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The many-body perturbation theory {MBPT) in the coupled-cluster formulation is applied to per-,

form very accurate calculations on the 2 S and 2 P states of the lithium atom. The computational

procedure is based on coupled one- and two-particle equations, which are solved iteratively. In this

way it has been possible to evaluate almost all one- and two-particle effects—i.e., the core polariza-

tion and the pair correlation —to essentially all orders of perturbation theory. The main reasons for
this work are to test the computational procedure and to determine the significance of genuine

three-particle effects, which are not included in the calculation. The total energy, the valence elec-

tron binding energies, and the hyperfine-interaction parameters are calculated for the two states.

The perturbation effect, i.e., the difference between the experimental value and the Hartree-Fock re-

sult, is in all cases reproduced within about 1/o, except for the small hyperfine parameter of the

2 P3/2 state, where this discrepancy is about 4%%uo, mainly due to some remaining error in the induced

contact interaction. The quadrupole parameter of the 2 P3/2 state is expected to be accurate to a few

tenths of a percent. No improved value of the quadrupole moment can be given, however, due to ex-

perimental uncertainty.

I. INTRODUCTION

During the last decades several procedures have been
developed for accurate atomic and molecular calculations.
One of the most powerful and most frequently used pro
cedures is the many-body perturbation theory (MBPT),
based on the original works of Brueckner' and Goldstone
and first applied to atomic calculations by Kelly. This
procedure, first adapted to closed-shell and other single-
determinantal states, has later been extended to general
open-shell systems by Brandow, Sandars, I.indgren, and
others, and a comprehensive treatment of this pro-7, 8

cedure can be found in the recent monograph by Lindgren
and Morrison.

In our research group at Chalmers University of Tech-
nology we have developed a number of routines for atom-
ic MBPT calculations, primarily for hyperfine-structure
investigations, ' ' but subsequently applied also to fine-
structure splittings, ' ' correlation energies and term
splittings, ' ' isotopic shifts, ' ' and parity nonconserva-
tion.

Our computational procedure is based upon the use of
coupled, inhomogeneous one- and two-particle equations,
which are solved in an iterative way. It is then possible to
include core-polarization and pair-correlation effects
essentially to all orders of perturbation theory. This pro-
cedure has been tested on He-like systems —where it
would be virtually exact—and there found to yield very
accurate results. ' ' It is the purpose of the present work
to perform an accurate test of this procedure on the lithi-
um atom, which is a three-electron system. The correla-
tion energy, ionization energy, and hyperfine structure are
calculated for the lowest S and P states, and the results
are compared with those of other accurate calculations as
well as with available experimental data. Similar calcula-
tions on heavier atoms are now under way in our group

and will be published separately.
The main purpose of this series of works is to find out

to what extent this procedure, when pushed to its limit, is
capable of producing the complete polarization and pair-
correlation effects and to what extent these effects
represent the entire perturbation of an atomic system. A
particularly interesting question is how important
"genuine" three-particle effects are, i.e., three-body effects
that cannot be included in a pair-correlation procedure. It
should be noted that large groups of effects, which are
normally classified as "three-body effects, " are, in fact, in-

cluded in the procedure that we employ. In addition, the
most important four-particle correlations are included by
means of the so-called coupled-cluster procedure, as will
be briefly described below.

Our procedure is most developed for atoms with a sin-

gle valence electron, like the alkali-metal atoms, and the
most advanced tests will be performed for such systems.
For atoms with several valence electrons new effects ap-
pear, which so far are only partially included in our pro-
cedure, ' and here further developments are needed before
we have reached the same level of accuracy as for systems
with a single valence electron.

II. THEORY

The formalism underlying our computational procedure
has been described in detail in the literature, ' but for the
convenience of the reader we shall give a summary here as
a basis for the following treatment.

A. Basic formalisxn

The atomic Hamiltonian

H= ——,
' gv'„—g

n=1 n=l n
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using atomic units and conventional notations, is parti-
tioned in the usual way into an unperturbed Hamiltonian

and so on. This expansion forms the basis for the MBPT
formalism that we employ.

By projecting the Schrodinger equation

H, = g —
2

v2 — + U(.„) = g &.(~)
n=1 r5 n=1

H%"=E'4' (a = 1,2, . . . , d ) (13)

and a perturbation onto the model space, we obtain, using Eqs. (7) and (8),
N

V=H H, —=g g —gU(» ).
n=l m=&

m&n

(3) IHQQ, =E'%o .

The operator

(14)

The unperturbed Hamiltonian (2) is here assumed to be of
central-field type with a spherically symmetric potential
U(r). The single-particle equation

A ogi —E& g&. (4)

We separate the functional space into a "model space"
(P), spanned by the eigenfunctions associated with one or
several eigenvalues of Ho (configurations), and a comple-
mentary space (Q). The full wave functions, which have
their major parts within the model space, can then be ex-
pressed

O'=QVO (a=1,2, . . . , d)

where the zeroth-order wave function %'0 is the projection
of the full wave function onto the model space,

(8)

and d is the dimensionality of this space. It can be shown
that the waue operator Q satisfies a "generalized Bloch
equation" ' '

[Q,Ho]P =Q( VQ —QPVQ)P (9)

which can be conveniently used to generate a perturbation
expansion of this operator.

Using the intermediate normalization

(eg e') = (ep eo) =1 (10)

we can expand the wave operator in the following way:

O=l+n~']+n['~+ . .

Inserting this expansion into (9) and identifying terms of
the same order, we obtain the Rayleigh-Schrodinger ex-
pansion '

defines a set of electron orbitals, which form the basis of
the calculation. The Slater determinants P" formed by
these orbitals are antisymmetrized eigenfunctions of Ho

yA EAyA„

with the eigenvalue equal to the sum of the orbital eigen-
values of the determinant

E,'=+~, (q, cy").
Heff ~Heff +~ eff (18)

Here, the operator h,fr contains all parts of the effective
Hamiltonian which depend on the additional perturbation
h. The corresponding energy contribution is then

(19)

The operator h, rr is called the "effectiue operator" corre-
sponding to the additional perturbation h. This is the
quantity evaluated in our hyperfine investigation.

B. Graphical representation

In order to generate a graphical representation of the
wave operator [Eqs. (11) and (12)] in terms of Goldstone-
like diagrams, we express the perturbation (3) and the
wave operator in second quantization:

V= ga;aJ-(i
~

( —U)
~
j)

+ —, g aaaak i j k l),?

i,j,k, l

klQ= 1+pa; ajx, + —, g ai aj aiakxij. + .

(20)

and similarly for the individual terms in the order-by-
order expansion

Q(m) y&t& x(e)j+. . . (21)
l,j

H, ff ——I'HQI'

is called the effectiue Hamiltonian, and it has the zeroth-
order wave functions %0 as eigenfunctions and the corre-
sponding exact energies as eigenvalues. Since the zeroth-
order wave functions are assumed to be normalized, (10),
we can express the exact energies as

E'=(40 ~H,rf (
(Il)) .

If we consider an additional perturbation h, like the hy-

perfine interaction, then we make the formal replacement

(17)

in the perturbation expansion, which leads to

[Q"',H, ]P =g VP,

[Q"',H, ]P=g( VQ'" —Q' "PV)P,

[Q"',Ho]P =g(VQ"' Q"'PV Q'"—PVQ"')P—,

(12)

Here, the operators are in normal form with respect to the
Uacuum, i.e., with the creation operators to the left of the
annihilation operators. In atomic and molecular calcula-
tions it is usually more convenient to work in the so-called
particle hale (p-h) formalism-, which implies that the
operators are normal ordered with respect to some suit-
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able (closed-shell) reference state (40). The operators (20)
can then be separated into normal-ordered zero-, one-,
two-, . . . body operators in the following way: '

HOLE PARTICLE
hole hole

=X& I( —»I &+-,'g 1

a, b

V&=+Ia ai I (' Iu I 2&

rl2

f
~

hole
=+{a;aJ{,&i{(—U){J&N g ia ja)

E&J a ~l2

Vz= z g {a;a~a~aq{(ij k, l),
i,j,k, l l2

(22)

Q=i+QIa;ajlxt+ —,
' $ Ia;a atakIx;, +

i,j,k, l

and similarly for the expansion (21). Here, the curly
brackets are used to denote the normal ordering with
respect to the reference state. The orbitals a and b run
over hole states, i.e., orbitals occupied in the reference
state, while i,j,k, / run aver a// orbitals —particle as well
as hole states. The tilda over 1/r, 2 indicates that the ex-
change integral is included.

With the form (22) of V and 0 and Wick's theorem for
normal-ordered operators

(23)

the right-hand sides (rhs) of the Rayleigh-Schrodinger ex-
pansion (12) can be expressed in normal form, and identi-
fication with the left-hand side (lhs)—simply supplying an
energy denominator —then yields an order-by-order ex-
pansion of the wave operator in second quantization. The
term I ABI in (23) represents all possible single, double,
. . . contractions between the p-h annihilation operators of
A and the p-h creation operators of B, while I ABI
represents the normal form of AB without any contrac-
tions.

In the graphical representation particles are denoted by
lines directed upwards and holes by lines directed down-
wards (see Fig. '1), and the normal form of the perturba-
tion (22) can then be represented as shown in Fig. 2.
Wick s theorem (23) is in this graphical representation ap-
plied simply by joining the lines at the bottom of A with
those at the top of B in all possible ways. Each joint
(contraction) gives rise to a diagram. A straightforward
application of this procedure leads to a diagrammatic ex-
pansion of the wave operator, and the diagrams can then
be evaluated according to standard rules.

In our general open-shell procedure —following Bran-
dow and Sandars —we shall furthermore separate the or-
bitals into three categories, (a) core orbitals, which are oc-
cupied in all determinants of the model space, (b) ualence
orbitals, which are occupied in some and (c) uirtual orbi-
tals, which are not occupied in any determinant of the
model space. In principle, the valence orbitals can be of

VALENCE

VIRTUAL

FIG. 1. Graphical representation of different kinds of elec-
tron orbitals. Note that a hne with a single arrow directed up-
wards represents a general particle state, i.e., a valence or a vir-
tual state, while a line with a doubk arrow is used to represent
valence states only.

VALKI{)ICE

Vo =

VI

i'E 'I I----M + ---- +
i IL

V2

iK

+ +
iI

+

JIV

+ + +

FIG. 2. Graphical representation of the electrostatic pertur-
bation in the particle-hole formalism (22). The zero-body part
Vp is the expectation value of the perturbation in the reference
state, Np. The one-body part V~ is the difference between the
potential U, in the zeroth-order Hamiltonian Hp, and the
Hartree-Fock potential of the reference state. If the latter is
used in Hp, as jn the present case, then V~ vanishes. (From
Ref. 9.)

particle or hole type, but we shall assume here that they
are all particles. The core orbitals must be of hole type,
and this means that in this application core and hole
states are identical, This implies that our reference state is
a determinant with all core orbitals occupied. Graphically
we represent the valence orbitals with double arrows—
directed upwards, since they are particles (see Fig. 1).

We also assume that the model space is complete, in the
sense that it contains all determinants that can be formed
by distributing the valence electrons among the valence
orbitals. A diagram with no other free lines than valence
lines then operates within the model space and is said to,
be closed. All other diagrams operate from the model
space to the complementary space and are said to be open
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It can then be shown that the graphical expansion of the
wave operator does not contain any unhnked diagrams,
i.e., diagrams with a disconnected, closed part, provided
that so-called exclusion pri-nciple Uio-lating (EPV) diagrams
are included. This is the general linked dia-gram
theorem, and we can express it formally as

f Q,HO]P =Q( VQ —QPVQ)1 P, (24)

where subscript I indicates that all unlinked diagrams are
canceled and only linked —and EPV diagrams have to be
considered. An order-by-order expansion of this equation,
in analogy with the expansion (12), yields the linked-
diagram expansion

[Q'",H, ]P=g VP,

[O' ',H ]P=Q( VQ"' Q"'PV)L—
,P,

(25)

Q=g (27)

Such an expression is frequently used as the starting point
for MBPT calculations on closed-shell systems as well as
other systems with a single-determinantal unperturbed
state. For open-shell systems, on the other hand, the last
term of Eqs. (24) and (25) does contribute and gives rise to
so-called folded or backward diagrams.

C. The pair-correlation approach

The number of diagrams generated in the order-by-
order expansion indicated above increases drastically with
the order of the perturbation, and a reasonably complete
calculation beyond third order is virtually prohibited in
such an approach. In order to be able to get further, it is
therefore more efficient to use the Bloch equation [Eqs.
(9) and (24)] directly, rather than the expansions (12) and
(25).

By inserting the second-quantized form of the full wave
operator (22) into the Bloch equation, a set of coupled
equations is obtained for the coefficients x, ,x;J', . . . . A
hierarchy of approximations can then be formed. In the
first step the one-particle equations are solved, which cor-
responds to taking single excitations, or polarization ef-
fects, into account to all orders of perturbation theory. In
the next step the coupled one- and two-particle equations
are solved, which means that single and dauble excita-
tions, or polarization and pair-correlation effects, are in-
cluded to all orders, and so on. For practical reasons it is
at present not possible to go beyond the second step in this
procedure. It is reasonable to expect, however, that this
step, which we refer to as the pair-correlation approach,
should represent a good approximation to the complete
solution, and it is the purpose of this and related works to

and so on.
For closed-shell systems it is found that only the first

term on the rhs of (12) gives rise to linked diagrams. In
such a case the expansion (25) simplifies to

[O' ',Ho]P=(E0 —Ho)Q' 'P=Q(VQ' ")IP (26)

and the entire wave operator can be expressed by the series
m

test the goodness of this prediction.
For closed-shell systems the procedure described

section is identical to the linear coupled-pair
electron theory (CPMET) procedure of Cizek. "'

complete CPMET procedure the wave operator
pressed in exponential form

QO

Q=exp(S)= g S".=o n!

in this
many-
In the
is ex-

(28)

which makes it possible to include important four-body
effects into the two-body operator (see Fig. 12 below), and
so on. This procedure is referred to as the coupled-cluster
approach, and we shall refer to S as the cluster operator.
In the open-shell case a similar formulation can be used,
provided the operators are expressed in normal form, as in
(22)

Q = I exp(S) J
= g, IS'I .

onf
(29)

It can be shown that the cluster operator S satisfies in
the open-shell case a modified Bloch equation6'9

[S,Ho]P =Q( VQ QPVQ) —cP, (30)

'Qkt =gxdN't%'J ~ (32)

which can be shown to satisfy corresponding inhomogene-
ous, differential equations. The summations extend here
over all particle states —bound as well as unbound. For
atomic systems, with spherical symmetry in zeroth order,
these equations can be separated into radial and spin-
angular parts, and only the farmer part has to be treated
numerically.

The use of inhomogeneous differential equations in per-
turbation theory was early demonstrated by Sternheimer
and Dalgarno. Two-particle or pair equations were first

where subscript C indicates that only connected diagrams
are considered. This means that the expansion of S con-
sists in each order of connected diagrams only. The
disconnected diagrams of Q are in this formalism generat-
ed by the second and higher powers of S in the expansion
(29)

The cluster operator can be partitioned into one-, two-,
. . . body parts in the same way as the wave operator (22),

y I a' aj )sj+ 2 y I a' aj alak Isk! +
ij ij k I

(31)

The equations for the coefficients can be obtained in the
same way as the corresponding equations for the wave-
operator coefficients by using (30) instead of (24).

The equations for the coefficients of the wave or cluster
operators can be solved, in principle, if a "complete" set
of electron. orbitals (4) is available. The number of equa-
tions required will be enormous, however, if the basis set
is reasonably complete.

An alternative approach, used in our applications, is to
define a set of one-, two-, . . . particle functions

'tlj —Qx g;
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used in MBPT calculations by Morrison, using a nuxmr-
ical procedure developed by McKoy and %'inter. ' Dur-
ing the last decade these procedures have been further
developed in our group at Chalmers. A polarization pro-
gram, which solves the single-particle equations to all or-
ders, was developed by Ciarpman et al. , ' and a corre-
sponding pair program was developed by Martensson-
Pendrill' and extended to the full open-shell coupled-
cluster formalism by Salomonson. ' ' ' The coupling be-
tween one- and two-particle effects is treated only partial-
ly in this procedure. The most important effects of this
kind, however, are taken care of by transforming the oc-
cupied orbitals into Brueckner orbitals. A numerical
procedure for doing so, using pair functions in the inter-
mediate steps, has been developed by Lindgren et al. "

Finally, in order to evaluate the contributions to the ef-
fective operator under study [Eq. (18)], some diagram-
evaluation routine is required. For the hyperfine-
structure calculations the routine used by Garpman
et al. ' in their third-order analysis can still be used. By
using iterated single-particle and pair functions instead of
first-order ones —and 8rueckner orbitals instead of
Hartree-Fock ones —a considerable amount of higher-
order effects are automatically included in this procedure.
This will be considered in some detail in Sec. III.

FIG. 4. Graphical representation of the single-particle equa-
tions, which are solved iteratively in the POLAR program. Top
line represents the equation for hyperfine functions and the bot-
tom line that for electrostatic functions. First diagram on the
rhs represents the first-order inhomogeneous term, and the fol-
lowing diagrams the coupling terms, which enter in higher or-
ders. Dotted line with a triangle represents the hyperfine in-
teraction and the dotted line between. two vertices the electron-
electron interaction (as in Fig. 2). Double lines represent the
"effective" interactions, obtained by solving the set of coupled
equations iteratively until self-consistency. Here, as well as in
all the following figures, exchange variants of the diagrams are
omitted for simplicity.

III. NUMERICAL PROCEDURE AND RESULTS

A. Numerical procedure

(33)

POLAR

The computational procedure, used in the present work
to evaluate the hyperfine interaction, is indicated in Fig.
3. It contains the following main steps.

1. A self-consistent-field program (scF) generates po-
tential and orbitals in a local approximation of Hartree-
Fock-Slater (HFS) type. We normally use a so-called
optimized Hartree-Fock-Slater (OHFS) potential

' 1/3
3C 3r "p(r)

4~'

where the coefficients C and n are determined by minim-
izing the total energy. It has been found that the com-
bination

C=0.8, n =1.15 (34)

yields a good approximation for all light and medium-
heavy elements (Z(40). (C=n =1 corresponds to the
original Slater approximation and C=u, n=1 to the
Slater Xa potential. ) A local potential is used in our
procedure on the lhs of thd differential equations, and the
nonlocal terms are treated as an inhomogeneous part on
the rhs. We have then found a potential of the type of
(33), (34) to be convenient and to yield good convergence
in most cases.

The occupied (core and valence) orbitals are

5 . THIRD 9
2 MOOOAB

6 eO

4 PAIR 8

FIG. 3. Flow chart of the computational procedure used in
the present work and described in the text. (scF, self-
consistent-field program with local potential; MODQRB, orbital-
modification routine, which generates Hartree-Fock orbitals;
POLAR, iterative polarization program, which generates hyper-
fine and electrostatic single-particle functions; PAIR. , iterative
pair program, which generates pair functions; THIRD, program
for evaluating third-order hyperfine diagrams; so, routine for
generating Brueckner orbitals. )

+ ~ ~ ~

FIG. 5. Core-polarization hyperfine diagrams to all orders
can be evaluated by means of iterated SPF (Fig. 4) by calculat-
ing either a hyperfine matrix element using the electrostatic SPF
(a) or an electrostatic element using the hyperfine SPF {b).
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(c)

FIG. 6. Graphical representation of first-order pair func-
tions, obtained in the pair program without iterations. (a)
represents a core-core, (b) a core-valence and (c) a valence-
valence excitation. For systems with only one valence electron,
like the lithium atom, functions of type {c)do not appear.

transformed into Hartree-Fock (HF) orbitals by solving
iteratively a single-particle equation with the "potential
correction, " i.e., the difference between the HF and the lo-
cal potentials, as the inhomogeneous term. This orbital
modification is made in a subpart (MODORB) of the polar-
ization program (see below). In the calculations presented
here we use the HF potential of the core, which has the
consequence that the one-body part of the normal-ordered
perturbation (22) vanishes (see Fig. 2). (In cases where the
corresponding HF solution does not exist—or this pro-
cedure leads to slow convergence —the orbital-
modification step can be abandoned and the potential
corrections of the occupied orbitals performed iteratively,
simultaneously with the corrections of the one- and two-
particle functions, see point 3 below. )

3. A set of coupled single-particle equations is solved
in an iterative way in the polarization program (POLAR).
The perturbation can here be the hyperfine interaction or
the electrostatic interaction with a valence electron. These
equations are illustrated in Fig. 4. By means of functions
of this kind the core-polarization contribution to the ef-
fective hyperfine operator (19), involving single excita-
tions of the core, can be evaluated to all orders of pertur-
bation theory, as illustrated in Fig. 5. The hyperfine
single-particle functions (SPF), including those represent-
ing excitations from the valence shell„are stored for later
use (point 5).

4. First-order pair functions are calculated in the pair
program (PAIR) and stored. These functions are illustrat-
ed in Fig. 6.

5. The iterated SPF (point 3) and the first-order pair

FIG. 8. Illustration of the procedure for generating approxi-
mate Brueckner orbitals {Boprogram); top line for a valence or-
bital and bottom line for a core orbital. The first diagram on
the rhs represents the Hartree-Fock orbital and the following di-
agrams the corrections. By solving this kind of equation itera-
tively, also higher-order corrections are included. In our pro-
cedure, however, we iterate also the pair functions once (see Fig.
12) between each Brueckner-orbital iteration, in order to include
additional pair-correlation effects into the orbitals. The use of
Brueckner orbitals has the effect of eliminating explicit single
excitations from the calculation.

functions (point 4) are used to calculate all third-order hy-

perfine diagrams in a separate program (THIRD). Exam-
ples of such diagrams are shown in Fig. 7.

6. The pair functions are used to set up right-hand
sides for single-particle equations to be used for generat-
ing Brueckner orbitals. These equations are solved in a
subprogram (BO) of the polarization program (POLAR),
and they are illustrated in Fig. 8. The modification is
most important for the valence shell. The use of
Brueckner orbitals has the effect of eliminating explicit
single excitations from the calculation. This means, for
instance, that diagrams like that in Fig. 7(a), which has an
intermediate single excitation, are included in the zeroth-
order hyperfine contribution when Brueckner orbitals are
used, as illustrated in Fig. 9. The right-hand side of the
generating equation for the valence shell (Fig. 8, top line)
can also be used to evaluate the corresponding energy
correction by taking the projection on the valence orbital
(see Fig. 10). This represents the lowest-order correlation
contribution to the valence-electron binding energy or the

+ /i( +

(a) (b)

FIG. 7. Examples of third-order hyperfine diagrams, involv-
ing at least one double excitation, evaluated in the THIRD pro-
gram. (a) and (b) are evaluated by means of one pair function
and one hyperfine SPF, while (c) and (d) are evaluated by means
of two pair functions. {d) is an example of a "folded" diagram,
with a valence line running "backwards. "

FIG. 9. By using Brueckner orbitals, important higher-order
effects are automatically included in the zeroth-order hyperfine
constant, as illustrated in this figure. The second diagram on
the rhs is identical to the third-order diagram, shown in Fig.
7(a).
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+ ~ ~ ~

(b) (c)

FIG. 10. From the rhs of the equation that generates approx-
imate Brueckner orbitals for the valence shell (Fig. 8, top line), a
correction to the binding energy can be obtained by taking the
projection onto the valence orbital. This represents the correla-
tion part of the ionization energy.

ionization energy.
7. The core polarization is reevaluated using Brueckner

orbitals. This leads to additional contributions to the ef-
fective hyperfine operator of the type shown in Fig. 11.

8. New pair functions are generated by iterating ihe
coupled pair equations once (see Fig. 12). Diagram 12(a),
which represents the first-order electron-electron interac-
tion, is evaluated using (the latest) Brueckner orbitals, and
the remaining, higher-order diagrams are evaluated using
the previous pair functions. Coupled-cluster diagrams,
here represented by diagram 12(h), are included.

9. The "third-order" hyperfine diagrams (Fig. 7) are
reevaluated, using Brueckner orbitals and iterated pair
functions. This leads to additional contributions of the
type illustrated in Fig. 13.

10. The process 6—9, illustrated in Figs. 8—13, is re-
peated. In this way a considerable number of higher-
order diagrams are included in the process, a few of which
are shown in Fig. 14. %'hen this process is continued un-
til self-consistence, practically all pair-correlation
effects—including effects of single excitations —are ob-
tained to all orders of perturbation theory.

The steps 1—5 in the process described here correspond
to the procedure used by Garpman et al. ' '"' and steps
1—7 to that of Lindgren et a/. " More complete pro-
cedures, involving also steps 8—10, have been used previ-
ously in a few cases. '

+ ~ ~ ~

(~) (&) (I) (h)

FIG. 12. The pair-correlation effect can be evaluated to all
orders by solving a set of coupled pair equations iteratively, in
the figure represented by an equation for a core-valence excita-
tion. {a) is the first-order electron-electron interaction and the
only nonzero term on the rhs in the first iteration. The remain-
ing diagrams appear in the following iterations. (b)—(f) are
linear terms, involving pair functions of core-valence [(b),(c),(e)]
as well as core-core [(d),(f),(g)] type. (g) is an example of a non-
linear coupled-cluster diagram [see Eq. (29)], involving two pair
functions. Although diagrams of this kind involve a quadrupole
excitation, they can be nonzero also for two- and three-electron
systems, since the exclusion principle may be violated in the
linked-diagram expansion.

B. Numerical results

The choice of local potential in the self-consistent pro-
cedure is, in principle, immaterial, since the difference be-
tween this potential and the HF potential of the core is
applied iteratively as a perturbation until convergence is
achieved. In order to test the numerical procedure, how-
ever, we have used two different starting potentials, name-
ly, the OHFS potent'ial ' for the neutral atom as well as
of the ion with the valence electron removed, in both cases
without the Latter correction. (It has been found that
the discontinuity introduced by this correction causes
some numerical errors, which are significant on the level
of accuracy aimed at here. )

In the SCF and PQLAR programs we use a logarithmic

(b)

FIG. 11. Examples of fourth-order diagrams, which are in-.
cluded in the core polarization, when first-order Brueckner orbi-
tals are used for the valence shell (a) and for the core (b).

(a) (b)

FIG. 13. Examples of higher-order hyperfine diagrams,
which are included in the third-order diagrams when pair func-
tions from the second iteration of the pair equation (Fig. 12) are
used. (a) is evaluated with a first-order pair function generated
with first-order Brueckner orbitals [Fig. 12(a)] and {b) with a
second-order pair function generated with Hartree-Fock orbitals
[Fig. 12{b)].
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(~) tb)

FIG. 14. Examples of higher-order hyperfine diagrams,
which are included when pair functions from higher iterations
of the pair equation —together with iterated single-particle
functions —are used to evaluate the core polarization (a) and the
third-order diagrams (b).

grid, normally with (x,„,M )=(—10,0. 1), where x;„is
the first value of x =Inr, and M is the integration step.
In Table I we have given the HF values for the ionization
energy (or valence electron binding energy) as well as the
HF and polarization values of the hyperfine parameters of

the two states using this grid and with the two starting
potentials mentioned. (The polarization of the core, with
only s electrons, does not influence the orbital parameter. )
In the same table we have also given the corresponding re-
sults after extrapolation to the grid ( —ao, 0). It can be
seen that the small difference in the results obtained with

. the finite grid is almost entirely eliminated by the extrapo-
lation. This shows that the choice of local starting poten-
tial has extremely small influence on the final results,
which is a good indication of the numerical accuracy in
this part of the calculation. As a further check we have
also compared the two iterated HF results with that ob-
tained in a direct and independent HF calculation in the
scF program A.lso here, the agreement is very good after
the grid extrapolation. (For the 2 S state the HF solutions
were not stable enough to allow for an accurate extrapola-
tion. )

As mentioned, core-polarization calculations can be
carried out either with the hyperfine or the electrostatic
interaction as the perturbation' (see Figs. 4 and 5), and a
comparison of the two results can give another indication
about the numerical accuracy. As seen from Table I, the
two approaches give slightly different results for the con-

TABLE I. Comparison between different numerical procedures to evaluate the HF values of the ionization energy and the HF and
polarization values of the hyperfine parameters in the (a) 2 S and (b) 2 P states of the lithium atom.

Grid

—10,0.1

Extrapol.

Starting
pot.

OHFS
(atom)
OHFS
(ion)
HF

OHFS
(atom)
OHFS
(ion)
HF

Per-
turb.

Hyp.
Elec.
Hyp.
Elec.

Hyp.
Elec.
Hyp.
Elec.

(a) 2 S
Ionization

energy

0.196304 57

0.196306 34

0.196307 14

0.196304 33

0.196304 31

0.196304

1.372 442

1.372 6S2

0.509 050
0.508978
0.509 029
0.508 957

1.372 218

1.372 214

0.509 136
0.509 137
0.509 137
0.509 139

Hyperfine parameter
HF Polariz.

(b) 22P

Grid

—10,0.1

Extrapol.

Starting
pot.

OHFS
atom
OHFS
(ion)
HF

OHFS
(atom}
OHFS
(ion)
HF

Per-
turb.

Hyp
Elec.
Hyp.
Elec.

Hyp.
Elec.
Hyp.
Elec.

Ionization
energy

0.128 637 02

0.128 638 42

0.128 637 99

0.128 636 72

0.128 636 77

0.128 636 72

HF =orbital

0.058 458 09

0.058 456 22

0.058 458 8

0.058 456 37

0.058 456 39

0.058 456 33

Hyperfine parameter

Spin-dipole Contact

0.004 17662 —0.1514073
—0.151 3860

0.004 17642 —0.1514031
—0.151 3820

0.004 176 37 —0.151 5106
—0.1514113-

0.004 176 36 —0.151 4106
—0.151 4114

Quadrupole

—0.006 93746

—0.006 937 30

—0.006 935 11

—0.006 935 10
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TABLE II. Effect of electron correlation upon the ion-core
energy and ionization energy in the 2 S and 2 P states in succes-
sive iterations of pair functions and Brueckner orbitals.

Iteration 2S 2P

TABLE IV. Effect of Brueckner orbitals upon the zeroth-
order hyperfine parameters.

Iteration
Ion-core
energy

0.039 788
0.042 797
0.043 326
0.043 426
0.043 455
0.043 468

0.001 6365
0.001 7958
0.001 8248
0.001 8313
0.001 8331
0.001 8337

0.001 3596
0.001 5418
0.001 5750
0.001 5818
0.001 5835
0.001 5841

Ionization energy
2S 2P

Extrapolated

0.047 991
0.053 300
0.054 334
0.054 572
0.054 637
0.054 654

0.054 658

0.003 6191
0.004 0626
0.004 1422
0.004 1591
0.004 1640
0.004 1660

0.004 1667

Extrapol. 0.043 475 0.001 8340 0.001 5843

tact paraineters using a finite grid, but also this difference
disappears after the grid extrapolation. As a result of this
analysis we can conclude that the extrapolated values of
the ionization energies and hyperfine parameters on this
level are accurate to at least a few parts per million.

In the pair program we also use a logarithmic grid, in
the present calculation from x = —7.5 to 3.0 with 41, 59,
and 89 grid points. Extrapolation to eliminate the effect
of the finite grid is made in the usual way. Here, the ef-
fect of the finite grid is much larger than in the self-
consistent field and polarization calculations, due to the
relatively coarse grid. In addition, the error is proportion-
al to the second power of the integration step, due to the
discontinuity in the electrostatic operator, compared to
the fourth power in the SCF and POLAR routines.

In principle, there is no limitation on the l values in the
pair excitations, and in order to avoid too many extrapola-
tions we have in this calculation increased the maximum l
value by one unit in each iteration cycle indicated in Fig.
3, starting with l,„=4. This means that in the first
iteration (step 4) the following pair functions are calculat-
ed:

ls ~s,p,d,f,g

ls 2s ~s,p, d,f,g

ls2p~sp, ps pd, pd, df fd, fg,gf .

In the next iteration (step 8) the following pair excitations
are added:

ls —+h, ls2s~h, . 1s2p~gh, hg,

and so on.

As a test of the goodness of the pair functions and the
Brueckner orbitals in each iteration, we have evaluated the
correlation energy of the ion core (depends only on the ls
pair) and the effect of the electron correlation upon the
22S and 22P ionization energies (which is equal to the
difference between the HF and the Brueckner orbital ener-
gies). The results are shown in Table II. As an illustra-
tion of the grid-extrapolation procedure, we have in Table
III shown the ion-core correlation energies obtained in the
first four iterations, using three different grids and three
different extrapolations. (41-59 and 59-89 represent quad-
ratic extrapolations, eliminating the quadratic error, while
41-59-89 represents a fourth-order extrapolation. )

Table IV gives the effect on the zeroth-order hyperfine
parameters of the use of Brueckner orbitals in successive
iterations (see Figs. 8 and 9). Each iteration corresponds
to one cycle, i.e., points 6—9, in the procedure described
above. Table $ gives the corresponding effects on the
core polarization, i.e., effects of the kind illustrated in
Figs. 11 and 14(a). Table VI, finally, gives the third-order
hyperfine effects when pair functions and Brueckner orbi-
tals are used in successive iterations [see Figs. 7, 13, and
14(b)].

The final results are collected in Tables VII and VIII,
where they are compared with experimental results as well
as with results of other accurate calculations. Our final
results are corrected for relativistic effects and finite-
nuclear-size effects by means of rel'ativistic SCF (Ref. 35)
and POLAR (Ref. 37) programs, using homogeneous nu-
clear charge density and pointlike nuclear moments. As
can be seen from the tables, these effects are here only of
the order of 0.1% or less and therefore of little signifi-
cance for the present comparisons.

The uncertainties given for our theoretical results indi-

TABLE III. Ion-core correlation energy in different grids and different extrapolations. Last column
represents a fourth-order extrapolation, eliminating the second- as well as fourth-order error due to the
finite grid.

Iter. 41 pt.

0.041 349
0.044 234
0.044 813
0.044931

59 pt.

0.040495
0.043 455
0.044007
0.044 116

89 pt.

0.040087
0.043 078
0.043 616
0.043 720

41-59

0.039 721
0.042 749
0.043 275
0.043 377

59-89

0.039 774
0.042 787
0.043 316
0.043 416

41-59-89

0.039 788
0.042 797
0.043 326
0.043 426
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TABLE V. Effect of Brueckner orbitals upon the core polarization.

Iteration 2S
0.015 832
0.017604
0.017 893
0.017956
0.017971
0.017976

Spin-dipole

0.000 3337
0.000 3763
0.000 3834
0.000 3851
0.000 3855
0.000 3856

2P
Contact

—0.010253
—0.011 578
—0.011 822
—0.011 871
—0.011 884
—0.011 889

Quadrupole

—0.000 2412
—0.000 2714
—0.000 2772
—0.000 2783
—0.000 2786
—0.000 2788

Extrapolated 0.017977 0.000 3856 —0.011 891 —0.000 2788

TABLE VI. "Third-order" hyperfine effects, evaluated with pair functions in successive iterations.
The single-particle functions are in all cases iterated to self-consistency.

Iteration 2S
—0.014085
—0.010945
—0.009 656
—0.009 264
—0.009 176
—0.009 162

Orbital

0.000 3179
0.000 4236
0.000 4455
0.000 4499
0.000 4509
0.000 4511

Spin-dipole

0.000 0747
0.000 1575
0.000 1728
0.000 1755
0.000 1767
0.000 1772

Contact

0.015 541
0.015 941
0.016 112
0.016 132
0.016 100
0.016079

Quadrupole

0.001 0194
0.001 2094
0.001 2460
0.001 2540
0.001 2552
0.001 2554

Extrapolated —0.009 158 0.0004512 0.000 1774 0.016079 0.001 2555

TABLE VII. Ion-core energy and ionization energies.

Ion-core
energy

Ionization energy
2P

Hartree-Fock
Pair correlation
Relativistic correction

—7.236 415(2)
—0.043 475(10)

0.196304(1)
0.001 834(2)
0.000016

0.128 637(1)
0.001 584(2)
0.000000

Total
Experimental

%'eiss'
Larsson et al. b

Sims et al. '
Nesbetd

Chang et al. '

—7.279 890(10)
—7.279 913

0.198 154(3)
0.198 159g

0.197 19"
0.198 11"
0.198 11"
0.19694"
0.198(2)

0.130221(3)
0.130246~

0.128 47"
0.13008"

'Reference 41.
"Reference 42.
'Reference 43.
Reference 44.

'Reference 45.
This is the "nonrelativistic" energy calculated by Pekeris (Ref. 46).

~Reference 47.
"These values are calculated from the total energies, using the nonrelativistic energy of the ion core.

cate only the uncertainty in the numerical procedure, in-
cluding the extrapolations. No estimate has been made of
the uncertainty in the relativistic and finite-nuclear-size
corrections, nor of remaining correlation effects. The
latter will be discussed in Sec. IV.

IV. DISCUSSION

The core of the lithium ion is heliumlike, and here a
pair-correlation approach should, in principle, be exact.
As can be seen from Table VII, our value for the ion-core
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TABLE VIII. Hyperfine parameters for the lithium atom (in a.u. ).

Hartree-Pock (ion)

Core polarization
Qrueckner orbitals
Effect of Brueckner orb.
on core polarization
Third-order diagrams
Relativistic
nuclear size correction

2S
Contact

1.372 22(1)
0.509 14(1}
0.054 66(2)
0.01798(3)

—0.009 16(3)
0.0011

Orbital

0.058456(1)
0
0.004 167(2)
0

0.000 451(2)
0.000004

Spin-dipole

0.058 456(1)
0.004 176( 1)
0.004 167(2)
0.000386(2)

0.000 177(2)
0.000018

2P
Contact

0
—0.15141(1)

0
—0.01189(2)

0.01608(10)
—0.00007

Quadrupole

0.058 456(1)
—0.006 935(1)

0.004 167(2)
—0.000 279(2)

0.001 256(2 }
—0.000003

Total
Experimental

1.9459(2)
1.9397

0.063 08{1)
0.0627(3)

0.067 38(1}
0.0678(4)

—0.1473(2)
—0.1427(3)

0.056 66( 1)

Larsson et al.
Nesbet'
Chang and Das et al.
Hibbert et al. ~

Garpman et al."

1.937
1.9148
1.927
2.009
1.939

0.0634
0.063 22
0.062 81
0.0625
0.062 62

0.0671
0.06762
0.068 59
0.0690
0.06660

—0.1441
—0.1431
—0.1386
—0.1419
—0.1380

0.0504
0.057 06
0.0486
0.061 75
0.056 34

'Reference 49.
bReference 50.
'The experimental values are obtained using a nuclear magnetic moment of 3.2564 nuclear magnetons (Ref. S1) and a conversion fac-
tor of 95.4048 to transform from MHz to atomic units {with the nuclear moment in nuclear magnetons). This conversion factor also

contains a correction for the reduced mass, corresponding to a nuclear mass of 6.S amu.
Reference 42.

'Reference 44.
Reference 45.

~Reference 48.
"Reference 10(b).

energy agrees with the very accurate (nonrelativistic) value
calculated by Pekeris almost within our estimated nu-
merical uncertainty. The correlation part of this energy
seems to be accurate to at least one part in a thousand.

Also, the ionization energies (valence-electron binding
energies) agree very well with the experimental data, al-
though the deviation for the 2 P state is outside the nu-
merical uncertainty. (The almost perfect agreement for
the 2 S state is probably partly fortuitous. ) The deviation
for the 2 P state is of the order of one percent of the
correlation contribution, which is quite a reasonable
three-body effect. This indicates strongly that the two-
body part is, in fact, obtained very accurately in this
procedure —at least with an accuracy on the percent level.

In Table VII we have also given the results of some oth-
er accurate energy calculations. The calculations of
Weiss ' are of configuration-interaction (CI) type, with
about 45 configurations, while those of Larsson et al.
and of Sims et al. are of Hylleraas type, with the in-
terelectronic distances explicitly in the wave function.
Nesbet has used so-called Bethe-Goldstone equations,
which are closely related to the pair equations used in the
present work. The calculation of Nesbet, however, is per-
formed in the independent electron-pair approximation
(IEPA), which implies that there is no coupling between
different pair excitations in different orders. In addition,
only excitations with l &3 are included. Chang et al. , 5

finally, use a diagrammatic approach, similar to that used

State

22S
2 Pi/2
2P

P1/2+ P3/2

Hartree-Fock

130.92
14.87
2.97

17.85

Present
work

185.65(2)
21.28{1)

—1.53(1)
19.75{2}

Expt.

185.06(1)
21.15(2)

—1.41(1)
19.74(2)

in the present work, but only effects to third order are
considered.

From the comparison in Table VII it can be concluded
that —as far as the total energy and ionization energies are
concerned only the extensive Hylleraas-variational cal-
culations of Larsson et al. and of Sims et al. have an ac-
curacy comparable with that of the present work.

The hyperfine parameters obtained in the present work
agree with the experimental results within the combined
numerical and experimental uncertainties, except for the
S and P contact parameters (see Table VIII). In Table

IX the corresponding magnetic dipole interaction or A
factors are given, and there it can be seen that there is a
small, but significant, deviation between the theoretical
and experimental results in all cases. It is interesting to
note, however, that the agreement is almost perfect for the

TABLE IX. Magnetic dipole interaction constants divided by
the nuclear g factor (A/gz, in MHz per nuclear magneton).
These results are obtained from the data in Table VIII. The un-
certainty in the nuclear magnetic moment is not considered.
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sum of the two A factors of the P state, which is in-
dependent of the contact parameter. ' ' Two important
conclusions can be drawn from this comparison. First,
one can conclude that it is quite unlikely that the
discrepancy is due to errors in the analysis of the experi-
mental data or in the nuclear magnetic moment used in
the evaluation of the 2/gl values. Second, the compar-
ison indicates strongly that our orbital and spin-dipole pa-
rameters are quite accurate —most likely more accurate
than the corresponding experimental values —and that the
discrepancy is due to a slight inaccuracy in our theoretical
contact parameters. Possible reasons for this inaccuracy
will be discussed below.

At first sight, the errors in the contact parameters may
seem surprisingly large, considering the high accuracy ob-
tained in the other cases. It should be observed, however,
that the effect of the perturbation, i.e., the deviation from
the Hartree-Fock value, is particularly large for the con-
tact parameters —100% for the P state and about 30%%uo

for the S state. This should be compared with about
10%%uo for the orbital and spin-dipole parameters and about
1% for the ionization energies. Therefore, compared with
the leading perturbations, the residual errors are not con-
siderably larger for the contact parameters than for the
other quantities —about l%%uo for the S and about 3%%uo for
the I' contact parameter. As mentioned previously,
three-body contributions of this order of magnitude are
not unreasonable.

It should be observed, however —as mentioned briefly in
Sec, IIC—that there are also certain two-body or pair-
correlation effects missing in the present calculation.
These are of two types, illustrated in Figs. 15(a) and 15(b).
Diagram 15(a) represents a coupling between single and
double excitations, which is not included. (This particular
diagram can be regarded as a Brueckner-orbital modifica-
tion of a virtual orbital. ) In order to include this type of
effect in our procedure, it is necessary to generate new
pair functions with SPF as input (instead of core and
valence orbitals). This is quite feasible but has not yet
been done. In order to include the second missing pair-

correlation effect, illustrated in Fig. 15(b), still another
class of pair functions is needed, this time with a passive
valence orbital. Both these effects appear for the first
time in the fourth order of the perturbation expansion.
Considering the energy denominators, however, one can
expect the first effect, Fig. 15(a), to dominate. In dia-
grams of this kind there is only one double core excita-
tion, and it is therefore not unreasonable to expect this ef-
fect to represent a few percent of the entire perturbation
effect. This can be compared with the effect of using
Brueckner orbitals upon the core polarization, which also
enters in fourth order (see Fig. 11). This effect is for the
S parameter 3—4% and for the P contact parameter

about 8%%uo of the polarization effect. This effect is dom-
inated by the modification of the valence orbital [Fig.
11(a)], but the omitted pair-correlation effects should be
comparable with the effect of the Brueckner-orbital modi-
fication of the core levels.

Certain triple excitations are included in the present
calculation, namely, such for which the denominators of
the diagram can be "factorized. " An example of such a
diagram is shown in Fig. 14(a). Genuine three-body ef-
fects, on the other hand, which cannot be factorized in
this way [see Fig. 15(c)], are not included in this calcula-
tion. We are convinced, however, that effects of this kind
are much smaller than the missing pair-correlation ef-
fects, mentioned above.

Due to the violation of the exclusion principle, there are
also nonzero diagrams with quadruple, etc., excitations, in
spite of the fact that there are only three electrons in the
system. The use of the coupled-cluster procedure [Eqs.
(28) and (29)], however, ensures that the most important
quadruple excitations are, in fact, included in the pair-
correlation calculation.

From the arguments given here we can draw the con-
clusion that the remaining discrepancy between our con-
tact parameters and the corresponding experimental
values is most likely due to the omitted pair-correlation
effects, illustrated in Fig. 15.

Our quadrupole parameter, given in Table VIII, should
have an accuracy comparable with that of the orbital and
spin-dipole parameters, i.e., of the order of 0.1%. This
does not lead to any improved value of the quadrupole
moment of the Li nucleus, however, due to the experi-
mental uncertainty in the interaction constant. Therefore,
the best available moment is still that given by Orth
et al. ,50

(b) (c)

FIG. 15. Examples of correlation effects in the hyperfine in-
teraction, which are not included in the present calculation. {a)
represents a coupling between single and double excitations,
which in this case can be regarded as a Brueckner-orbital modi-
fication of a uirtual level [cf. Fig. 9(b), representing a corre-
sponding modification of a core level]. (b) represents a double
core excitation with an interaction with an unexcited valence
electron. Effects of these two kinds can be included in an ex-
tended pair-correlation procedure. I',c), on the other hand,
represents a genuine three-body effect, which cannot be included
in such a procedure.

Q( Li) = —41(6) mb .

In Table VIII we have also collected the results of some
other accurate hyperfine calculations on the lithium atom.
The calculations of Nesbet, Larsson et al. , and of
Chang and Das et al." are essentially the same as those
discussed above. Hibbert's calculation is of CI type, but
including only excitations with 1(2. The calculation of
Garpman et ar. ,

' ' ' finally, is of the same kind as that
reported on here but less complete. In particular, only
first-order pair functions are used.

It can be seen from the comparison in Table VIII that
the internal consistency of the theoretical calculations is
reasonably good, particularly for the orbital and spin-
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dipole parameters. In view of that, one finds the large
spread in the quadrupole parameters surprising. The con-
tact parameters agree generally well with the experimental
results, but considering the large efforts made in the
present work, it is obvious that the very good agreements
obtained in some previous calculations must be largely
fortuitous.

V. SUMMARY AND CONCLUSIONS

In this work we have described a procedure for many-
body calculations on atomic systems, based on numerical
solution of coupled inhomogeneous differential equations
of one- and two-particle type. By solving this set of equa-
tions iteratively, it is possible to include effects of single
and double excitations —i.e., core-polarization and pair-
correlation effects—to essentially all orders of perturba-
tion theory. The coupling between single and double exci-
tations is found to be important and leads effectively to
the use of Brueckner orbitals. By means of the coupled-
cluster formalism, the most important quadrupole excita-
tions are also included i.n the procedure.

This procedure is applied with high accuracy to the
lowest S and I' states of the lithium atom, where the to-
tal energy, ionization energy, and hyperfine structure is

evaluated. Most of the experimental data are reproduced
with very high accuracy, and from the analysis the fol-
lowing main conclusions can be drawn.

(a) The procedure of solving coupled one- and two-
particle equations in the open-shell coupled-cluster for-
malism seems to be a very efficient way of calculating the
pair-correlation effect in (small) atomic systems. For the
lithium atom in its lowest states this procedure, as applied
in this work, is capable of reproducing this effect with an
accuracy of the order of one percent.

(b) The pair correlation, evaluated in the coupled-
cluster formalism, represents a very good approximation
to the entire correlation effect, at least for small systems.
For the lithium atom genuine three-body effects, which
cannot be obtained in a pair-correlation procedure, are, at
most, of the order of one percent of the pair-correlation
effect.
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