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In this paper the corrections of relative order (Za)? to all multipole polarizabilities of a hydrogen-
ic ion of nuclear charge Z are computed, with use of third-order perturbation theory with nonrela-
tivistic wave functions. To accomplish this, the spin-independent part of the Pauli Hamiltonian of
order o? is treated as a perturbation along with the usual Coulomb interaction expanded in a mul-
tipole series. The leading (dipole) correction is in agreement with the previous results of Zon et al.
In addition, the previously discussed second-order energy shift has now been calculated analytically.
Both of these corrections are applied to the high-lying Rydberg states of helium, yielding small but
important corrections to the fine-structure splittings.

I. INTRODUCTION

The optical-potential method for calculating perturba-
tions of highly excited state of two-electron atoms was
first applied in the adiabatic approximation by Bethe,!
who assumed that the outer electron (NL) could be con-
sidered at rest while the distortion of the inner (1s) elec-
tron was being evaluated. This picture has been consider-
ably developed in recent years,>~* especially in Ref. 4
which uses the Feshbach operator technique’ to systema-
tize the perturbation bookkeeping. With care even quite
small effects like the nuclear-recoil (mass-polarization)
corrections of order m, /M. can be derived analytically,
at least for those large values of N and L for which only
the long-range parts of the potential are significant.

At the same time there has been a large increase in the
precision of fine-structure measurements in excited states
of helium.%” In Ref. 7, for example, the fine-structure
splittings in the N =10 manifold have been measured to
within about 10 kHz. Precision of this magnitude is po-
tentially capable of observing retardation corrections®® to
the fine structure, but only if all the “ordinary” effects of
comparable size have been properly accounted for. For
H-T transitions the asymptotic expansion of the potential*
accounts for an estimated error of about 10 kHz, and
more sophisticated methods are needed, but for I-J transi-
tions and higher the error is not more than about 1 kHz.
It is thus necessary that all corrections of this order of
magnitude be reliably calculated, in order to reveal the in-
teresting retardation effects. In this paper two types of

corrections will be discussed: those due to the relativistic

modification of the polarizability of the 1s He™ core and
those coming from the second-order perturbation of the
Rydberg electron. The results will be presented in tabular
form and compared with the best experimental data.’

II. RELATIVISTIC POLARIZABILITY CORRECTIONS

The effect of relativity on the value of the dipole polari-
zability of systems in the hydrogen isoelectronic series
was first investigated by Zon et al.!° They used a certain
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representation of the relativistic Green’s function and
were able to write the corrections to the ordinary polariza-
bility as a power series in (Za)?, retaining the first two
terms. In this section I will outline a new derivation, cap-
able of obtaining these corrections for all multipoles
correct to order (Za)?, which is quite adequate for the
present application. The derivation uses the optical-
potential formalism of Ref. 4, applied to the case of the
helium isoelectronic series, but includes in the perturbing
potential the relativistic Hamiltonian of order a?:

V=V8+VMP+Vrel ’ (1

where V, is the usual multipole expansion of the electro-
static interaction of the two electrons (r <x), the second
term is the nuclear-recoil [mass-polarization (MP)] term,
and V is the spin-independent part of the Breit Hamil-
tonian in the Pauli approximation.!! (I have omitted cer-
tain terms involving correlation between the two electrons
from the relativistic part, and these should be investigated
later; they are not involved in the polarizability correc-
tion.) The recoil term Vyp=—KV,V, was examined
previously;*!? its leading effect is to increase the effective
dipole polarizability by the factor (1+ K), but it also can
produce other corrections. The relativistic term involving
x comes from the variation of mass with velocity of the
outer electron and gives a sizable correction in first order;
it has also been discussed previously.!* Thus, for the
present calculation it is, sufficient to retain only the fol-
lowing terms!! in the perturbation in reduced Rydberg
units
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In order to isolate just those terms of second order in
V, and first order in ¥V, which contribute to the polari-
zability correction, all third-order terms in the expansion
of the optical potential must be examined. Only the adia- (s | V1) S (Is|V|n
batic type of term is considered, since the polarizability is n
an effect of the static field of the outer electron acting on
the inner one. (In the notation of Ref. 4 this means j =1.)
The third-order optical potential is

> (Is|V|n){n|V I m)(m|V]ls)

ﬁrel(X)= d d
n%m

, Yn|V|ls)
d;

, (2

where the summations run over all states of the core ex-
cept 1s. Inserting the two different terms in V explicitly,
;  and noting that (1s | ¥, | 1s ) =0, we can write

ﬁrel(x)=2’(<lslVe|n)(nIVre1|m><mlVel1s>+2<1S|Vre1|n><nIVelm><leells>)d;
_2’(1s]V,e,lls)(lslVeln)(nIVells)‘—;;. 3)

r

The method of Dalgarno and Lewis!* can be used to . . .
It is easy to show that the solution of Eq. (4) is

carry out the sums in Eq. (3). In the first step of this pro-
cedure the following equation must be solved for the func-
tion G: v 1 o
V,|1s)=[Hy(r),G]| 1s) , 4) Gx,r)=—— 3
Zx (=
where
Hon=-v:-2£ .

Then, since the energy denominator d, =E ;—E, the ma-

trix elements of the potential appearing in' Eq. (3) can be Eq. (6) slightly. ' .
written as The first and last terms in Eq. (6) can now be explicitly

——d Glis), (5)  evaluated; one should notice that the §-function part of
(n|V.|1s) n{n |G| V. does not contribute to the first term because G van-
ishes at » =0 [Eq. (7)]. As emphasized in Ref. 11, it is

1 Zr
S

P(%7), (7)

r
x

and I have used the fact that (1s |G | 1s ) =0 to simplify

and Eq. (3) can be partially summed:

Ura(x)=(15 | GV,4G | 1s) not correct to allow V* to operate to the right in these ma-
2 trix elements, but it should always be replaced by V?
- d_< Is | Vig |n)n | V.G |1s) operating to the left and right. With this in mind one
nn finds that (ls |V, |1s)=—a?Z*/4, and the sum of
—(1s | Vg | 1s)(1s | G?| 1s) . (6)  these two terms [the first and the third of Eq. (6)] is

J

HZa ) [(21 —1)1)(414 2003+ 1717 —20] —14)
(2Zx)**+2U(1 +1)(21 +1) '

(15 |GV,gG | 1s) —(1s | Vi | 1s){1s | G?| 15 ) =

(8)

I
The remaining term, which still contains a sum over n, is where u =Zr, and F=Yy,/Z 2+4  Equation (10) can be
the most difficult to evaluate. It would be simple if one  solved by the use of an integrating factor, and the solution
could use the Dalgarno and Lewis technique based on the is
operator V,,, and this is indeed possible for the §-

242
function part.!* Because of the special meaning of the V* yi(u)=—2 M
operator mentioned previously, it does not seem to be pos- 41 +1)?
sible to treat it in the usual way. Instead the rather com-
plicated expression V,G, which is a product of two sums, T+2)2I+ D21 +1)01] 2kt (2y)k
must be used. + 22+1; k(k+1) -k,
This is somewhat simplified by the fact that the sum k=2 )
over n involves only s states, since ¥V, is rotationally in- ) (11)
variant. Hence only the Py part of the product PPy con-  here
tributes to the angular integral, and that product can be
replaced by the expression 8;-/(2/ +1). Then one must
solve the equation K= u +2)[2(Iils+ L
[Ho,F]|15) =[V,G —(1s | V,G | 1s)]| 1s) 9) 2
for the function F which takes the following form:
1 - £ w |424814+5 | 200 +1) $h
yiu)+2 | ——1 y[(u)+L I+1 I K= k
u 1
w2t @I+ DNRI+1)I+2) —0, (10 (The constant K; is added to make the integral

11 122 +1 (1s | F | 15)=0.) Then the second term in Eq. (6) is



31 RYDBERG STATES OF HELIUM: RELATIVISTIC AND ... 1255

(ZaY[(2D1] | (20143 | U +2)21+1) #E! 1
2(1s | V,qF | 1s) = =
] rel l ZZI(ZX)21+2 21+2 + = & (12)
I
R]q::alling that the ordinary nonrelativistic polarizability =~ where
is
1 ;
_ [ —oner+1au+2) (13) Wi (x)= FNL_Fl , (15)

221—122l+2 !

one can write the corrected relativistic polarization poten-
tial as

a;

Frel
U"=— [
L2+2

1—(Za)g],

where (14)

. =212+1_1_ (41* 4141341012 — 101 —-7)
! I+ 1) +2)(21 +1)?

K=2 k
For the dipole case, /=1, this correction is g, = in
agreement with the previous results,'® and for the quadru-
pole case g, = %f)%, a new result and one that may be sig-
nificant. The higher terms are interesting at present only
for mathematical completeness.

III. SECOND-ORDER CORRECTIONS

In order to keep terms in the optical potential up to or-
der x ~8, it is necessary for consistency also to include the
second-order effect of the x —* potential. The problem
was discussed briefly in Ref. 4, to which the reader is re-
ferred. The important point is that, when one is interest-
ed in corrections a few kHz as I am here, it is essential to
include these second-order corrections. I will discuss the
method used to calculate them in some detail.

The second-order energy shift of the hydrogenic level
with quantum numbers (N,L) due to the x —* dipole po-
larization potential is

N,L 3, gt (0)
Ay =a1fd x Wi WhLWaL »

AIZV,N—I

4(a;)*(128N*—560N>+848N2—518N -+ 105)

the superscripts (0) and (1) denote unperturbed and per-

turbed wave function of the Rydberg electron, and Fy; is

the unperturbed expectation value!® of 1/x*. In the usual

way, the first-order perturbed function satisfies the inho-

mogeneous differential equation

1
2

V2+;2;_ Wi (x)=a; Wy (x)¥RL(x) . (16)

Letting
SL(x) =y (X)WRL (X)
and
WL (X) =1, (X) Yy (R) /%,

one obtains the following differential equation for f(x):

d f (1nu2)—f =a;W(x). (17
dx? d dx
This can be easily integrated once
af 2
== 2(x) —— [dx uXOW (), (18)

and with careful handling of the zeroes in u?, f itself can
be found. Finally, the expression for the second-order
shift is

AVL_q, fO”dx Fv GOuZL () Wix) . (19)

I previously* evaluated f and A for the special case
(N =L +1) for which u has no nodes except at x =0 and
obtained the result

NE[(2N —1)(N —1)(2N —3)]*(2N —5)

(20)

With the aid of the symbolic manipulation program MACSYMA,!” I have now also solved for the one-node case

(N =L +42) and obtained the result

TABLE 1. Second-order energy shifts (—A,) for the “He in MHz. All entries were obtained analytically as discussed in the text.

N\L 3 4 5 7 8 9

4 39.002 24

5 26.26520 0.956 18

6 17.14333 0.72123 0.052 88

7 11.51055 0.51715 0.042 84 4.868 1073

8 8.01065 0.373 14 0.03282 4.137x 1073 6.38210~*

9 5.76478 0.27452 0.024 99 3.326x10~? 5.609x 10* 1.086x 10~*
10 427195 0.206 40 0.01921 2.640% 103 4.676x10* 9.781x 1073 2.259 1073
11 3.246 60 0.158 44 0.01497 2.102x 1073 3.836x10~* 8.386 103 2.072% 103
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TABLE IIL. Inclusion of the theoretical values of the retardation correction (Ref. 9) and comparison
of the final result with experiment when available. Items in parentheses have been estimated by ex-
trapolation, as described in the text. :
NL-NL' Retardation Total theory Experiment-theory
6G-6H (—0.177) (2076.42+1.19)
7G-TH (—0.116) (1358.93+1.04) (0.23+1.04)
8G-8H (—0.079) (932.69+0.84) (—1.35+0.95)
9G-9H —0.0563 665.80+0.66
10G-10H —0.0416 490.97+0.52 0.02+0.52
11G-11H —0.0315 371.99+0.41
TH-7I (—0.034) (423.472+0.008)
8H-81 (—0.023) (294.281+0.011)
9H-9I —0.0168 211.780+0.011
10H-101 —0.0125 157.045+0.010 0.023+0.016
11H-111 —0.0095 119.468+0.008
81-8K (—0.008) (112.138+0.001)
9I-9K —0.0059 81.4767+0.0006
10I-10K —0.0045 60.8138+0.0004 0.004+0.010
111I-11K —0.0034 46.4781+0.0002
9K-9L —0.0024 36.1463+0.0002
10K-10L —0.0018 27.1741+0.0002
11K-11L —0.0014 20.8740+0.0001
10L-10M —0.00079 13.61902 +0.00005
11L-11M —0.0006 10.5160+0.00004
ANV 2 4(a)((128N7 —400N°®—2320N° 4+ 12 666N *—19 133N 3+ 4846N>+10228N — 5880) o
2 =— .

I have not been able to derive an expression for general L
and N, but can obtain an exact, analytical result for any
particular case. In this way I have constructed Tabie I,
which gives A, for a number of cases, including those of
present experimental interest. [Note that the second-order
shift scales with increasing nuclear charge as

(Z —1)52/2)8A%¢]

IV. COMPARISON WITH EXPERIMENT
AND CONCLUSIONS

All the corrections discussed previously along with the
terms discussed in Ref. 4 are shown in Table II for a large
set of level splittings (AL =1,AN =0) that are of present
or potential experimental interest. Whenever possible,
these are compared with experimental values, and the
agreement is seen to be very good.

In Table III the retardation correction recently derived
by Au, Feinberg, and Sucher’ is tabulated, added to the
previous theoretical values, and again compared to the ex-
perimental results. (In those cases where no numerical
values have been given in Ref. 9 a simple extrapolation

N¥(N —2)(N —1)(2N —3)(2N —5)P(2N —7)

has been employed. It is based on the fact that the retar-
dation correction for each L is closely proportional to the
relativistic correction to the dipole polarizability. In turn
this is due to the fact’® that the retardation term in the ef-
fective potential at distances less than about 137a is pro-
portional to x —*) Note that it is not possible, at the
present time to verify the reality of the retardation correc-
tion, due to a combination of theoretical and experimental
errors. For the 10G-10H interval, the experimental error
is small enough in principle for the effect to be observable,
but the theory is not good enough. On the other hand, for
the 107-10K interval the theoretical error is ten times
smaller than the retardation correction, but here the ex-
perimental error is too large. There is a hint, in the
10H-10I case, of a disagreement; it is probably premature
to worry too much about such a small discrepancy.

Future calculations should concentrate on improving
the accuracy of the main terms in the energy shift, where
the error comes from the poor convergence of the expan-
sion in inverse powers of the distance, especially for the
low L cases where the retardation correction is large. It
will probably be necessary to abandon the approximation
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of retaining only the long-range parts of the electrostatic
perturbation, although some of the simplicity of the
method will unavoidably be lost. The higher terms in the
relativistic polarizability and the recoil corrections should
also be considered, but they are at present always too
small to be significant.

Note added in proof. The authors of Ref. 9 have now
calculated the retardation correction for the cases (in
parentheses in Table III) previously omitted (private com-
munication from G. Feinberg). The changes are 0.003

MHz for 6G-6H, 0.002 MHz for 7G-7H, 0.001 MHz for
8G-8H and 7H-7I, and —0.001 MHz for 8 H-8I; there is
no change for 87-8K.
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