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For a classical oscillator subject to a time-dependent perturbation, the average change in the ac-
tion variable (hJ &=(J—Jo& is related to its fluctuation ((hJ) & by (hJ &= 2 i3((b J) &/dJO,

where Jo is the initial value of J and the average is over the-initial value 80 of the angle variable. In
this paper, the quantum-mechanical generalization of this relation is derived, and we discuss the
correspondence between our work and the usual treatment of the fluctuation-dissipation theorem for.

a system which initially is described by a canonical distribution.

I. INTRODUCTION where

For a classical oscillator described by the Hamiltonian
Ho(p, q), the action variable, '

2mJ= pdq, (1.1)

is a constant of the motion and the angular oscillation fre-
quency is

COQ(J) =dHo(J) jdJ . (1.2)

If an external tiine-dependent perturbation is applied, the
system is described by the Hamiltonian
Ho(p, q)+ V(p, q, t), and the action variable is no longer
constant. When calculated to second order in the interac-
tion V, the average drift (hJ) = (J(t) Jo) a—nd fluctua-
tion ((hJ) ) are found to be related by '

No(t) =No+N, (t)+N2(t)+

Then, we find (taking fi= 1)

(N', (t))=g(m —n)'p„(J)B „(t),
m, n

(1.10)

p„(J)= e (1.8)
n!

is the Poisson distribution. Corresponding to the action
variable in classical mechanics is the number operator No
defined by:

No~n)=n ~n) .

Working in the Heisenberg representation, we determine
its time dependence to second order in V,

(hJ) =— ((hJ) ),
2 BJo

(1.3)
(N (t)) = g (m n)p„(J)B—„(t),

m, n

(1.12)

H=H, + V(r), (1.4)

where Jo is the initial value of the action variable and the
average is over the initial value 8o of the conjugate angle
variable.

In this paper the quantum-mechanical generalization of
Eq. (1.3) is derived. We consider a quantum oscillator
described by the Hamiltonian

2~= gp„(J)B„+p,„(t), (1.13)

the above equations can be rewritten as

(N', (t))= g (N', (i)),= g p'(T, +T, )

p (&0) p (&0)
(1.14)

where B „(t) is the transition probability between states
m and n Defini.ng

~~) —e
—

I
I'~ y ~

n)
n!

Writing

(1.5)

and suppose Ho to have a nondegenerate, discrete spec-
trum. The orthonormal complete set of eigenvectors of
Ho are denoted by

~

n ), n =0, 1,2, . . . , and we assume
that initially at time t =0 the oscillator is in a coherent
state

(N, (t))= g (N2(t)&~= g p(T~ —T ~) .
p (&0)

The symmetry of the transition probability,

B „(r)=B„(r),
together with the identity

(1.15)

(1.16)

a=~ie" (1.6)

the average of an operator 0 is defined to be

(&&—= f, , (~~a~~&=gp„(J)(n (O~n),
n

D p„(J)—:(1+8/BJ)i'p„(J)~p„(J) (n )p)
imply

Dp T p
——Tp, (1.18)

which is the fluctuation-dissipation relation we are seek-
ing. Applying Eq. (1.18) to Eqs. (1.14) and (1.15) results
in
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3)

1 B 1 8 p —4 8
2 aJ 4 gJ2 24

&x', (t) ), , (1.19)

av, (t )J)(t)= —f dt'
ae,

a V, (r')J,(r)= f—dt' f dr" , V, (r") ~ .

(2.6)

(2.7)

the quantum-mechanical generalization of the classical re-
sult presented in Eq. (1.3).

In Sec. II we review the classical oscillator. We em-
phasize that the derivation of Eq. (1.3) rests on the same
property of the Poisson bracket as does the fluctuation-
dissipation theorem often quoted for the canonical en-
semble. We also review the connection between Eq. (1.3)
and the Einstein relation in the classical theory of Browni-
an motion.

The quantum oscillator is discussed in Sec. III, where
Eqs. (1.18) and (1.19) are derived in detail. After this is
accomplished, we consider the special case of a perturbing
potential of the form V(t)=Vg(t), where V is a time-
independent operator and q(t) is a scalar function of time.
In this case we are able to discuss the drift and fluctuation
of the energy as we11 as of the occupation number, by use
of Fourier transforms. Next we consider the unperturbed
Hamiltonian to be harmonic,

Ho =n(Xo+ —,
' ), (1.20)

II. CLASSICAL OSCILLATOR

and show that in this case our results for an initial Pois-
son distribution are related by a Laplace transformation to
the fluctuation-dissipation theorem which applies when
the initial state is described by a canonical di.stribution.

Since in classical mechanics there is a precise correspon-
dence between the fluctuation-dissipation relation of Eq.
(1.3) and the Madey gain-spread theorem for the free-
electron laser, it is reasonable to hope that the work
presented in this paper (or a generalization of it) will be of
relevance to the quantum-mechanical treatment of the
free-e1ectron laser.

We shall have no need for Ot(t) and Oz(t), so we shall not
give their explicit forms. In the above Eqs. (2.6) and (2.7)
we have used the simplifj. ed notation

Vr(t) =—V(Jo, Ho+cop{Jp)r, t),
and the Poisson bracket ( A,B ] is

BA M
~Jo BOo

{2.8)

(2.9)

The fluctuation-dissipation relations are a consequence of
the identity

BB 8 BB[ABj= A + (2.10)

Introducing the average & ) defined by

&0&= f,"',"O(J„O,, t), (2.11)

we see that when 3 and B are periodic in 00 with period
2n., then

&[B,B~&=, B(B l.
The fluctuation-dissipation relations follow directly from
Eq (2 12) Tak'ng A=de(t')IdOo and B=Vq(t"), Eqs.
(2.6) and (2.7) together with (2.12) show that

& J,(t)) =—, , &J', (r)), (2.13)

which is the desired result.
Instead of the average defined in Eq. (2.11), consider

the average over the canonical ensemble,

We consider a driven oscillator described by the Hamil-
tonian

H =Hp(J)+ V(J, O, t), {2.1) (2.14)

where J and 0 are the action angle variables. ' The poten-
tial V(J, O, t) is periodic in 8 with period 2m. , and the
equations of' motion are

where Z is the partition function

z= f"dJe '""". (2.15)

BV8=cop(J)+

(2.2)

(2 3)

The averages of Eqs. (2.11) and (2.14) are related by

&o),=z-' f dJe ' &o) . (2.16)

Assuming A and B to vanish at Jp ——0, Eqs. (2.12) and
(2.16) imply

J(r) =Jo+J&(t)+J2(r),
8( r) =Op+trio( Jp )I +8](t)+82(t)

with

(2.4)

(2.5)

where cop(J) =dHo/dJ is the oscillation frequency of the
unperturbed oscillator. The equations of motion can be
solved by perturbation theory, and to second order in V
the solution is

~fB Bl~ =( Booo(Jo)B
BB
ae, , (2.17)

V(J, O, t) =u(J, O)g(t), (2.18)

where g(t) does not depend upon J and 8. Then

Let us now restrict our attention to the special form of the
perturbing potential,
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Vr(t) =Up(r)ri(t), where

Ul(r) =U(Jp, Op+('op(Jp )r ) .

Taking A =Ul(t) and B=ur(t') in Eq. (2.17), we find

~ [pr(r) ~r(t')] ),= —P~ur(~)vr(~ ))

(2.19)

(2.20)

BHp BV
Bp Bp

BHp BV"

Bq Bq

or in terms of the action-angle variables,

(2.21)

(2.22)

where U'q(t) =dur(t)/dt =cop(Jp) Buz(t)/B8. Equation
(2.20) is the fluctuation-dissipation relation as usually
stated in the canonical ensemble.

Before proceeding to the discussion of the quantum-
mechanical oscillator in the next section, let us briefly re-
view another aspect of the fluctuation-dissipation relation
(2.13) which manifests itself in the discussion of stochas-
tic processes using the Fokker-Planck equation. If we in-
clude the effects of a frictional force, the equations of
motion becoine

then Eq. (2.29) implies

~( ) f 2yJdJ
A2(J)

(2.31)

then

(f(r)) =0,
(g(t)g'(t') ) =2D5(t —t'),

(2.32)

(2.33)

A2(J) =2DJ/(pp(J),

hence

(2.34)

g,~(J)=e

with

P=y/D .

(2.35)

(2.36)

If the equilibrium is described by a canonical ensemble
with inverse temperature P, then Eq. (2.36) is the Einstein
relation.

In the special case when the external potential
V= —qg'(r), where g(t) is a stochastic function with a
white-noise spectrum,

~ BV Bq
B6) BO

'

8=, cop( J)+ +yp
BV Bq

(2.23)

(2.24)

III. QUANTUM OSCILLATOR

where of course p and q are now expressed as functions of
J and 0. If the potential V has the proper stochastic char-
acter then the average motion on a long time scale is
described by the Fokker-Planck equation

Bg B 1 B
(A(Q)+ —

2 (A2$),
Bt BJ 2 BJ2

where f(J,t)dJ is the probability of finding the action
variable between J and J+dJ at time t. The coefficients
are given by

We consider a driven quantum-mechanical oscillator
described by the Hamiltonian

H=Hp+ V(t) . (3.1)

Hp
~

n)= (p(n) . (3.2)

The unperturbed Hamiltonian H0 has a nondegenerate,
discrete spectrum and its orthonormal complete set of
eigenstates are denoted

~

n ), n =0, 1,2, . . . . For ease of
notation we set A'= 1 and denote the eigenvalues of Hp by
C00(M~ (C02 ( ' ' ',

A, =((aJ/Sr )),
A, = (((bJ)'/b. r )),

(2.25)

(2.26)

In the Heisenberg representation, the time evolution of
Hp ls given to second order in V(t) by

) BA2

2

so the Fokker-Planck equation reduces to

(2.27)

where the double bracket indicates an average over the ini-
tial value of 8 and over the stochastic ensemble. In this
case the fluctuation-dissipation relation becomes

Hp(t)=Hp+H((t)+H2(i)+. . .

with

(3.3)

(3.4)
t

H, (r)= i f dr'[H„V, (r')],—

H, (r)= —f dr' f, dr"[[H„V,(r')], V,(r")], (3.5)

Bf 1 B
A

Bg B

Bt 2 BJ BJ BJ
(2.28)

A sufficient condition for P,~ to be a time-independent
solution of Eq. (2.28) is

—A2 +yJQ=O .1 W'eq

2 BJ
Let us write

e
—s(J(

The commutator [A,B]=AB BA. —
Let us introduce coherent states

~

a) =e-! !'"g
~
n),

n!

then writing

a=v Je",
we define the average of an operator 0 by

(3.6)

(3.7)

(3.8)
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(3 9) D»p„(J)=p„»(J), n &p . (3.25)

From Eq. (3.7) it is seen that
Equation (3.25) together with the symmetry of the transi-
tion probability,

&o&= yp(J)&
~

o
~

),
where

p„(J)= e
n!

(3.10) B „(t)=B„(r),
yields the fluctuation-dissipation relation

DpT p
——Tp .

Using Eq. (3.27) in Eqs. (3.22) and (3.23) shows that

(3.26)

(3.27)

is the Poisson distribution. Corresponding to the action
variable in classical mechanics is the number operator X0
defined by

1 i} 1 8 —4 8N, (r)) =
2 BJ 4 QJz 24 QJ3

No
~

n)=n
~
n),

and it is easily seen that

Qnd

(3.11)

(3.12)

(3.13)

(3.14)

(3.28)

which is the generalization in quantum mechanics of the
classical result of Eq. (2.13)

(J2(r))= — (J](t)) .

When (N](t))» are polynomials in J, the leading terms in
the classical limit J-+ ao satisfy

The transition probability between states m and n is
t 2

B „(r)= f dh'(m
~

V, (t')~n) (3.15}

and one finds the energy moments

(H](t)) = g (co —co„)p„(J)B „(t),
m, n

(H2(t)) = g (co~ co„)p„(J—)B~„(r) .

(3.16)

(3.17)

No(t) =NQ+N] (r)+%2(r)+

(N](t)) = g (m n)2p„(J)B „(—t),
(3.18)

(3.19)

The time dependence of the number operator can be deter-
mined in the same manner as that of Ho, and to second
order in V(t),

(N, (t))» ——— (N](t))» . (3.29)

H =Ho+ Vil(t), (3.30)

where V is now a time-independent operator and q(t) is a
scalar function of time. We define

(3.31)

We note that the coefficient of the second-order derivative
term in Eq. (3.28) is independent of p, but the coefficients
of the third- and higher-order derivatives are different for
different values of p.

In order to make contact with the literature on the
fiuctuation-dissipation theorem, let us restrict our atten-
tion to a Hamiltonian of the form

m, n

( N2 (t) ) = g (m n}p„(J)—B~„(t) .
m, n

Defining

(3.20)
and rewrite Eqs. (3.4) and (3.5) as

(H](t)) = f dt' f dr" ri(r')rj(r")(V, (r')V, (r"))

(3.32)

T» —Q p„(J)B„+»„(t), (3.21) and

(3.33)

Now we introduce the Fourier transform S(co) by

&[V (r) —& V (r) &][~s(t'} &Vl(r') &]&-
= f dcoS(co)e '"" ' ', (3.34)We do not explicitly state any restriction on the sum over

p except p &0, but consider B „(t) to vanish if either m
or n becomes negative.

Introducing the differential operator

from which it follows that

([Vl(t), Vl(t')]) = f dco[S(co) —S( —co)]e

Eqs. (3.19) and (3.20) can be rewritten in the form

(N](t)) = g (N](t) )» = g p (T»+ T»), (3 22)
p (&0) p (&0)

(N, (t)) = g (N, (t))» = g p(T» T») . (3.23)—
p (&0) p (&0)

D» —(1+BIBJ)",
we note that

(3.24)

(3.35)
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Since

S(co)= Qsp(co)
p

with

(3.36)

we can derive

(3.37)

St, (co)= g p„(J}( (n
~

V
~
n+p ) (

'g(co —co„+co„),

( H i(t) ) = I dco b(co, t)co g [Sp(co)+S p( —co)],
p (&0)

(H2(t)) = I dcob(co, t)co g [Sz(co}—S z( —co)],
p (&0)

where

b(co, t) = I dt'rl(t')e

(3.38)

(3.39)

(3.40)

As stated earlier following Eq. (3.23), we consider matrix elements (m
~

V
~

n } to vanish when m or n become negative.
From the definition of Sz(co) in Eq. (3.37) and the definition of Dz in Eq. (3.24), we derive the fluctuation-dissipation

relation

D~s ~( —co) =Sp(co) .

Equation (3.41) implies

S~(co)—S ~( —co)= —,—,+ - [S~(co)+S ~( —co)],~ c} ~ c} p(p —4) c}

2 c}J 4 c)J2 24 QJ~

(3.41)

(3.42)

(3.44)

relating Sz(co)—S z( —co) which determines the dissipation (Hz(t) } to Sz(co)+S z( —co) which determines the fluctua-
tion (H, (t) ). The spectral relations for the number operator are

(Ni(t)) = J dcob(co, t) g p [S~(co)+S ~( —co)], (3.43)
p (&0)

(Nq(t)) = f dcob(co, t) g pfs&(co) Sz( co)]—. —
p (&0)

Ho=Q(No+ g ) . (3.45)

These equations are, of course, consistent with Eqs. (3.22)
and (3.23) discussed earlier.

Additional insight is obtained by considering the special
case when the unperturbed system is an harmonic oscilla-
tor,

(N', (t) }=b(Q, t)(2J+1),
(N, (t))=b(Q, t) .

(3.51)

(3.52)

Since (N i (t) ) is linear in J, the higher derivative terms in
Eq. (3.28) vanish, so the classical relation (3.29) is valid.

When V=(a+at), then

In this example, ~„+p—co„=pQ, so

S~(co) =S~5(co—pQ), (3.46)

(N i(t) }=b(2Q, t)(8J +16J+8),
(N, (t)) =b(2Q, t)(8J+4) .

(3.53)

(3.54)

with

S = gp„(J) i (n i Vi +np)) (3.47)

Since (Ni(t)) is quadratic in J, the third- and higher-
order derivatives in Eq. (3.28) vanish, so

'

1 c} 1 c}(N, (t))= — —— (N', (t)} .
2 c}J 4 c}J2

(3.55)

(N', (t) ) = g b(pQ, t)p'(S~+S ~),
p

(N, (t) }=yb(pQ, t)p(s, —s, ),

and

DpS p
——Sp .

(3.48)

(3.49)

(3.50)

Finally, when V=(a+a ), then

(N2i(t) ) = b(Q, t)9(2J3+9J2+8J+1)

+b(3Q, t)9(2J'+9J'+18J+6),
(N, (t)) = b(Q, t)9(3J'+6J+1)

+b(3Q, t)9(3J'+6J+2) .

(3.56)

(3.57)

For a dipole interaction, V=a+a~, with a~ and a be-
ing the usual raising and lowering operators satisfying
[a,a ]= 1 we find

In this case the third derivative term in Eq. (3.28) must be
kept, and since the coefficient of c}'yc}J is not simply
proportional to p, distinct differential relationships hold
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( V (t)V (t')&, =Z 'Tr[e 'Vt(t)Vt(t'))j, (3.58)

for p =1 and p =3.
%'e shall now conclude this section by demonstrating

the equivalence of Eq. (3.50) to the fluctuation-dissipation
relation as usually stated for the canonical ensemble. The
expectation value ( ), in the canonical ensemble is

Therefore, the canonical average defined in Eq. (3.58) is
related to the Poisson average of Eq. (3.10) by

(O), = f dJP(J)(, O), (3.66)

which is the quantum-mechanical generalization of Eq.
(2.16). For the harmonic oscillator Hamiltonian of Eq.
(3.45), one knows

where Z is the partition function and p= 1/kT. &n this
ensemble the fluctuation-dissipation relation is P( J)=ye (3.67)

( V, (t)Vt(t')), =(Vl(t')V, (t+ip)), .

Entroducing the Fourier transform F(co) by

([Vt(t) —( Vt(t))][Vt(t') —( Vt(t'))]),
= f dcoE(co)e

we see that Eq. (3.59) implies

F(ro) =e~F( —co) .

(3.59)

(3.60)

(3.61)

with

y ePQ

Therefore,

&p ——f dJye sJSp,

so Eq. (3.63) becomes

f dJe «S~= f dJ(1+y)t'e ~~S

(3.68)

(3.69)

(3.70)

F(co)=F~5(to pQ, ), — (3.62)

t

When Ho is the harmonic oscillator Hamiltonian of Eq.
(3.32), then OkS ,

gJk
=0 for 0&k &p,

From its definition in Eq. (3.47), it is clear that

(3.71)

where

Fp ——e~ I'F
p .

Using the diagonal representation, we can write

d 0!—e = P J u a
Z 7T

(3.63)

(3.64)

so Eq. (3.70) is simply the Laplace transform of the rela-
tion S» =D~S ~ of Eq. (3.50).
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