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Inner-vertex contribution to the decay rate of orthopositronium
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In this paper the order-a contribution of the inner-vertex graph to the decay rate of orthoposi-
tronium is obtained in analytic form.

The order-a corrections to the decay rate of paraposi-
tronium have been known analytically since the work of
Harris and Brown in 1957.' Analytic results for ortho-
positronium are much harder to calculate, and even
though the orthopositronium decay rate is experimentally
more accessible than the parapositronium rate, analytic
results for orthopositronium have only recently been ob-
tained. The self-energy contribution was evaluated in aria-
lytic form by Stroscio, and later the outer-vertex result
was obtained by the present author. In this paper I
describe a calculation of the inner-vertex contribution.

The orthopositronium decay rate has the form '

I= f dx&f, dx3 —,(iMi ),
where (
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M
~

) is the invariant matrix element squared,
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Order-a corrections come from cross terms in the square
of M. The O(a) correction due to the inner-vertex graph
1s

summed over final polarizations, and averaged over the
three orthopositronium spin states. The two-dimensional
phase space is parametrized by the normalized photon en-
ergies x; =co;/m. The invariant matrix element has con-
tributions from each of the graphs of Fig. 1:

~=MLo+Mgv+ .

The lowest-order decay rate, which involves
~
MLo

~

', was
first calculated by Ore and Powell. It is

m
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where e~, e2, e3 are photon polarization vectors and e represents the orthopositronium spin.
Expressions for contributions to M are obtained by evaluating the corresponding Feynman diagrams. The low"t-

order invariant matrix element [Fig. 1(a)] is
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FIG. 1. (a) The lowest-order and (b) inner-vertex orthopositronium decay graphs.
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The sum in (5) is over the 3! permutations of the final photons, and the R's are dimensionless momentum vectors:
R;=N K—; where N=(1,0}and K;=(03;/m, k;/m). The invariant matrix element Miv [Fig. 1(b)] is obtained from (5)
by the replacement ye &21~A2(x (3) x (11)E 121, whereA,

' '

A (x3,xi)= [1 F0(X3,xi) +}'R3}' &R1F1(X3,xi )+&SS F2(x3,xi)+7'K2S F3(x3,xi)+S F4(x3,xi )]
4m.

with S =(E3—Ki ) . The F factors in (6) are

2xi(xi+2x3 —2) 1
F0(X3,X 1 ) =D + ln(2x 1 )+ Li2(1 —2x 1 ) +(1~3)

, (x3 —x i )(1—2x 1 ) (x3 —xi)
(7a)
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where Li2 is the dilogarithm function discussed by Lewin. Useful tables for integrals involving dilogarithms are given

by Barbie'. , M.gnaco, and Remiddi. The vertex function was evaluated in Feynman gauge using dimensional regulari
zation. The divergent constant is

1D = yE + in—(4m ),
2 —67

(8)

where d =2' is the number of dimensions and yE is Euler s constant. There is actually no need to symmetrize in Miv,
because both Mio and the phase space are already symmetric under photon interchanges. Therefore the vertex correc-
tion can be taken to act on photon 2 only.

Expression (4) is evaluated by performing the polarization sums, the spin sum, and the resulting trace fusing REDUGE

(Ref. 10}].One finds that

ma6 u X2Jdx—, f, dx, QF;(X3,xi ) T~,
(x ix2x3)

where x2 ——2 —x, —x3. The traces written in terms of x™=(X3)"(xi) are

T0 ——,'( —x"—4x"—4x"—7x"+ 16x"—x "—7x"+2Sx"—2Ox"—4x"+ 16x"—2Ox"+8),

T 1 (» 32+7x 31»23+ sx 22+ 3x 21 12x 20+ 7x 13+3x 12 32x ii+ 2()x 10 12x02+ 2()x01 8)

4~ 32+ 3~ 31 8~ 30+4~23+6~ 22
4O~ 21+ 3' 20+ 3~ 13 40~ 12+72X 11 34~ 10 8~03+ 30~02 34~01+ )2

T3 ——(x3 —xi)( —2x —3x '+6x —3x' +16x"—14x' +6x —14x '+8),
30 7~21+8~20 7~ 12+2O~ 11 (3~ 10 ~03+8~02 13X01+6 .

The integral for I"iv can be divided into three parts. The piece proportional to D is

(loa)

(lob)

(loc)

(1oe)

I Lo —(-D) .Q

The piece that involves no dilogarithms in the I' 's is

ma' a (12)

where g(2) =n/6 and g(3)=1.2. 02 056 903 2. The piece that does involve dilogarithms is
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[g(2) —g(2)ln2+ —g(3)+—g (2)—a4 ——g(3)ln2+ —', g(2)ln 2 ——,', ln"2]
6m m

where

00

=0.517479061674 .
n 2

(13)

(14)

In all we have

A
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(15)

The number in (15) compares favorably with the numeri-
cal result 0.1605(5) obtained in Ref. 5. This agreement
provides an important check of the result.

The sum of all vertex contributions is

I tv+ I ov=l Lo —
( D+3.131 81—6), (16)

where I ov is given in Ref. 4. This can be compared to
previous numerical results 3.10(15) of Stroscio and Holt, "
3.1284(36) of Stroscio, ' 3.132(3) of Caswell, Lepage, and
Sapirstein, ' and 3.1312(9) of the present author. The
numerical results all agree with (16) within their quoted
errors.

The contributions of the various graphs can be ranked
according to their maximum degree, where the notion of
degree is discussed in Appendix I of Ref. 9. In brief, the

degree of a product is the sum of the degrees of the fac-
tors, and ln"(x), Li„(x), and g(n) all have. degree n Th. e
self-energy result of Ref. 3 has maximum degree three,

'

which comes from the double integration of the logarithm
in the self-energy function. The outer-vertex result of
Ref. 4 and the inner-vertex result here both have max-
imum. degree four, because the vertex function contains a
dilogarithm. One would expect that the double-vertex
graph and the annihilation graph will have maximum de-
gree five, and the binding graph will have maximum de-
degree six. Analytic evaluations of these graphs will be
correspondingly difficult.
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