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Rydberg states of helium: Relativistic and second-order corrections
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(Received 6 September 1984)

In this paper the corrections of relative order (Zu)2 to all multipole polarizabilities of a hydrogen-
ic ion of nuclear charge Z are computed, with use of third-order perturbation theory with nonrela-
tivistic wave functions. To accomplish this, the spin-independent part of the Pauli Hamiltonian of
order a is treated as a perturbation along with the usual Coulomb interaction expanded in a mul-

tipole series. The leading (dipole) correction is in agreement with the previous results of Zon et al.
In addition, the previously discussed second-order energy shift has now been calculated analytically.
Both of these corrections are applied to the high-lying Rydberg states of helium, yielding small but
important corrections to the fine-structure splittings.

I. INTRODUCTION

The optical-potential method for calculating perturba-
tions of highly excited state of two-electron atoms was
first applied in the adiabatic approximation by Bethe, '

who assumed that the outer electron (NL) could be con-
sidered at rest while the distortion of the inner (ls) elec-
tron was being evaluated. This picture has been consider-
ably developed in recent years, especially in Ref. 4
which uses the Feshbach operator technique to systema-
tize the perturbation bookkeeping. %ith care even quite
small effects like the nuclear-recoil (mass-polarization)
corrections of order m, /M„„, can be derived analytically,
at least for those large values of X and L for which only
the long-range parts of the potential are significant.

At the same time there has been a large increase in the
precision of fine-structure measurements in excited states
of helium. ' In Ref. 7, for example, the fine-structure
splittings in the N =10 manifold have been measured to
within about 10 kHz. Precision of this magnitude is po-
tentially capable of observing retardation corrections ' to
the fine structure, but only if all the "ordinary" effects of
comparable size have been properly accounted for. For
H-I transitions the asymptotic expansion of the potential
accounts for an estimated error of about 10 kHz, and
more sophisticated methods are needed, but for I-J transi-
tions and higher the error is not more than about 1 kHz.
It is thus necessary that all corrections of this order of
magnitude be reliably calculated, in order to reveal the in-
teresting retardation effects. In this paper two types of
corrections will be discussed: those due to the relativistic
modification of the polarizability of the ls He+ core and
those coming from the second-order perturbation of the
Rydberg electron. The results will be presented in tabular
form and compared with the best experimental data.

II. RELATIVISTIC POLARIZABILITY CORRECTIONS

representation of the relativistic Green's function and
were able to write the corrections to the ordinary polariza-
bility as a power series in (Za), retaining the first two
terms. . In this section I will outline a new derivation, cap-
able of obtaining these corrections for all multipoles
correct to order (Za), which is quite adequate for the
present application. The derivation uses the optical-
potential formalism of Ref. 4, applied to the case of the
helium isoelectronic series, but includes in the perturbing
potential the relativistic Hamiltonian of order a:

~= ~.+ ~MP+ ~.c]

where V, is the usual multipole expansion of the electro-
static interaction of the two electrons (r &x), the second
term is the nuclear-recoil [mass-polarization (MP)] term,
and V„~ is the spin-independent part of the Breit Hamil-
tonian in the Pauli approximation. " (I have omitted cer-
tain terms involving correlation between the two electrons
from the relativistic part, and these should be investigated
later; they are not involved in the polarizability correc-
tion. ) The recoil term VMP ———KV, V„was examined
previously; ' its leading effect is to increase the effective
dipole polarizability by the factor (1+%),but it also can
produce other corrections. The relativistic term involving
x comes from the variation of mass with velocity of the
outer electron and gives a sizable correction in first order;
it has also been discussed previously. ' Thus, for the
present calculation it is, sufficient to retain only the fol-
lowing terms" in the perturbation in reduced Rydberg
units

[A'=M„„,A„/(m, +M„„,)

=3.28939108&&10 MHz (for He)]:

V=V, + V„,(r)

The effect of relativity on the value of the dipole polari-
zability of systems in the hydrogen isoelectronic series
was first investigated by Zon et al. ' They used a certain
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In order to isolate just those terms of second order in
V, and first order in V„i which contribute to the polari-
zability correction, all third-order terms in the expansion
of the optical potential must be examined. Qnly the adia-
batic
an e
the i
The

U„i(x)=
n, m n m

, ( ls
I V

I
n ) (n
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The method of Dalgarno and Lewis' can be used to
carry out the sums in Eq. (3). In the first step of this pro-
cedure the following equation must be solved for the func-
tion G:

V,
I
ls ) = [H (r),G]

I
ls ), (4)

where
2 2Z

Hp(r) = —V'„—
r

Then, since the energy denominator d„=E~,—E„ the ma-
trix elements of the potential appearing in Eq. (3) can be
written as

&n
I

V, I
is&= d„(—n IG I

is&, (&)

and Eq. (3) can be partially summed:

U„i(x)=(ls
I
GV„,G

I
ls)

(3)

I

It is easy to show that the solution of Eq. (4) is

—+ Pi(x r),Zr
l+1 (7)

and I have used the fact that ( ls
I
G

I
ls ) =0 to simplify

Eq. (6) slightly.
The first and last terms in Eq. (6) can now be explicitly

evaluated; one should notice that the 5-function part of
V„i does not contribute to the first term because G van-

ishes at r =0 [Eq. (7)]. As emphasized in Ref. 11, it is
not correct to allow V to operate to the right in these ma-
trix elements, but it should always be replaced by V
operating to the left and right. With this in mind one
finds that (ls

I V„i I
ls)= —a Z /4, and the sum of

these two terms [the first and the third of Eq. (6)] is

(isIGV„,G
I
is) —(is

I V„, I
is)(isIG'I is)=

(2Zx) '+ 1(1+1)(21+1)

The remaining term, which still contains a sum over n, is
the most difficult to evaluate. It would be simple if one
could use the Dalgarno and Lewis technique based on the
operator V„~, and this is indeed possible for the 5-
function part. ' Because of the special ineaning of the V
operator mentioned previously, it does not seem to be pos-
sible to treat it in the usual way. Instead the rather corn-
plicated expression V, G, which is a product of two sums,
must be used.

This is somewhat simplified by the fact that the sum
over n involves only s states, since V„~ is rotationally in-
variant. Hence only the Pp part of the product PiPI con-
tributes to the angular integral, and that product can be
replaced by the expression 50/(21+1). Then one must
solve the equation

[Hp P]
I
»&=[V.G —&» I v.G

I »&11»&
for the function Fwhich takes the following form:

2l
yi"(u)+2 ——1 yt(u)+

Q l

I

where u =Zr, and F=gyi/Z + . Equation (10) can be
solved by the use of an integrating factor, and the solution
1s

21+2
yi(u) =

4(l + 1)

(1+2)(21+1)[(21+1)!] +' (2u)k
2"+ '1 k (k 1)'

where

(1+2)[(21+ 1)!]
22l+3

41 +81+5 2(21+1) "+'
1

'+'

[(21+ 1)!](21+ 1)(l +2)
221 +1 (10) (The constant ECi is added to make the integral(»

I
P

I
» ) =0.) Then the second term in Eq. (6) is
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2( ls
i V„,F i

1 ) =
221(Zx )

21 +2

21+3 (/+2)(2/+1) "+' 1

21+2 1 k~2 k

[(2/ —1)!](2/+1)(l +2)
I 221 —jz 2l+2 (13)

Recalling that the ordinary nonrelativistic polarizability
is'4

where

1
WNL (x)= FNL—x4

(15)

one can write the corrected relativistic polarization poten-
tial as

„+,[1—(Za)'gi]

the superscripts (0) and (1) denote unperturbed and per-
turbed wave function of the Rydberg electron, and IiNL is
the unperturbed expectation value' of I/x . In the usual

way, the first-order perturbed function satisfies the inho-
mogeneous differential equation

where (14) +—— +NL ( x ) ——a 1 WNL (x )+NL ( x ) .
x

(16)

+' 1 (41 +141 +10/ —101—?)+
1(l +1)(1+2)(21 +1)

For the dipole case, 1=1, this correction is gi ——» in
agreement with the previous results, ' and for the quadru-
pole case g2 ——~, a new' result and one that may be sig-

959

nificant. The higher terms are interesting at present only
for mathematical completeness.

III. SECOND-ORDER CORRECTIONS

In order to keep terms in the optical potential up to or-
der x, it is necessary for consistency also to include the
second-order effect of the x potential. The problem
was discussed briefly in Ref. 4, to which the reader is re-
ferred. The important point is that, when one is interest-
ed in corrections a few kHz as I am here, it is essential to
include these second-order corrections. I will discuss the
method used to calculate them in some detail.

The second-order energy shift of the hydrogenic level
with quantum numbers (N, L) due to the x dipole po-
larization potential is

=a] d x 4~1 8'~1%'~I,NL 3 (I) (0)

I.etting

O'N'L'(x) =fNL(x)+NL(x)

and

'O'NL(x)=uNL(x) YNL(x)/x,

one obtains the following differential equation for f(x):

df d df2+ (lnu ) =aiW'(x) .
dx dx

(1?)

This can be easily integrated once

b2' =a,f dx fNL(x)uNL(x) W(x) . (19)

I previously evaluated f and b, for the special case
(N =L + 1) for which u has no nodes except at x =0 and
obtained the result

J dx u (x)W(x), (18)
u (x)

and with careful handling of the zeroes in u, f itself can
be found. Finally, the expression for the second-order
shift is

(20)NN i 4(ai) (128N —560N +848N —518N+105)
N [(2N —1)(N —1)(2N —3)] (2N —5)

With the aid of the symbohc manipulation program MACSYMA, ' I have now also solved for the one-node case
(N =L +2) and obtained the result

TABLE I. Second-order energy shifts ( —62) for the He in MHz. All entries were obtained analytically as discossed in the text.

4
5
6
7
8
9

10
11

39.002 24
26.265 20
17.143 33
11.51055
8.01065
5.76478
4.271 95
3.246 60

0.956 18
0.721 23
0.517 15
0.373 14
0.274 52
0.20640
0.158 44

0.052 88
0.042 84
0.032 82
0.024 99
0.01921
0.01497

4.868 X 10
4.137X 10-'
3.326 X 10-'
2.640 X 10-'
2.102 X 10-'

6.382 X 10
5.609 X 10-4
4.676X10 "
3.836 X 10-'

1.0&6X 10-4
9.781 X 10-'
8.386X 10-'

2.259 X 10-'
2.072 X 10
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TABLE III. Inclusion of the theoretical values of the retardation correction {Ref.9) and comparison

of the final result with experiment when available. Items in parentheses have been estimated by ex-

trapolation, as described in the text.

NL-NL'

66-6H
76-7H
8 6-8H
96-9H

106-10H
116-11H

Retardation

(—0.177)
(—0.116)
(—0.079)
—0.0563
—0.0416
—0.0315

Total theory

(2076.42+ 1.19)
(1358.93X 1.04)

(932.69+0.84)
665.80+0.66
490.97+0.52
371.99+0.41

Experiment-theory

(0.23+1.04)
(—1.35+0.95)

0.02+0.52

70-7I
8H-8I
9H-9I

10H-10I
11H-11I

(—0.034)
(—0.023)
—0.0168
—0.0125
—0.0095

(423.472+0.008)
{294.281+0.011)
211.780+0.011
157.045 +0.010
119.468 +0.008

0.023+0.016

8I-8K
9I-9K

10I-10K
11I-11K

{—0.008)
—0.0059
—0.0045
—0.0034

(112.138+0.001)
81.4767+0.0006
60.8138+0.0004
46.4781+0.0002

0.004+0.010

9K-9L
10K-10L
11K-11L

—0.0024
—0.0018
—0.0014

36.1463+0.0002
27.1741+0.0002
20.8740+0.0001

10L-10M
11L-11M

—0.00079
—0.0006

13.61902+0.00005
10.5160%0.00004

4(ai) (128N —400N —2320N +12666N —19 133N +4846N +10228N —5880)

N [(N —2)(N —1)(2N —3)(2N —5)] (2N —7)
(21)

I have not been able to derive an expression for general L
and N, but can obtain an exact, analytical result for any
particular case. In this way I have constructed Table I,
which gives hz for a number of cases, including those of
present experimental interest. [Note that the second-order
shift scales with increasing nuclear charge as
(Z —1) (2/Z) hp'. ]

IV. COMPARISON VfITH EXPERIMENT
AND CONCLUSIONS

All the corrections discussed previously along with the
terms discussed in Ref. 4 are shown in Table II for a large
set of level splittings (hL =1,6N =0) that are of present
or potential experimental interest. Whenever possible,
these are compared with experimental values, and the
agreement is seen to be very good.

In Table III the retardation correction recently derived

by Au, Feinberg, and Sucher is tabulated, added to the
previous theoretical values, and again compared to the ex-
perirnental results. (In those cases where no numerical
values have been given in Ref. 9 a simple extrapolation

has been employed. It is based on the fact that the retar-
dation correction for each L is closely proportional to the
relativistic correction to the dipole polarizability. In turn
this is due to the fact that the retardation term in the ef-
fective potential at distances less than about 137ao is pro-
portional to x .) Note that it is not possible, at the
present time to verify the reality of the retardation correc-
tion, due to a combination of theoretical and experimental
errors. For the 106-10H interval, the experimental error
is small enough in principle for the effect to be observable,
but the theory is not good enough. On the other hand, for
the 10I-10K interval the theoretical error is ten times
smaller than the retardation correction, but here the ex-
perirnental error is too large. There is a hint, in the-
10H-10I case, of a disagreement; it is probably premature
to worry too much about such a small discrepancy.

Future calculations should concentrate on improving
the accuracy of the main terms in the energy shift, where
the error comes from the poor convergence of the expan-
sion in inverse powers of the distance, especially for the
low L cases where the retardation correction is large. It
will probably be necessary to abandon the approximation
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of retaining only the long-range parts of the electrostatic
perturbation, although some of the simplicity of the
method will unavoidably be lost. The higher terms in the
relativistic polarizability and the recoil corrections should
also be considered, but they are at present always too
small to be significant.

Note added in proof. The authors of Ref. 9 have now
calculated the retardation correction for the cases (in
parentheses in Table III) previously omitted (private com-
munication from G. Feinberg). The changes are 0.003

MHz for 6G-6H, 0.002 MHz for 7G-7H, 0.001 MHz for
86 8H-and 7H 7I,-and —0.001 MHz for 8H 8I-; there is
no change for 8I-SK.
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