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Construction of resonance projection operators: Application to two-electron targets
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A derivation of resonance projection operators, in the Feshbach sense, is presented in detail, with
inclusion of angular momentum and spin variables. The resultant operators, P and Q, are written in
a transparent and manifestly symmetric form. The operators depend on eigensolutions of a homo-
geneous integral equation. The equation is solved and hence the operators are explicitly constructed
for the two-electron (i.e., He-like) targets in a nonseparable {the open-shell) approximation; this pro-
cedure can readily be extended to any configuration-interaction-type target function. The kernel of
the auxiliary integral equation is also explicitly derived for a Hylleraas-type target function; a
Rayleigh-Ritz variational principle is written down for its eigenfunctions. It is pointed out that
these (Feshbach) P and Q operators are not formally idempotent, but it is shown that their matrix
elements between antisymmetric functions are. This makes them completely suitable for calculation
of autoionization states via diagonalization of QHQ. A basic problem in using the concomitant op-
tical potential for scattering calculations remains and is briefly discussed. The generalization of
these operators to the inelastic domain is also given (in an appendix).

I. INTRODUCTION

It is by now well known that although the Feshbach
projection-operator formalism was introduced in the con-
text of nuclear physics, its major quantitative applica-
tions have been in atomic physics. In point of fact even in
the atomic context, the most rigorously quantitative appli-
cations have been confined to one-electron (i.e., H-like)
targets, not only because the target eigenfunctions —in
terms of which the projection operators are expressed-
are known exactly, but also for the reason that the form
of the operators which preserve antisymmetry can readily
be inferred. Historically, in fact, only subsequently was
it shown that those P and Q operators are equivalent to
the prescription given by Feshbach' for the N = 1 target.

That prescription for general N is the subject of this pa-
per. For it is clear from a study of Ref. 1 that the Fesh-
bach derivation was heuristically intended in the sense
that angular momentum considerations are at best only
implicit, and spin coordinates are not mentioned at all.
Those defects can be remedied by defining a channel wave
function in which the orbital and spin angular momenta
are explicitly coupled to that of the incident electron.
From such functions one can construct a symmetry-
preserving operator whose main additional component de-
pends on a set of radial eigenfunctions U (r), which are
the eigenfunctions of an integral equation, whose kernel is
the heart of the method of construction.

In Sec. II we will completely define the elements of that
derivation, but only briefly describe the derivation itself.
The operators so derived are still somewhat symbolic in
that the Ua(r) must somehow be solved for. This is done
in Sec. III for an open-shell approximation of the He-like
target. This same method can be used to derive explicit
operators for any- S=2 configuration-integration-type
wave function whose coefficient functions are exponen-

tials times powers of the two radial variables.
However, the most incisive wave functions for two-

electron targets are of the Hylleraas-type. The kernel of
the integral equation for Ua and its eigenvalue A, is ex-
plicitly derived in Sec. IV; as expected it is naturally ex-
pressed in terms of the variables r&, r& in addition to
ri, r2. Because of that, the Ua(r) and A, have not been
analytically obtained; nevertheless, one can readily write
down a (Rayleigh-Ritz) variational principle for them,
and since the U (r) are functions of one radial variable, it
is likely that such numerical or analytical variational solu-
tions will be the most convenient for resonance calcula-
tions.

Section V is devoted to the question of idempotency,
which in many respects is the most interesting question of
the Feshbach formalism. For the basic requirement of
Feshbach's theory is that it starts with the specification of
the form of P%', not P itself. Nevertheless, a form of an
operator P is derived which necessarily has the property
P V=P%'. However, that does not answer the question of
idempotency of P as an operator. That question is even
more relevant for the operator Q = 1 P, because in a—ctual
calculations Q operates on a function N which is antisym-
metric but is otherwise arbitrary in form. What we will
show is that the operator Q (and hence P) is not idempo-
tent (for N & 1 targets); i.e., Q &Q as an operator identi-
ty; nevertheless, we shall also show that matrix elements
(4~Q @„)=(N~Q@„) for arbitrary @~ and @„pro-
viding the latter are completely (anti-) symmetric in spin
and space.

The above are the paramount considerations regarding
resonance (parameter) calculations. However, effective,
idempotency is not the only essential feature required of
the optical potential as far as general scattering calcula-
tions go. The paper concludes with a few remarks on that
subject.

31 1259
Work of the U. S. Government

Not subject to U. S. copyright



1260 A. TEMKIN AND A. K. BHATIA 31

II. DERIVATION OF P AND Q

Et is a basic item that Feshbach projection operators are
expressed in terms of outer products involving Po, the
(ground) state of the target system' (assumed here to be an
atom or atomic ion with nucleus fixed). In order to in-
clude all coordinates explicitly, one introduces a channel
wave function" in which the ground state is coupled to the
angular momentum and spin of a partial wave of the in-
coming electron:

Because u (r; ) is defined for all values of r; (eventually as
the solution of the optical potential equation), Eq. (2.5) is
more than a statement of the asymptotic property of P%.
We shall find that is an essential element of the construc-
tion in general; in fact the basic condition is that the opera-
tor Q,

Q=l P, — (2.8)

be identically zero when projected on go(r") for all values

1i'o(r(~)) =g (Lo/ Mom;
~
LM)(So ,'Ms—om&

I SMs)
& 1i(o(r"')Q%') (;)——0 . (2.9)

(2.1)

[We are assuming LS (i.e., Russel-Saunders) coupling
throughout. ] It is emphasized that in contrast to Ref. 4,
we are here only concerned with scattering from the
ground state of the target system and, correspondingly,
resonances in the purely elastic region. The generalization
to the inelastic domain is given in Appendix B. In (2.1)
aside from the obvious notation, x" indicates the absence
of the ith electron coordinates from the total (%+I)-
electron coordinates in the electron-target system. The x;
are the totality of the coordinates (spin and space) describ-
ing the ith electron, so that x ' signifies

(i) ((xi+ ltxi+& ~ i xN+ 1~xii ~ ~ ~ i xi —1) . (2.2)

Finally, we let p; represent a eyclie permutation, so that

~ ~ ~ ~ ~ ~ ~ ~ o g +
( —1)'=parity of i i +1 &+1 ~ i —1

(2.4)

Note for (&+1) odd, ( —1) '=1 for all i, whereas for
( N + 1) even, ( —1) ' = ( —1)' '. For all X, ( —1) ' = 1.

With these notational preliminaries in hand, we start
with the primary item of the Feshbach construction: the
form of P%, where 4 is to be considered the exact, an-
tisymmetric solution of the (many-electron) Schrodinger
equation and, by definition

%+1
P%: g( —1) 'u(r; )Po(r"—) . (2.5)

Here u (r;) are radial (scattering) orbitals which have not
as yet been specified, but they must have the asymptotic
property

lim u(r;)=
sin(kr; —xi;/2+ o; )

kr;
(2 6)

which guarantees that P% has the same asymptotic form
as 4 itself:

Equation (2.2) implies that the target has N electrons and
by analogy r" in (2.1) indicates the absence of r;:

(2.3)

The identifying subscript in (2.9) indicates integration
over r", which from (2.3) means integration over all
coordinates except r;. Again note that (2.9) is defined for
all values of (any) r; notjust r;~oo.

We shall obtain a specific form of Q by manipulating
(2.9) to get an explicit (operator) expression operating on
(II) (not Q%)) equal to zero. That operator will be Q. In
doing that here, we will be very brief as the essential part
of the derivation is given in Feshba'eh's paper and w' e
ourselves will give a detailed derivation elsewhere as part
of more general discussion of projection operators for
many-electron systems.

The desired projection is defined as w (r; ):

(2.10)

With the above, one can reexpress (2.9) in the form [using
(2.8) and (2.5)]

w(r; ) =u (r; ) f —K(r;
~ rJ )u (rj )rj drj, (2.11)

where the kernel K turns out to be

(2.12)

Here integration is over r' ', which denotes all coordi-
nates except r; and rj (i&j ).

The kernel K encapsulates exchange; its expansion in
terms of u~ is a key aspect of the Feshbach approach. '
The u~ (known as natural orbitals in quantum chemistry )
are the eigenfunctions of

ua(rl) ~a f K(rl
I r2)ua(r2)r2 dr2 (2.13)

Specifically, from the eigensolutions of (2.13), which are
discrete, orthonormal, and real,

& u~up)—:f u~(r)up(r)r dr =5~tt, (2.14)

one can expand K in the form

up(r ~ )u p(r2)
K(r&

i
r2)= g (2.15)

p=i ~P
This allows u(r;) tobe related to w(r; ): from (2.11)

u(r;)= g y (r;)&u u)+w(r;)
lim P%'= lim %'

r,- oc

. sin( kr; nl; /2+ o;)—.

kr;
(2.7)

A, =]a

utt(r( ) & upw )+ (2.16)
2,p(~1) t3

In this notation it is emphasized that U~ refers to the
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eigenfunction associated with A~, not with P; thus U are
associated with A, =1 (if there are such eigenvalues); they
are not simply the first eigenfunctions of the set. The

eigenfunctions U make no contribution to the projection
(1(OP(I'); one finds, rather, substituting the right-hand
side (rhs) of (2.16) for u (r;) into P'(p of Eq. (2.5), that

%+1
(()0(~'")r'r&, io=(()0(r"' g ( —()' w(r;)+g po(r")

i=1 A, ~P
P

r(1)
(2.17)

The fact that w (r;) rather than u (r; ) now appears on the rhs accomplishes our goal of allowing the left-hand side (lhs)

of (2.17) to be expressed directly as a projection on (I(), because using (2.10), one can then rearrange (2.17), inserting ket
signs as appropriate, in its final form:

(40(~"') (r'r& =(( (i"') g () (i")&(() (i")+g +l1
(2.18)

By comparison of the left- and right-hand sides of (2.18)
one extracts the explicit form of P as an operator:

y.(r"') & &q.(."&)

p p( )
U p ps( )

+
kQ( 1

a

(2.19a)

g =1—g q. & &y.+g' (2.19b)

with the Q operator given by (2.8), which we repeat here
to emphasize that it too is rendered explicit through
(2.19a):

$0(x' ')=$0(x(,x2)

=X„„'[e " ' ""' +(1~2)]XO(1,2) . (3.1)

Note that Po is a nonseparable function of r, and r2, X&,
'

is a normalization constant and go is a spin singlet eigen-
function. By straightforward application of the formulas
in Sec. II, using the fact that all cyclic permutations here
are even,

phasized that X ~ 1 target eigenfunctions cannot be given

analytically. Thus in one sense or another specific projec-

tion operators will always be non-exact, and they will de-
pend on the approximation $0 of the target state. Let us
start with the open-shell approximation of the ground
state ('(&) in the form

This is essentially equivalent to the operators derived by
Feshbach. ' In contrast to his forms, however, Eqs. (2.19)
are manifestly symmetric in all (X+ I)-particle coordi-
nates, and by virtue of the definition of the channel func-
tion fo, they contain the dependence on space and spin of
all coordinates explicitly. For the eventual purposes of
calculation, the u must be solved for, and in Sec. III we

shall show that this can be done.
The generalization of these operators to ones applicable

to resonances in the inelastic domain is given in Appendix
B. It should be noted here that in all cases (elastic and in-

elastic) the parts of the respective operators which do not

contain auxiliary functions (U~) are just the quasiprojec-
tion operators we have previously introduced.

( —1) '=( —1) '=( —1) '=1,
one readily derives the channel functions

yo(r "&)= I'to(n; )af(t&0(xj. ,xk ),

(3.2)

(3.3)

+ ((M~v. ) (3.4)

(i,j,k) corresponding to cyclic permutations of (1,2,3). In
(3.3) a; corresponds to spin up of the ith scattered elec-
tron (we could equally well have chosen it to be P;—spin
down).

The kernel is also easily found from (2.12) to be
r —((((r(+r2 } ( pr(+vr2 &-
e«&( I &z)=, &to, +

(2v) (p+ v)3

III. AUXILIARY FUNCTIONS
FOR THE N =2 ELECTRON TARGET

Before turning to the two-electron target, we reiterate
that the projection operators independently written down

for an N =1 (i.e., hydrogenic) target were in fact subse-

quently derived from the Feshbach prescription by Hahn.

Again, more detail on this will be presented in our forth-

coming review paper.
We turn now to the %=2 target. First let it be em-

The Kronecker delta 5~0 emphasizes that in this approxi-
mation for ()()0, only for S states of the composite system
will projection operators have components beyond the ob-
vious ($0)($0) ones. The normalization constant is ex-

plicitly given by

N~„= (4m ) [(2pv) '+ 8(p+ v) 6] .

From (3.4) the auxiliary integral equation (2.13) is simply
written down and solved. There are two solutions which
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we here index by n [n = 1,2 corresponds to + and —in
(3.6)] in order to avoid confusion with spin a.

4'o(xi xz) = g 0'z(ri, rz)Pz(cos8iz) Xo(1,2) . (3.10)

U„(r)=C„ie ~"+C„ze

with eigenvalues

(3.5) If gp is expressed as exponential times powers

Ipo(ri rz)face ' ' g C „ri rz+(1~2) (3.1 1)

A,„'= —,(1+4+K( i KzzI iz ), (3.6)

where the K;J are the coefficients of the various exponen-
tials in (3.4) (note Kiz ——Kzi ), and I,i are the integrals

IJ=f e ' ' r dr=2/(y +yi) (3.7)

with y~ ——p and y2 ——v.
Finally, the eigenvector coefficients in (3.5) are related

m, n

then the eigenspectrum may similarly be analytically
solved for. How far sich a process would be worthwhile
is not clear, for in the ground ('S) state of He and its
isoelectromc ions, the electrons have significant probabili-
ty of getting close together and the target state wave func-
tion must have a cusp; that behavior can never be properly
described by (3.10). The most natural ansatz which exhib-
its the necessary property is a Hylleraas-type expansion to
which we now direct our attention.

(k„'——,
'

)

n nI (3.8a)
IV. HYLLERAAS TARGET FUNCTIONS;

A VARIATIONAL PRINCIPLE
FOR THE AUXILIARY SPECTRUM

with their absolute values determined from the normaliza-
tion of each U„, Eq. (2.15):

Cn ]I)) +2cn )Cn2I)2+ Cn2I22 ——1
2 2

This defines all elements of the P and Q operators:
3

P y, y (r(i)))(y (r(i))

(3.8b)

Un ri 0 r Un ri 0 r
+ (3.9)

n=1 n

As long as (M&v there is no A,„=1eigenvalue. (And for
p =v there is only one finite eigenvalue, for which A,„=1,
and the second sum drops out of P altogether. }

The same procedure can be extended to any
configuration-interaction-type wave function

We write the spatial wave function for a Hylleraas-type
expansion of the ground state ('S) of the two-electron tar-
get:

—y(.r&+r2)e
f'0(rl rz riz) = . , ~z g Ci~„(»irz + »i rz )r iz(8~)'",

(4.1)

Our aim is to derive the P operator for such an ansatz,
and the first step is to evaluate the kernel E of the auxili-
ary integral eigenvalue equation (2.13):

K(»,
I
rz)

1 3(po(rz, »3, z3) po((3, i, 3i)dQidQzd r3,
4m.

(4.2a)

which, inserting (4.1), can be written

z)=2e g g Ci „Ci „[ri '»zan"+"(r) Irz)+rirz~'. + '(»i lrz)
l, m, n 1',m', n'

(4.2b)

Here the basic integral is

~'„„'(r,
I
rz)=(4~) f e "'r",31 z3i 3dQ]dQzd l3 . 2' 2

(4.6)

(4.3)

For n and/or n' odd the integral would appear to be quite
intractable. But in fact it is not; using the expansion of
Sack

rij. ——g Fg" '
( r;, ri )P), ( cos8(i ),

A, =O

which for n odd is itself infinite, one finds in integrating
(4.3) over the spherical angles Qi and Qz that only the
A, =A, '=0 term survives:

where as usual r& (r& ) means the lesser (greater) of r;
and rj.

The integral in (4.5) naturally divides into three regions
(»3 &r&, r« »3 &r&, and r& &r3) each of which can be
done analytically. An example of a specific result is

~o'i'«i
I
»z)=, [[1+(yr) )']

4y'r

—e (1+—,
' yr) ) j . (4.7)

~En'(ri
I

z)= e ''Fo"'«i »3)0

XFo" '(rz, »3)r~q+ dr3 .

The E'"' are terminating hypergeometric series

(4.5)

However, the number of terms rapidly increases with the
size of the indices n, n' and the expressions depend on r&
and r2 in addition to r&, r&. We might point out that
quadratures like (4.5) are ideally suited to analytic
machine programs such as MACSYMA.
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V. IDEMPOTENCY

In its simplest terms, the question of idempotency con-
cerns whether the operators P and Q derived in Eqs.
(2.19) are such that P =P and Q =Q. Since the forms
of the operators are given, one can square them and
directly test for idempotency. We shall do that below, but
note that the Feshbach theory starts with the form of P%',
Eq. (2.5), and not with P itself. In that sense it is clear
from the foregoing derivation that

and

P'9 =P% (5.1)

QP+=0 . (5.2)

However, the question of idempotency of the operators
themselves arises in calculations of the resonant eigen-
spectrum via QHQ, for that calculation is usually effected
through the variational principle

(eQHQC}
&Q~, Q~&

(5.3)

Here the form of @ is arbitrary, so that Q 4 =Q&b does
not necessarily hold. Furthermore, since the optical po-
tential

The presence of r&, r& in K means that the integral
equation for the v, Eq. (2.13), cannot be analytically
solved, at least not as easily or in the same way as for a
configuration-interaction kernel. Even if it could be so
solved, it is not clear—given the complexity of the
kernel —that it would be worthwhile to do so. We there-
fore offer the Rayleigh-Ritz variational principle instead.

(uKu &

(4.8)
va)ua

The variational principle can be used to generate a set of
analytical approximations or numerical values over a grid
of the eigenfunctions v (r) (together with their associated
eigenvalues Aa). Indeed from the point of view of numeri-
cal calculation, one can go back to the defining integral
equation (2.13), and straightforwardly convert it tc and
solve it as—a matrix eigenvalue problem. This approach
is particularly relevant to the Hylleraas-type Po, where the
kernel K(r&

~
r2) is now known explicitly, so that it can

readily be evaluated at any desired mesh in r& and r2.
Whether variationally or numerically determined, the

ua(r) can be used in further calculations of QHQ and/or
the optical potential. In these contexts the question of
idempotency becomes germane; we deal with it in Sec. V.

tor P from (2.19) as

(5.5)

where

P; =p(i)+g q„(i,i)(A,„—1) (5.6a)

p( ) =y,(."')&(y.(."'),

q„(,j)-=( —1)"'.„(;)y.(."')
& &.„(;)q,(.&j~) .

We show in Appendix A that P can be written

(5.6b)

(5.6c)

P =P+g 2 gq„(i i)
(i(,„—1)

(@,q, (,j)@ & =(—1) ' '(@, „(;)(tio( ")
&

X &u, (r, )yo(r"')+b & .

Interchanging i~j in the second factor, whose coordi-
nates on the one hand are dummy variables, but on the
other hand, by virtue of the antisymmetry of 4b,

@b(j,j +1, . . . ,j —1)=(—1) ' @b(i,i+1, . . . , i —1),
shows that Nb requires a second ( —1) ' ' to be brought
into the appropriate order; i.e.,

&~.q.(,j)~, & =(-I)'""'&~..„(;)y.(. »&

X(pu(r")v. (r;)@b & .

Thus

The presence of the (g „) sum shows that the P operator
is not formally idempotent. [And since Q =1 P, it fol--

lows that Q &Q and QP&0, the deviation in both cases
being the same sum in (5.7 ).]

However, the essential point is that matrix elements be-
tween (anti-) symmetric, quadratically integrable, but oth-
erwise arbitrary functions of the difference term are zero.
To demonstrate that, we show that matrix elements of
P Pare zero—. If C), and @b are completely antisym-
metric, one writes from (5.6c)

(5 4a)P,p PHQ QH——P1

E — H

is generally expanded in terms of eigenfunctions of QHQ,
and using this in (5.7) leads to the final result

(C.P'Cb & =(e.Peb & . (S.S)

(C „QHP, (5.4b)

it would appear that a lack of idempotency would affect
W,~ itself. In fact, the operators P and Q are not formal-
ly idempotent. To simplify, let us write projection opera-

It is clear, since Q =1 Pas an operat—or, that matrix
elements of Q are likewise equal to those of Q, and that
matrix elements of PQ (or QP) are zero. We have verified
these properties numerically using our explicit open-shell
projection operators and a variational form of N:
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and

(i,j,k) cyclic

—(4~+~~ ] I m[e ' ' r;r +(i~j)]

X rke kg(i,j;k)

such operators should afford, in addition to increased ac-
curacy, is the complete elimination of spurious states.
The latter can arise in using quasiprojection operators. '

The generalization of the present operators to the inelastic
domain in Appendix 8 is very relevant in this respect also.

APPENDIX A
4b =4 (g q g~g', g', g';l, m, n +—1',m', n') .

The calculations were done for various values of the pa-
rameters [g'(g'), ri(g'), g(g')] and of the powers [l(l'),
m (m'), n (n')] In. all cases the results confirm (5.8) to the
accuracy of the machine. The analysis for'this test will be
the basis of future calculation of QHQ from which we
would expect to achieve even greater reliability than with
quasiprojectors for autoionization states of He and its
isoelectronic counterparts.

The same considerations also apply to the optical po-
tential, so that we may replace P and Q by any powers of
P and Q without changing P,p [cf. (5.4b)]. Unfortunate-
ly, the effective idempotency of P and Q does not solve all
problems here, for in the equation derived from
(/OP", „q(&, because of the approximate nature of target
state $0, to which one is calculationally constrained, the
effective interaction QHP may allow some spurious
amount of unshielded Coulomb potential to survive
asymptotically, and that will ultimately cause a logarith-
mic divergence in the phase shifts one obtains (as the
number of basis functions n, „+no ).—We have in fact re-
ported on such nonconvergence in calculations based on a
closed shell $0 (which automatically renders the optical
potential that is formally obtained from quasiprojection
operators idempotent). This shows that this problem with
P,p is not related to the simple idempotency of P and Q;
we are now addressing ourselves to its solution.

For the present, therefore, the chief use that we en-
vision for these operators is in resonance calculations (po-
sition, width, etc.). In this context the chief benefit that

I

find

&()'o( ")qo( ")&=1 (A2)

p (i)=p(i) .

From (2.12), (2.15), and (5.6c),

( —1) '

p(i)p(j) =

(A3)

From the definition of K and q, Eqs. (2.12), (2.15), and
(5.6c)„one can show

We shall sketch here the derivation of (5.7) from (5.5).
By direct substitution:

, q„(i,i),q (j,j)
p(i)+ g g p(j )+g

n n j m m

(Al)

The products which arise in this multiplication and their
reduction are now indicated. Using

( 1 )P) PJ

q„(i,l )p(j)= 'il/lo(r'")U„(r;) &(K(i
~
j)U„(r;)&(7/jo(r(J))

( —N)

1
)P;+PJ+(

=g (r") v„(r;)&(v„(r )()j (r')

Similarly

1 q„(i j)
( 5J)+q„(i,—)5i .

n

(A4)

p(i)q (j j)=—— '
(1 5;, )+q (i—,i)5;, .m (A5)

Finally, using the same equations,

q„(i,i)q (jj)=f0(r")v„(r;)&($0(r")v„(r;)5J5„

+((—();,)(),(r ') (r;)r) r„(r;),(r, ))((,,(r())), („)(,.) ( 1) +iK(i
~ j) '(.

)

q„(i,j)(1—5;, )5„
=q„(s,()5,J5„

A,nN
(A6)
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Substituting these products into (Al) gives
r

n

q. (i,j} 2 q. (i j)(1—&;j} 2q. (i j»ij q. (ii +ij 1 q.(ii}(1 &—, )

X k„(A,„—1) A,„—1 (A,„—1) & A,„(A,„—1)

r

=g p(i) +g q„(i,i +

, q„(i,i),q„(i,i)A„,
j(,„—1 „(g„—1)z ~ ~, q„(i&j)A„,

)

=P+g gq„(i, i) ——g gq„(ij)
Il (~tl 1} I j j

J+1

(A7)

Q.E.D.

APPENDIX 8

In this appendix we generalize the form of the "projec-
tion" operators needed to deal with resonances in the in-
elastic domain. The generalized PV is defined to be

N+1 n

P4= g ( —1) ' g u„(r;)g„(r"), and

w„(r;)—= ( —1) '(f„( ")iP&„;

w„(r;)=u„(r;)—g (K„&(r; I rj)u&(rj))„,
p=O

where

(85)

(86)

X(s„—,'Ms~, „ISMs}

XP„(x")Y~ ~ (Q;)Xi&2 (i) . (82)

The summation in (82) is over scattered particle indices
( m „,m, „) and target magnetic quantum numbers
(M,M,„) that are consistent with the total quantum
numbers L,M of the total partial wave. (The total scatter-
ing wave function is a sum over partial waves, but as usu-
al partial waves are uncoupled and ' each is handled
separately; the labels L and M on ~p are suppressed. }

In general there may be several l„(with associated spin
indices —,', m, „) that can couple to form a given L, S for a
given v. They will give rise to a multiplicity of eigen-
phase shifts a„(including Coulomb parts if the target is
charged), which are manifested in the asymptotic form of
the radial eigenfunctions:

sin( k„r; —m.l„/ 2a+„)
lim u„(r;)=

&f ~OO k„r;
(83)

The degeneracy due to such eigenchannels will not be ex-
plicitly exhibited here.

The P operator is, in analogy to (2.9},deduced from the
conditions

&y,(r"')ge & „,=0,
where by definition Q =1 P. Using (81) in (8—4) leads to
the equations

where g„are the generalized channel functions and the
number of open channels is assumed to be n+1 (i.e.,
v=0, 1,2, . . . , n):

g„(r")=g (L„l„M„m„I
LM)

K„„(r; I r, )=—( —1) ' ' N(p„(r")f„(rj)&,(;,) (87)

(The range of p is the same as that of v. ) The main as-
pect of this generalization is the fact that the kernels
K,&(r; I rj ) form a matrix in v,p.

To proceed further, let us define the vectors u and w:

Qp Wp

(88)

'Qn Wn

Equation (85) may be reexpressed

w=u —(Ku&, , ,J
(85')

where K is the matrix K&„given by (87). We now define
an auxiliary spectrum of vector v to satisfy a matrix
eigenvalue problem

v =A, (K'v &. (89)

IWe call the number of eigensolutions of (89) n~ ]In.
complete analogy to (2.14) and (2.15), one can show

( v& vp& =5&p . (810)

In (89) and (810) dot products mean scalar products over
channel indices:

&v vp&=—g (u„' 'u„'p'&,
p=O

(Kv &= g (K„u„' '&,
v=G

where for convenience we have written (v~)„=—u' ', etc. In
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analogy to (2.15) we can expand X in the vector space de-
fined by the vp):

"& vp(r, )&&vp(r, )
(811)

P 1 AP

Thus (85') reduces down to (in ket form)
p)& pu)

w =U
p Ap

From (812), premultiplying by & v and using the orthnor-
mality, (810), one can derive (A, &1)

&v u)= &v .w),
I

where again the A,~= I wiII play no role. Omitting it, we
can reexpress (812) in the form

, v )&v .w)
u) =w)+g'

A,~ —1
(814)

a

Equation (814) is the desired generalization of (2.16), and
from it we can obtain the explicit form of the p operator.
Let us premultiply (Bl) by any specific & g of the channel
wave functions $0..

We rewrite the rhs of the above so that the ket 4') is the
right-most factor:

i=i i,

%+1
y.("J')&. & y.("J')

, v r, , r'J' v rj or' &'

A —1
(818a)

or in the explicit form of sums over eigenchannels

(817)

At this point, we can compare the lhs and rhs of (817)
to allow the desired generalization of the P operator to be
read off:

From (81) and (814) we have

&/+4) (;)

%+1
=&/„( "')

~ y ( —1)" (,)yo&

(815) %+1 n

g y.)&y.
v=O

r

y (a)y ) y&„(a)y

(818b)

, V~' O V~IV
+

AI+ 1
a

(816)
[On the rhs of (816) it is apparent that we have also used
ket notation. j Inserting now the definition of w from
(86), which in vector form is

w(rJ)=( —1) '&@o'P),v» (86')
into (816) gives

&q.(r"')pe& „,
%+1

=&/„~ y ( —1)' yo& ( —I)"'&go+&

+/v '$0)( —1) ' &v .yo'e)

We repeat that the explicit form of the Q operator can be
obtained from Q =p —l. It should be noted from (818)
that P and Q contain terms of the form O'„'P„)& U~ 'P& in
which p&v; thus these operators are not trivial extensions
of the elastic projection operators. To our knowledge, the
above inelastic generalizations of P and Q operator have
not previously been given. We are grateful to Dr. Alex-
ander Berk for assistance with this analysis.

As a final item it is noted that the number of exceptions
to the basic conditions (84) that can occur when quasipro-
jectors Q are used in place of Q is by definition the num-

ber of spurious eigenvalues which the Q allows. Since
by definition the operator Q allows no exceptions, it fol
lows that the spectrum of QHQ will haue no spurious eigen
values. This is justification of the assertion made in the
last paragraph of Sec. V.
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