows that-
c18, c28, and c38 can be reabsorbed in the definition of h1,
h 2, and h 3 and. , consequently, one may set c18=C28 =C38



GENERALIZED BLOCH EQUATIONS FOR DECAYING SYSTEMS 1303

Since, for the case of no decay, the well-known Bloch
equations should be obtained, one has, according to the
considerations at the beginning of this section, where I ' '

has been put equal to zero, b13 ——b23 ——b12 ——0. We choose
the magnetic field in the z direction and put 2it3 ——coo

(hi ——hz ——0), where F00 is the Larmor frequency, and
parametrize, for convenience and in agreement with Eq.
(31), the constants cia, ci3, and cubi by M, i.e., in terms
of the stationary magnetic properties of the system in the
absence of decay. By all foregoing reductions one arrives
at the simplest nontrivial generalization of Bloch equa-
tions for decaying systems, compatible with a time evolu-
tion given by a completely positive-dynamical semigroup:

P

M„(t)= — +k M„(t) top—f, (t)T

, =(I
i

W
i
2), (53)

where W has been assumed real, and W(t) may finally be
written as

W(t) =toiFi cos(cot) . (54)

As usually, for the field strengths of interest, the
Bloch-Siegert shift may be neglected, ' ' which means
that the action of the alternating field is taken into ac-
count in the rotating-wave approximation,

where, in the basis I i
1),

~
2),

~
3) J (see Fig. 1) W con-

nects only level
~
1) with level

~

2). This conforms to the
conventional arrangement in magnetic resonance with the
alternating field being perpendicular to the static one.
The field strength cubi is simply given by the off-diagonal
matrix element

M
+co(Pfy N (t), W (t) = —,

'
cubi(Pize '"'+Prie'"') . (55)

M, (t) =+cooM„(t) +k M, (t)

—hk N(t),

N(t) = Ak M, (t) —kN (t), —
where the relaxation times

M
ci)OM„N—(t),

3'

M
M, (t)= — +k M, (t)+

g 2

(48) 0= U(t)OU" (t) .
The unitary transformation U(t) is generated by F3,

(56)

U (t)=exp[ ,' i coF3t]—

By direct calculation one verifies that

As a next step, a transformation to a rotating coordi-
nate system is performed in order to eliminate the explicit
time dependence of W . This is achieved by introducing
a special interaction representation for any operator
OH%(Pi ), say, through

1Tl'—
Vl

l =X~+~Z (49) 8' = —,a)1E1 .

have been introduced. The first three equations would
coincide with those proposed by Verma and Fessenden,
but only for first-order decay and b,k=0. Spin-selective
decay, i.e., k &kit, enters through the difference hk ap-
pearing in the last two coupled equations. Qualitatively,
the solution for N(t) will depend on hk such that M„(t)
as well as Mz(t) will also depend upon this quantity. The
somewhat complicated general solutions, as found by
standard Laplace transform, will be given in Appendix B.

p(t) = [L„+L&(t)jp (t),
where

(59)

Again, the master equation is given by (3) and (4) with an
explicitly time-dependent Hamiltonian, but constant ma-
trix A, leading to a time-dependent Cauchy problem
which, in general, may be difficult to solve. However, we
try to obtain a time-independent problem after transfor-
mation to the rotating frame,

B. Alternating field case L/, p(t) = i [(HO+ W' ), p—(t)]+i—[F3,p(t)], (60)

The derivation of Bloch equations with decay in pres-
ence of a static and an alternating classical field will be
given, as far as possible, along the lines of Sec. III A. For
the model of Fig. 1 we choose a Hamiltonian

8

Lg(t)p(t)= g tiiI [F (t), P(t)FJ(t)]+[F (t)p(t), F,.{t)]I,
(61)

H(t) =Ho+ W(t), (50)

where, again, the static field is in the z direction, and in
terms of the Larmor frequency coo, we can write

by requiring that L~+Ld(t) be time independent. Since,
obviously, [8/Bt, Li, ]=0 is already satisfied, we are left
with the condition

COO

H() —— I3,2

and the alternating field W(t) may be of the form

(51) 'a
dt

,Ld(t) =0 . (62)

W'(t) = W cos(tot), (52) This, again, impli. es certain restrictions on the matrix ele-
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pj(t) =gq(t)pq(t), (63)

ments a,j-, as will be shown by the following considera-
tions. First of all, from (56) it follows for the matrix ele-
ments of p that

C11 Q12 0

a 21 C11

C33 ~ 38

0

where we have introduced the abbreviation,

gj(t) = U;;(t) U,*,(t) . (64)

0 a83 c88 0 0

0 0 cd a4s 0 (73)

Recall that the generator F3 is diagonal and, consequent-
ly, U is also diagonal. Next, denoting the contribution of
the dissipative part to the time evolution of P by
p' '=I.dp, we have

0 0 ~ ~

0 0 c66 a 67

0 976 C66

3

P ij {t) gij {t) y {Ld)jPkl(t')
k, /=1

(65) where, in agreement with the earlier notation,

akl bk! + ickl (bkl ckl +R kA i)
where the superoperator notation ( Ld ),~ has been
used. Equation (65) follows directly from
Ldp= U(Ldp)U* The .products of the functions gl{t)
have the properties

Now, the Bloch equations can be written down by using
again Eq. (45) and the matrix H I in (—46), but taking
into account the following additional requirements. Since
c11——c22 in (73), we set

1, i =jk=l,
g~(t)gkl(t) = I, i =l j=k,

Gjkl(t), otherwise,
L

(66)
l

Vx Vy = Vl~ Xl-
TJ

(74)

where G;jki(t) are functions of time whose properties will
not be needed further. With the help of Eqs. (63) and
{66),Eq. (65) can be rewritten as

3

p,', (t)= g g;, (t)glk(t)(Ld) pkl(t),
k/=1

' COH =Ho+ P ——F'3,
2

(75)

~ =~ll ~ll=
II

due to (32). Equation (60) shows that the effective Hamil-
tonian in the rotating frame is

which is the explicit form of p' '=Ldp and establishes the
relation

and the decomposition (17) yields

2A 3 CO COO —~CO~ 2A 1 67 (76)
[Ld(t)],~'=g~l( )gik( )(Ld),",' . (68)

Thus, the commutator in (62) vanishes only if
gij(t)gtk(t)=const. for all i,j,l, k =1,2, . . . , 8. From (66)
it follows that the only nonzero elements of Ld are

In this way, one finally obtains the four coupled differen-
tial equations referring to the rotating frame,

M„(t)= — — +k M„(t)+bcoM, (t),
TJ

(Ld)~~) =(Ld)'J'[&l, 5ki(1 .~ k)+~ k&ji] (69)

where 5 is the Kronecker symbol. This yields implicitly
the restrictions on the a,j. coefficients. To get the connec-
tion with the components of the coherence vector in the
rotating frame one calculates

M~(t) = —b A@M„(t)

M, (t) =coiM„(t)—

+k M„(t) coiM, (t), —

(77)

+k M, (t)+ —Ak N(t),
U 'k"=Tr(+kp'") . (70)

and finds from (11) and Eq. (69) that, e.g. ,

U '1
' ——Re(Ld )12U 1

'+ ™(Ld)12' 2 ',
~{d)
U 2 R {Ld)12U 1 ™Ld)122

12~ {d) 12m {d)

where Re( . ~ ) and Im( . . ) denote the real and imagi-
nary parts, respectively, and analogous relations hold for
the remaining components. A detailed comparison of the
prix:eding Eqs. (71) and (72) with the general structure of
(4) yields the result that the matrix 2 (after rearrange-
ment) must have the following block form:

N(t) = —b,k M, (t) —kN(t),

where M and N are defined similarly as in (25) and (39).
Note in comparison with the static field case (31) that
here M„=M~=0 follows from the special block struc-
ture of A which reflects the axial symmetry of the system
under consideration.

Again, M
ll

characterizes the stationary magnetic prop-
erties of the system in the absence of decay and can be ex-
pressed through the a;j's [see Eq. (31)]. Since, in general,
this parameter will not be separately accessible in an ex-
periment one may take it as an adjustable quantity. The
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set of Eqs. (77) can be solved by standard methods, as
shown in Appendix C, where also analytical solutions for
the special case of resonance (dao =0) are given.

If the system is not axially symmetric Eq. (77) is not
applicable but one still may use Eq. (59) whose solutions,
however, are extremely difficult to discuss. For an
analysis of related problems we refer to Ref. 34.

IV. DISCUSSION

The generalized Bloch equations (77) for a decaying
spin- —, system in comparison with the ordinary Bloch
equations in the rotating frame

M~(t) = b,AM„(—t)
My(t)

coiM,—(t), (7&)

M, (t) =co,M„(t)
M, (t)™((

~II

show the following marked features.
(i) The relaxation constants Ti ' and T~~

' both are aug-
mented by the average decay constant k = —,(k~+ kp).

(ii) The time derivative of the z component is addition-

ally coupled to the decaying particle density X(t) via the
difference of the decay constants hk =—,

'
(k~ —kti).

(iii) There is, of course, a fourth extra equation for the
particle density governed by the average decay constant k
and coupled only to the z component of the magnetiza-
tion, again via the difference hk.

Evidently, the coupling among the equations is, in ger. -

eral, such that the decay of any one of the magnetization
components will depend on b,k. It is only for k =k&
and, consequently, b.k=0, that Eqs. (77) would coincide
with those given by Verma and Fessenden9'3 but, of
course, only in the case of first- or pseudo-first-order de-

cay, whereas in the theory of chemically induced
dynamic-spin polarization by Freed and Pedersen the in-
fluence of decay has only been taken into account in the

equation for M, .
As long as the spin dynamics is fast in comparison with

the decay, the magnetization has enough time to adjust it-
self to the values obtained from solving ordinary Bloch
equations, and the influence of decay will be obtained by
just multiplying every magnetization component by the
decay law. Thus, the magnetization will vanish in exactly
the same way as the particle number does, and no interfer-
ence between the two types of dynam'ics will be noticed.
On the other hand, for a situation where k and b,k are of
the same order of magnitude and, at the same time, k and
at least the inverse magnetic relaxation time Tll is also
comparable in magnitude, the deviation from the above
case will be most pronounced. In particular, the spin
selectivity of decay, i.e., k~&ktt, should easily be
discovered from the solutions which depend essentially on
b,k as seen from Appendix C. Prominent physical exam-
ples which perfectly fit these requirements will be found
among certain molecular crystals at very low temperature

where many different experiments have been performed in
order to reveal the selectivity of population and depopula-
tion of the triplet sublevels. The general situation
may be explained using the particular example of a na-
phtalene mixed crystal (CioD8.0,2% CioHs) where, after
uv excitation of the lowest singlet state and subsequent in-
tersystem crossing, the three triplet sublevels are popu-
lated at appreciably different rates due to selection rules.
Because of the zero-field splitting parameters D and E the
energy spectrum as a function of the external static field
Ho is asymmetric such that, e.g., an ESR transition of 9.4
GHz involves only two levels. In particular, for Ho in the
z direction of the crystal, there is a transition between
the upper two levels for HO=2. 28 kG, whereas the
second transition between the lower two levels is far apart
(Ho =——4.41 kG). In addition, there is decay from both lev-
els by radiationless processes as well as by emission of
phosphorescence radiation, but at different rates for each
one of them. Thus, to an extremely good approximation,
one deals with a decaying two-level system as shown in
Fig. 1, and our treatment is well applicable. A compar-
ison with the results of Ref. 37 yields, for this particular
case, roughly a ratio k~/k& -—3, implying k!Ak -=2 and,
furthermore, T~~

'/k =—3. It is interesting to note that T~~

can be varied by changing the temperature or the concen-
tration of the undeuterated component. On the other
hand, Tj processes in this and similar systems seem to be
of the order of microseconds ' and do not play any sig-
nificant role in the above-mentioned case but only in
short-time coherence experiments.

Whether similar favorable conditions can be found, e.g.,
in spin-selective chemical reactions of radicals or spon-
taneously decaying particles such as muons in liquids or
solids, remains to be shown by experiment. For reacting
radical systems, second-order decay processes may play a
substantial role ' and the present methods have to be
modified in order to take into account this nonlinear type
of decay law. In fact, for this purpose, the present linear
master equation has to be transformed into a more general
stochastic equation of the "birth and death" type with
appropriate inclusion of the spin degrees of freedom, and
this will be the aim of subsequent investigations.

In conclusion, we have shown that the mathematically
rigorous concept of completely positive dynamical semi-
groups for Markovian master equations and the corre-
sponding time evolution of density operators allows a
derivation of Bloch-type equations generalized to include
spin-selective first- or pseudo-first-order decay of the spin
system. The results are able to describe a complicated
dynamical behavior where, in the most general case, spin
dynamics and decay cannot be factorized and separated
from each other. The obtained equations are the simplest
possible generalization, and their derivation shows clearly
that the general structure of the semigroup generator
would admit even more general versions where, in princi-
ple, the time derivative of any magnetization component
can be coupled to all other components and therefore, ad-
ditional relaxation parameters will come into play. This
may lead to a complicated multiexponential behavior of
the solutions which is always difficult to resolve in prac-
tice. Whether such details will be of practical importance
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remains to be shown by future high-accuracy time-
resolved measurements.
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z =(z1,z2, z3 )
T

one may rewrite (A7) in the form

la12 I
=«11a22)' 'z11/2

I a13 I (a lla33) z21/2

(a22a33) z31/2

(A10)

(A 1 1)

APPENDIX A

p;&0, i =1,2, . . . , N,
where Ip; I are the eigenvalues of 3,

a;;)0, i =1,2, . . . , N,

(Al)

(A2)

A positive semidefinite Hermitian XXX matrix A
(A )0) has the following properties,

under the restriction,

Z1 +Z2+Z3 ( 1 (A12)

For the 8)&8 matrix in Sec. IIIA, obtained after decou-
pling of the relevant coherence vector components [Eq.
(40)], successive application of (A4), (AS), and (A8) and
use of Eq. (42) yields the block structure

8D
)0, m &i1i, (A3)

where W is a leading m &&m submatrix of A defined by 1

8

k ik
—ik k (A13)

ak;

aji

aik

akk

aij

aJJ

p ikp
—ikP kt3

where the 4)&4 submatrix D has been obtained by rear-
ranging the eighth row and column,

a11 a12 a13 a IS

1&i (k (j&N .

From (A 1) one gets the useful relation,

I
a k I

'&a-akk (AS)

a21 a22 a23 28

a31 a32 a33 a38

a81 a82 a83 a88

(A14)

For the starting considerations in Sec. IIA some details
are needed for the special case N =3 [see Eq. (26)]. The
complete set of inequalities reads,

and, of course, D )0. For a comparison with the further
discussion in Sec. IIIA one should keep in mind the par-
ticil11ar decomposition of A into 8 and C.

a11 22 33)0
a11a22+a11a33+a22a33) la12 I + la» I + lo23 I

2 2 2

a11a22a33+2Re(a12a23a31))
I a12 I a33+ I

a»
I a22

2 2

+
I a23 I'a»

(A6)

(A8)

APPENDIX 8-
The solutions to Eqs. (48) may be represented in the

form

M„(t) M„(0)= exp(s1t /2s2)F1(t)
3' y0

J

Equation (A7) follows directly from (AS), and (A8) by
calculating the characteristic polynomial

—det(A pl ) =p—,'+ay'+bp+c =0 . (A9)

Since the three roots p1, p2, and p3 are positive and, from
Vieta's root theorem,

p1p2p3 —c = —det(A)——
holds, (A8) is obtained by expressing c in terms of the ma-
trix elements of A. Of course, in terms of a real vector

+[exp(s, t/s2)F2(t)

M, (0)—exp(s3t /s4)E3 (t) ]

M, (t) M, (0)
~ ( )

—exp[s3t /s4]F4(t) ~(0)—

with the four time-dependent 2X2 matrices,

(Bl)

r

2s2 cos(s2t) —(T„'—T~ ')sin(s2t)
E1(t)= —4coo sin(s2t)

4coo sin(s2t)

2s2 cos(s2t)+(T„—T~ ) sm($2t)
(B2)

[F2(t)]1k =x;ks2 cos(s2t)+ [s1x;k+p;k] sin(s2t), i, k =1,2, (B3)
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[F3(t)]1k=x;ks4 cosh(s4t)+ [$3xik —zik ]s1nh(s4t), i,k = 1,2
r

s4 cosh(s4t)+ ,' T,—'sinh($4t) f sinh(s4t)

(84)

F4(t) =
(b,k ——,

' T, ') sinh(s4t) s4 cosh(s4t)

where the following abbreviations have been used:

f=6k M, T—, ',
s, = ——,'(T„'+Ty '+2k), sz ——+[coo —,'(—T„'—Tr ')2]'~

s3= —( —,
' T, '+k), s4 ——,'(4b, kf—+T, )'

For i,k =1,2,

x;k =[pk(s3 —s1 sz —s4)]—2aik($1 —s3)/D,2 2 2 2

3 ik (2Pik($1 $3)[$1+$2]+aik[$3 $1 $2 $4+ 4$1($1 $3 }]}/D2 2 2 2 2 2

+ik = (2I ik($1 $3 }($3 $4}+aik[$3 $1 $2 $4 4$3($1 $3 }]}/D ~

2 2 2 2 2 2

D =($3 —s 1
—$2 —$4) +4(s1 —s3)[s1(s3—s4) —s3(s1+sz)],2 2 2 2 2 2 2 2

a„=—5k[ o1ou+z(Ty '+k)u1], p11 ———Ak u1,

a1z ——fa11/bk, P12= fu1-
a21 5k[(T„+——k)uz coou1],—p21=&k uz ~

azz ——f[(T„+k)uz+~ou1] 13zz=fu2 ~

u, = (M„T„—coo—M„ ),
uz ——(M„T~ —cooM„ ) .

(87}

(8&)

(89)

(810)

(811)

(812)

(813)

(814)

(815)

(816)

(817)

APPENDIX C

In terms of the four-component vector

R(t) = (M„(t),M~(t), M, (t),X(t) )T,

the Bloch equations (77) are written in compact form as

(Cl)

R(t) =AR(t} (C2)

with the matrix

(T1 '+k)—
—(Tj '+k)

0

0

(C3)

0 0

The solution to (C2) is most easily found by first solving
the eigenvalue problem

where the four constants s; are determined by the initial
condition,

Ax=A, x,
det(A —A,l) =0 .

(C4)

(C5)

4
R(0)=g s;x"' . (C7)

In terms of the so obtained four eigenvalues A,; and corre-
sponding eigenvectors x" (i =1,2, 3,4), the general solu-
tion is constructed to be

Defining a vector s=(s1,sz,s3,s4), one can write

R(0)=Xs, (C8)

4
R(t)=use 'x", (C6)

s=X 'R(0) . (C9)

where X is the matrix whose columns are the eigenvector
components. For a given R(0), s is then calculated from
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Of course, the general (4&&4) problem must be solved on
the machine, although lengthy analytical expressions
could, in principle, be given.

We proceed to the special case of resonance,

for D =0, three real solutions, two of them coinciding
with each other. Both cases are represented by

+2=9 +U

Eco=0, (C10) 1 . v'3
y3 ————,(u +U)+i (u —U), (C23)

where analytical expressions are still useful. The charac-
teristic equation (C5) then factorizes and yields

. v3
y4 ————,

'
(u +U) i— (u —U) .

2

~1 7 i+k
x'"=(1,0,0,0)

(C 1 1)

(C12)

The third case is the so-caHed casus irreducibilis for
D & 0, providing three real, different roots of the form

where we abbreviate for convenience

1 1

TII
(C13)

ye=2( ~Ip ~

/3)' cos(p/3),

y3= —2( ~p ~

/3)' 'cos(p/3 —~/3),

y4 ———2(
i p i

/3)' cos(P/3+~/3),

(C24)

The second factor is a polynomial of third degree,

A, +ak +bA, +c=0,
with the following constants,

a =3k+gJ ++II

+2k )' +)'ll +7 )'ll+

(C14)

(C15)

(C16)

where

P=arccos[ —q/2(
~ p ~

/3) 3~ ] . (C25)

A,;=y; —a/3, i =2,3,4 . (C26)

Finally, the corresponding eigenvectors x" are expressed
in terms of the A, s and the quantity

From these solutions, the effective eigenvalues of A are
found from

c=kt 7'j. +k 1'If+k +~~~ ~ ~ k 1'll II ~ 1'-L+

Equation (C14) is brought to standard form, '

J +N'+O'=0 ~

(C17)

r

co( Ai+ 0
(bk)' A,;+k+y,

—1/2

A;+k
'
+1

(C27)

though the substitution y =X+ a /3, yielding

ap=b—
3

by the final relations for the components, valid for
i =2,3,4,

x) ——0,(i)

q =—„a ——,a&+c,
and the discriminant D of the cubic equation is then

D =(q/2)'+(p/3)' .

Using the abbreviations

(C20)

(i)
Xp =P'i

(A,;+I),
hk

(.) coIri A, i +k
X4

ak X, +k+y,

(C28)

u =( —q/2+v D )'

u =(—q/2 —~D )'~

(C21)

(C22)

the roots y; (i =2,3,4) of (C18) are classified as follows.
For D & 0, there are one real and two complex conjugated,

It may be added that in the case of the complex roots of
(C18), oscillating transient effects will be observed similar
to those discussed in the famous paper by Torrey
whereas real roots lead to smooth multiexponential
behavior of the solutions.
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