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It is well known that minimum principles for energy eigenvalues can be used not only for calcula-
tional purposes but also formally as the basis for studies of the nodal structure of the associated
eigenfunctions. This formal feature is shown here to have a natural generalization to the zero-
energy scattering problem, the scattering length playing the role of the energy eigenvalue in the for-
mulation of the minimum principle. The number of nodes in the zero-energy wave function in a
given partial wave for nonrelativistic potential scattering is shown to be equal to the number of
negative-energy bound states of the same angular momentum L. Potentials with Coulomb tails are
excluded from the present analysis, but will be treated elsewhere. (The connection with classical
Sturm-Liouville theory comes perhaps as less of a surprise if one views th'e zero-energy state as be-

ing at the top of the discrete spectrum as well as at the bottom of the continuum. ) The result de-
rived here, when. combined with the nodal definition of the phase shift along with some information
on its threshold behavior, provides us with an alternative derivation of Levinson's theorem relating
the zero-energy phase shift for orbital angular momentum L, 6&(0), to the number of bound states
of the same L. (Very similar results can be derived for potential scattering as described by the Dirac
and Klein-Gordon equations. ) It may well be possible to extend some of the results obtained here to
a number of single-channel multiparticle scattering problems, but this will be discussed elsewhere.

I. INTRODUCTION

The evaluation of a physical quantity may require a
knowledge of some trigonometric function of 5t (k), the
phase shift of the Lth partial wave at an incident energy
E =k fi /2m, but a knowledge of 5I (k) itself is never re-
quired; only 5r (k)mode is ever of physical interest.
Nevertheless, it can be very useful to have an absolute def-
inition of 5&(k). As one example, an application made
some time ago, consider a sequence of numerical estimates
of phase shifts for the low-energy elastic scattering of
electrons and positrons by hydrogen atoms, ' based on suc-
cessively larger sets of basis functions in a close-coupling
expansion; the errors in the numerical results were difficu-
lt to estimate from the calculations themselves. Now it is
simple to prove that phase shifts for potential scattering
satisfy a monotonicity theorem, namely,

5r, 2(k)&51, $(k) if Vt(r) & V2(r) for all r,
where 5~& is associated with V;; the result has meaning if
and only if one gives an absolute meaning to 5I. It is
then not surprising, and can be rigorously shown, that
the estimate of 5t (k) for e+—-atom scattering in a varia-
tional calculation is monotonically nondecreasing as one
adds basis functions to those already present in the expan-
sion of the trial function, for the addition of functions al-

low a more adequate description of the virtual excitations
of the target; the target can then more easily adapt itself
to the incident particle, allowing the effective e -atom or
e+-atom interaction to become more attractive. Howev-
er, in some cases 5t (k)mode, in radians, seemed to have
dropped by a small amount e on the addition of a basis
function, although the numerical results which had been
obtained for successive calculations suggested that 51.(k)
had nearly converged. ' It would have been perfectly pos-
sible mathematically to interpret the results as an increase
of 5t (k) by ~—e, but it seemed very much more likely
that the numerical results were accurate only to order e,
and this was confirmed by further numerical studies. We
note that sequences of calculations have begun to be made
in nuclear reactions —where they are referred to not as
close-coupling calculations but as the resonating group
method —and absolute definitions of the phase shifts
should begin to be useful there too. The fact that the
center of mass in the collision of, say, a nucleon and a
deuteron is not located at the target, as it effectively is in
the scattering of e +—by an atom, represents an additional
degree of complexity in the nuclear case.

One is ultimately interested in scattering by a target
with internal degrees of freedom, and elsewhere we will
derive some results in connection with the relatively sim-
ple but real physical problems of e+-H, e -H, and e+-
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He scattering. We will also elsewhere make some remarks
on models of e +—-atom and neutron —heavy-nucleus
scattering which -we believe greatly strengthen previous
surmises that 5L (0) is a multiple of m, where the multiple
is the sum of the number of composite bound states and
the number of states of the incident particle excluded by
the Pauli princip1e. However, this paper will be primarily
concerned with potential scattering; more specifically, we
will obtain information on the nodal structure of the
zero-energy scattering wave function by a direct approach.
The result can also be obtained by means of a nodal defi-
nition of 51 (k) combined with a well-known result,
l.evinson's theorem [see Eqs. (1.2) and (1.3)]. Our result
can be viewed as a new kind of derivation of Levinson's
theorem; more significantly, it may serve as an opening
wedge in the analysis of the zero-energy scattering wave
function for a target with internal degrees of freedom.
This might serve two quite different purposes. First, it
might lead to a useful absolute definition of 5L(0} for
scattering by such a target, and thereby to a useful abso-
lute definition of 5L (k). Second, a knowledge of the nodal
structure of the zero-energy wave function can serve as a
powerful check on calculations of that wave function or
on calculations which involve that wave function. Con-
sider, for example, a calculation of the L=O scattering
lengths AD which characterize zero-energy scattering of
e+ by a hydrogen atom H or by a helium atom He. If the
calculation is based on a variational principle, one has few
standards by which to judge the result. One's ability to
pass judgment on a calculation is much improved if the
calculation is based not just on a variational principle but
on a variational bound, for one then knows that the result
improves as more basis functions are included, and that of
two calculations based on different forms of the trial
function the one that generates the lower value of A0 is
the superior one. One has an additional criterion if one
can show, as one can for e+-H or e+-He scattering, that
the zero-energy wave function up (Qp is a function of
r&, r2, r~2 for e -H, while u0 is a function of six spatial
coordinates for e+-He) must be nodeless. Thus, having
chosen the form of the trial function u0„and having
determined the variational parameters contained in u0, in
the course of a calculation based on a variational principle
or better a variational bound, a necessary if not sufficient
condition for one to expect the variational estimate of AD
to be reliable would be for u0, to be nodeless.

A. Absolute definition of the phase shift

For short-range potential scattering there are four
equivalent definitions of 51 (k).

(i) With V(r) and k fixed, we write the scattering wave
function as sin[8z (r)], where 81 (0)=0, 81 (r) is continu-
ous in r, and OL, (r)-kr —,' L~+5L (k) as r ——00.

(ii) A very similar definition is the following. With
V(r) and k again fixed, and with pl~(k) and rL~(k) de-
fined as the mth nodes of the free and true scattering
wave functions, with r=0 not counted as a mode, one has

5L (k)= lim k[pl. (k) rl (k)l . —

(iii) With k fixed but with V(r) replaced by A, V(r), the

phase shift 51 (k;A, ) associated with A, V(r) vanishes for
A, =O and is continuous in A., and 5L, (k)=5L, (k;1). This
definition cannot readily be extended to, for example, the
scattering of an electron by a hydrogen atom; the Pauli
principle does not allow one to turn off the interaction be-
tween the incident electron and the proton while retaining
the e -p interaction for the e initially in the H atom.

(iv) With V fixed, 5L (k) vanishes for k = oo and is con-
tinuous in k. This definition is also not readily extended
to, say, low-energy e -H scattering, since, among other
things, a phase shift or even eigenphase shifts do not pro-
vide a complete description of scattering processes when
excitation and ionization are possible; one cannot readily
connect high-energy and low-energy phase shifts when the
target has internal degrees of freedom.

B. Levinson's theorem

I.evinson's theorem states that

5L (0)—51 ( ao ) = (Nl + —,
'

gL )n, (1.2)

where NL is the number of normalizable bound states of
angular momentum L of negative or zero energy—
supported by a potential V(r) [More . precisely, one must
have r V(r)~0 as r~O, and r V(r)~0 as r~ao. ] The
term containing gL, represents an interesting subtlety
which arises when there exists a bound state of zero ener-
gy; one has gl. ——0 for L&0, while $0 0 if ——there is no
L=0 bound state of zero energy and g'0 ——1 if there is an
L =0 bound state of zero energy. (As opposed to the situ-
ation for L & 0, a zero-energy bound state for L =0 is not
normalizable; such a state has been referred to as a
"half-bound state. ") For our purposes, it will be con-
venient to restate the theorem. Since 5L (oo)=0 for the
potentials allowed by the restrictions r ~V (r)~0 as r~0
and r V(r) —+0 as r~ oo—Coulombic and hard-core po-
tentials are among those excluded —we have

5L(0)=(NL + —,'gL )n . (1.3)

From our present viewpoint, this version of the theorem
has three advantages. First, it concentrates on just the one
energy, zero, and it is the nodal structure of the zero-
energy scattering wave function uL (r) which we are here
interested in. Second and most importantly, by concen-
trating on zero energy it enables one, as we will show else-
where, to extend some aspects of the theorem to be de-'

duced to scattering by a target with internal degrees of
freedom; for such a target the use of Levinson's theorem
in the form of Eq. (1.2) can be plagued by the theoretical
difficulties associated with excitation and breakup in pass-
ing from E=O to E= oo, for, as already noted, phase
shifts alone no longer represent an adequate description of
the various possible processes. Third, it enables one to ex-
tend the theorem to cases for which 5L, (oo)&0, a case in
point being relativistic potential scattering. This exten-
sion will be presented elsewhere.

The proof of Levinson's theorem as essentially always
presented proceeds by using the analyticity properties of
the partial wave scattering amplitude fl (p), where p is the
magnitude of the momentum. The elegance and compact-
ness of that proof will not be matched by the present
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proof, whose advantage is that it provides complementary
information, information about the wave function u~(r)
in coordinate space.

2
df«(r)

DsL[4.']—= f, p(r) +q(r)P„,(r) dr (1.4)

C. The nodal structure of suave functions

The nodal structure of eigenfunctions associated with
discrete eigenvalues has for a long time been a subject of
great interest to mathematicians. Sturrn-Liouville (SL)
theory tells us the following:

For a second-order differential equation of rather gen-
eral form, the number of nodes of an eigenfunction associ-
ated with a discrete eigenvalue is exactly equal to the
number of eigenstates with eigenvalues below that of the
state in question.

The emphasis has been on bounded regions, but the in-
finite domain has been studied. Our objective will be to
obtain the appropriate extension of this theorem to the
zero-energy scattering wave functions. Until relatively re-
cently (as measured by the many years which have elapsed
since the work of Sturm and Liouville), mathematicians
largely ignored scattering theory, many feeling uncom-
fortable when not in Hilbert space. In fact, the tools for
the extension of the theorem to zero-energy scattering ex-
ist, for they are based on a variational bound on the
scattering length, a result which has been known for some
25 years. Indeed, in many ways the zero-energy state can
be looked upon as the highest-energy bound state, a
viewpoint to which we will return.

There are two parts to the proof of the theorem for the
bound-state case. (Since we are interested in solutions of
the Schrodinger equation, we will speak of bound states
rather than discrete eigenstates. ) First, one proves that
the (n+1)th eigenfunction P„+'(r) has at least one node
between any two successive nodes, r„~ and I'„~+» of
P„(r). The proof is completely trivial and proceeds
canonically. One multiplies the equation satisfied by jb„
by f„+', that satisfied by P„+' by g„, subtracts, in-
tegrates from r„~ to r„~+&, and uses Green's theorem to
reduce the integral over the terms which arise from the
second-derivative terms (the kinetic energy operator in the
Schrodinger-equation context) to a surface term. One has
f„(r„)=P„(r„+&)=0 by assumption, and without loss
of generality one can choose to have g'„(r„)&0 and
g„'(r„+&)&0, where a prime denotes a derivative with
respect to r; on the assumption that interlacing does not
occur, one can without loss of generality choose to have
g„+&(r„)&0 and @„+~(r„+~)&0. One then immedi-
ately finds a contradiction, a term of negative sign being
equal to a term of positive sign. The extension of this
part of the proof to the zero-energy scattering wave func-
tion requires no modifications.

The second part of the bound-state proof does require
some modifications if one is to obtain an extension to the
zero-energy case. The SL bound-state proof is based on
the maximum-minimum theorem to be referred to as the
maxi-min theorem. The theorem provides a formal defi-
nition of the nth eigenvalue, A,„. Given that f„(r) satis-
fies a SL equation, which contains the coefficient func-
tions p(r) and q(r), and assuming that the domain is
0&r & oo, one considers n —1 functions U;, and seeks the
minimum value of the functional

over all normalized functions f«' continuous with piece-
wise continuous derivatives, subject to the restriction that

(P« Iu;)—:f g«(r)u;(r)dr =0, i =1, . . . , n —1.

L+1 (2L '1)!!A

(2L+1)!! r'

Pz(r)+A—LXz(r), r —oo (1.6)

where ( —1)!!=1 and (2L+1)!!—:1&&3)&. (2L+1). A
functional which formally defines A' [and which can be
used to obtain a variational bound (VB) on A'] is
known. Just as it is particularly simple to obtain a VB
on the lowest energy level of given L of a system —a re-
sult obtained by Rayleigh but known as the Rayleigh-Ritz
(RR) principle —so it is particularly simple to obtain a VB
on AL when there is no bound state of that L, for the
zero-energy state is then the lowest-energy state of the sys-
tem for the given L. One has, in fact,

A' &Do[us']=Ai'+(2~'&') &uz' I HI. I uzi &

where HL ——TL + V is the Hamiltonian, with

+L=
2m

d L(L+1)
dp2 p2

(1.8)

and where the trial function uz, (r) is subject to two boun-
dary conditions: One must choose uL, such that
u', (0)=0 and such that the asymptotic form of u', is
that given by Eq. (1.6), with (the unknown) AI replaced
by a trial scattering length AL„' the subscript zero on D
denotes the fact that we are concerned with the no-
bound-state case. (We previously denoted by X' the
number of normalizable bound states of angular momen-
tum L. We will also have occasion to use n' for the
number of negative-energy bound states of angular
momentum L. A zero-energy bound state for a given L
generates an infinite A', which we do not wish to consid-
er for the moment, so that in the present case nz Nz )—— .
If there-are XL bound states, the VB on AL becomes

One then chooses new sets of functions U;, and for each
set obtains the minimum of Dsz [f«]. A,„can then be
characterized as the maximum of all of the minima; it is
attained for g« ——g„.

Now the entity which characterizes the zero-energy
scattering wave function uL(r) is of course not its energy,
which is specified in advance to be zero, but the scattering
length AL, defined, for the short-range potential to which.
we temporarily restrict ourselves, by
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AI. &Dx, lttLt]

ALt+(2mt~ ) &+Lt ~~L ~+Lt&

i &~Lt IHL ICL t& I'

(1.9a)

not readily gained from a formal approach. We consider
here zero-energy potential scattering, where V(r) is short
ranged, local, and energy independent, and can support
NL bound states. We first write

V = V(r) = V (r)+ V (r),
with V(r) = V+(r) where V(r) &0, and V(r) = V (r)
where V(r) & 0. We then introduce

The NL trial bound-state functions QLmt must satisfy the
conditions

& 4mt I
~L I WLqt & =ELmt~mq~ EI.mt & 0 (1.9b)

II. THE NODAL STRUCTURE
OF ZERO-ENERCx Y WAVE FUNCTIONS

A. A simple heuristic arguxnent

Before proceeding to formal proofs, it will be useful to
present a heuristic argument, one which provides insights

for all 1 &m (NL and 1(q &NL, conditions which can
always be satisfied in principle and which normally
represent no problem in practice; uI, must satisfy the
same boundary conditions as for the no-bound-state case.
(It is of crucial importance to the study of scattering by a
compound system that, for NL &0, the extension of the
VB on AL to that case from the VB on AL given above
for potential scattering is entirely trivial. ) In the original
proof that (1.7) or (1.9a) represents a minimum principle,
it was assumed that the uL, are continuous and have con-
tinuous first derivatives. For our purposes (see Secs. II 8
and II C) it will be necessary to enlarge the uLt allowed to
include functions which are continuous but which need
only have piecewise continuous first derivatives. We will
show in Appendix A that the minimum principle remains
valid under these broader conditions.

Just as the VB on AL provided by Eq. (1.7) is the ana-
log of the RR VB on the ground-state energy, Eq. (1.7) be-
ing applicable when the zero-energy scattering state is the
state of lowest energy, so the VB on AL given by Eq.
(1.9a) is the analog of the VB on the energy of the NLth
excited state of the given L. Both are based on what most
physicists refer to as the Hylleraas-Undheim principle, in
which, as an extension of the RR principle, one finds the
ordered eigenvalues of the NL )&NL matrix of the Hamil-
tonian obtained by using NL trial functions which are
supposed to simulate the wave functions of the
lowest-lying states; the ordered eigen values obtained
represent variational bounds on the true ordered eigen-
values. (The difference between VB's on bound-state ener-

gy eigenvalues and on AL is largely a matter of surface
term contributions. ) The VB on AL presented above for
the no-bound-state case will serve as the functional which
provides a formal definition of AL via a maxi-min theory.
This will provide the basis for a proof of the nodal prop-
erties of uL, leading to an alternative derivation of
Levinson's theorem. Analysis of the nodal properties can
also be based on the VB on AL presented above in Eq.
(1.9a) for the case where NL bound states exist, without
introducing a maxi-min theory explicitly. We present this
approach too for the additional insight it provides.

V(r;A, )—:V+(r)+A, V (r),
where 0(A, & 1. The associated wave function and
scattering length will be denoted by uL(r;A, ) and AL(A, ),
respectively. We then, of course, , have V(r;1)= V(r),
uL(r;1)=uL(r), and AL(1)=AL. Since V(r;0) is never
attractive, the curvature of uL(r;0) is non-negative,
uL (r;0) is nodeless, and AL(0) is positive. As A, increases,
V(r;A, ) becomes more attractive, and it follows from
monotonicity that AL(A, ) decreases If b. ound states do
exist for A, =1 then at some value 0~ A, ~ & 1, one will have

~
AL(A, &)

~

= oc, with AL passing through —oo to + oo,
and uL(r;A, &), renormalized via division by AL(A, ~), will
be proportional to r . (We suppress the L dependence
of A, ~. ) At this point we have a zero-energy normalizable
bound state if I ~ 0. If I.=0, we have a non-
normalizable zero-energy bound state, or—it is somewhat
a matter of semantics —a zero-energy scattering state. It
will be useful to recall that a solution of the Schrodinger
partial wave equation with V=V(r;A&) and with fixed
energy, for E=O as well as for E&0, which satisfies a
specified boundary condition at the origin [uL(0;A, ~)=0],
is unique to within a multiplicative factor. Beyond A, ~, the
bound-state energy decreases, while the bound-state wave
function remains nodeless. uL(r;A)on the, other hand has
developed one node. Thus the coefficient of the r +'
term in the asymptotic form of uL(r;A, t), renormalized by
division by AL, is zero, so that for L&0 uL(oc,'A, &)=0,
with the nodal point of uL(r;A, ) moving in from oo as A,

increases beyond k~. For L=O we have uo(r;A~)-const
as r —oo, and uo(oo', At)&0, but uo(r;A, ) has a node for
A, —t(,

~

——e&0, however small e is. (Throughout, we will
find that for zero-energy bound states one must distin-
guish between L=O and L&0.) As A, is increased to 1,
there will be, in all, NL values of A, at which a zero-energy
bound state will appear. Each bound-state wave function
will have one node more than the number of nodes of the
wave function of the bound state just below it, while
uL(r;A, ) at t(, just beyond the value A,„at which the nth
bound state appears will have n+ 1 nodes. The nodal
structure of a given bound-state wave function does not
change as t(, is increased. A node appears in uL(r;A, ) at
A, =A,„—infinitesimally beyond for L, =0- at r= oo and
moves inward as A, increases. We have throughout as-
sumed that neither uL(r;A, ) nor any of the bound-state
wave functions can, for some small region of r, dip below
zero and thereby introduce two additional nodes, since for
that to happen for a function continuous in value and
slope would require the function and its derivative to van-
ish at the same point; the assumption that V(r) is local is
crucial to the argument that this cannot happen.

Though the above discussion is far from a proof, it does
enable us to more easily "understand" the basic results,
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namely, that the number of nodes in the zero-energy wave
function for a given partial wave is determined by the to-
tal number nL of negative-energy bound states having the
same angular momentum. [Then, using the nodal defini-
tion of the phase shift, one may determine 5L (0), as dis-
cussed below in Sec. IIE.] It even has predictive value.
Thus, consider a potential which has a repulsive Coulomb
component and a second short-ranged component of the
type considered above. %'e have recently shown that a
modified version of Levinson's theorem is applicable to
this very important case. With 5L(k) redefined as the
phase shift relative to the Coulomb phase, one can prove
that

5L (0)=Nl n,
where NI is the total number of bound states. As op-
posed to the non-Coulombic case, no distinction need be
made here between L =0 and L ~0, even when there is a
zero-energy bound state, and this is to be expected on the
basis of the argument above, for the nonincreasing
Coulomb wave function is a decaying function for all I.,
including L =0.

An unfortunate feature of the heuristic argument is
that because of the replacement of V(r) by V(r;A, ); it will
often be impossible to extend the result to scattering by
compound systems —the reason is the same as that given
for the difficulty in extending the definition of 5L(E)
based on a study of A, V, discussed in Sec. IA, definition
(iii). It is then natural to ask if the heuristic argument can
be adapted to an analysis based on the VB on AL, a VB
valid for scattering by a compound target as well as for
potential scattering. The answer is that, in the same
rough spirit, much (but not all) of the adapted argument
remains valid. To see this, we begin by noting that the
use of Eq. (1.9a) effectively involves the introduction of a
non-negative Hamiltonian HL —the large parentheses in
Eq. (1.9a) can be written in the form &uL, i I Hl. I uL, i &—
constructed by extracting from HL the effects of the (un-
known) bound states through the use of trial functions

(It is rather nice that one can extract the negative
contributions of the bound states, to the extent of making
HI non-negative, without knowing the bound-state wave
functions. ) However, it was later po'inted out' that one
can proceed somewhat differently. One first introduces a
simple uz, which satisfies the boundary conditions at
r=0 and at r = oo. One then adds functions of specified
form, with coefficients to be determined by means of a
variational principle; these functions vanish at r=0 and at
r = oo, so the new uL, , also satisfies the boundary condi-
tions. As one adds functions, one finds the same behavior
as that found above on varying A, : the estimate of AL
drops except for NL jumps, the estimate of

~
Al

~
passing

through oo, with bound states appearing at each jump.
There is of course a noninfinitesimal change in the esti-
mate of AL, associated with each addition of a function,
while the estimate of AL varies continuously as A, is
varied continuously (except at I,=A, i, A, =k2, . . . ) but
there is a deeper difference. Since the ul, 's are trial func-
tions and not the solutions of a Schrodinger equation with
a local V(r), it is not quite clear that one cannot have
ul, (r), for some region of r, dip below zero. Since we
wish to give a proof of the nodal structure of uL for po-

tential scattering which can, in at least some regards, be
extended to scattering by a compound target, we now turn
to a more thorough analysis of the VB of Eq. (1.9a). We
will also give an analysis based on a functional related to
that of Eq. (1.7), for this latter approach is the extension
to the E=O wave function uL of the method described by
Courant and Hilbert, and thereby makes more readily
useful the abundant literature on the subject.

HLuL ——0. (2.1)

Adopting the assumption, which we will show to be false,
that uL (r) has one or more nodes, we let ro be the node
closest to the origin and define a function u ' ' as

r

0~ r grou"'(r)= .
ul(r), r &ra.

Accordingly, we have Do[u' '] =31 . (This statement is
true even though u' ' has a discontinuous first derivative.
This point, as well as the more general question of the va-
lidity of the minimum principle for such an extended
class of trial functions, is addressed in Appendix A.)

Now consider the subdomain Go, with r ranging from ro
to oo, contained in the full domain G, for which r ranges
from 0 to oo. We have

minDO[u Ii](&1
in the subdomain Go, since the value Al is taken on for
the particular choice uI, ——u' '. On the other hand, we
have

minDO[u„] & a,
in the subdomain Go, since Go is smaller than G (for
which the minimum value is Ar ) and the decrease in
domain decreases the flexibility of the trial function. It
follows that the minimum value of Do[uL, ] in. the sub-
domain Go is the true scattering length Al . To continue,
we consider the subdomain G~, with r ranging from r j to
ce, with 0~ r~ ~ro~ 00. Then, with the standard boun-
dary condition at infinity and with uL, (r i ) =0, the result

B. A more formal proof,
based on a variational bound on AL,

We now enter into a more formal analysis of the nodal
structure of the zero-energy wave function for potential
scattering. For the sake of clarity we proceed in steps, be-
ginning with the simplest case in which no bound states of
orbital angular momentum L exist, and show that the
zero-energy wave function uL is nodeless. The result is
derived by assuming that one or more nodes exist and
then showing that this leads to a contradiction. The gen-
eralization of the theorem to the case where bound states
do exist is taken up subsequently.

The analysis is based on the observation that the
scattering length AL, may be characterized as the
minimum value, with respect to variations of the trial
function uL„of the functional Do[uL, ] given by Eq. (1.7),
where uL, satisfies the condition (1.6). The minimum is
attained when uL, is equal to the exact zero-energy wave
function uI (r) satisfying
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+
iii' I. L+1) + V(r) uL u"' dr,
2ltl p

with u'"(ri)=0 and r& &ro. Integrating by parts in two
ways, we obtain

R

and

( &)
A' du'"I = uLHLu dr+ uL2m, dr

R

(2.2a)

(&)
2I= u HLuI dr+ 2'

duI
dp

(2.2b)

Since uL and u'" each satisfy the zero-energy
Schrodinger equation in the region r] &r & oo, the in-
tegrals in Eqs. (2.2a) and (2.2b) vanish. Furthermore, we
have u'"(ri)=0 and the derivative of uL, at r& finite.
Comparison of Eqs. (2.2a) and (2.2b) then leads to the re-
lation

du duu, (r, )
" =u, (Z) " —u'"(Z)
dr r R dr

Taking the limit R~ co of the right-hand side, and not-
ing that uL and u'" satisfy the same boundary conditions
at infinity, with the same scattering length AL, , we obtain

du"'
ui(r, ) =0.

dr

Since u "' is a solution of the Schrodinger equation with a
local potential, it cannot have a vanishing value and first
derivative at the same point. With (du"'/dr) ~, &0 it
follows that uI. (r ~ ) must vanish and this contradicts our
assumption that ro is the node of uL lying closest to the
origin. We must conclude that uL is nodeless if no
negative-energy bound states exist.

We consider now the case where one negative-energy
bound state exists. (The case where a zero-energy bound
state exists is taken up in Sec. II D.) As a first step in the

minDO[uL)] =al
in the subdomain Gi must hold. This follows from the
fact that it holds in Go and in G, and that Gi is con-
tained in 6 and contains Go. Let a function which mini-
mizes Do in domain 6&, subject to the boundary condi-
tions noted just above, with the minimum value equal to
Ai, be represented as u"'. The function u'" is now ex-
tended onto the full domain 6 by letting u'" vanish out-
side G&. This construction provides us with a function
u"' which satisfies the zero-energy Schrodinger equation
except at the point of discontinuity ri of the first deriva-
tive. However, we have Do[u "']=AL on the full domain.

We will now show that the assumption that the zero-
energy wave function uL, has one or more nodes (with ro
representing the position of the node nearest to the origin)
is false since it leads to a contradiction. Thus, we consid-
er the integra1

A' duJ du'"I=
2m dr dr

proof that uL (r) has one node when one bound state exists
we prove that it has no more than one node. This is ac-
complished by appropriate modification of the earlier dis-
cussion. We use the fact that the functional whose
minimum yields the scattering length is in this case given
by Di[uL, , ], defined by Eq. (1.9a) with Nl —1. Let us as-
sume that uL, has two or more nodes and derive a con-
tradiction. Let rq be the position of the node immediately
to the right of the first node at ro. We define the function
Pi to coincide with uL for ro & r &rz and to vanish else-
where. Similarly, Pz coincides with uL for r &ro and
vanishes for r & rz. We now form the function
u ' '=cia&+Pi with ci chosen such that u ' ' and
HL $1 i, are orthogonal; u ' ' is a multiple of uL in each
of the three regions (with coefficients 0, ci, and 1), and
since uL(ro)=uL(r~)=0, u ' ' is everywhere continuous
and has a continuous derivative except at ro and ro, where
it vanishes, and it follows that Di [u ' '] =AL. Using ar-
guments similar to those introduced earlier we may con-
clude that minDi[uL, ]=AL in the region ro to oo as well
as in the full domain 0 to oo. The remaining argument
leading to a contradiction with the original assumption is
then very similar to that given above and we need not re-
peat it. Having shown that uL has at most one node we
complete the proof by observing that it has at least one
node; this is obvious since ul must be orthogonal to the
true bound-state function Pz i which is known (from stan-
dard SL theory) to be nodeless.

The proof that ul. has at most Nz nodes when Nz
negative-energy bound states exists follows closely that
given above for NL ——0 and Nl ——1; the appropriate func-
tional whose minimum gives the scattering length AL is
D~ [uL,, ] defined in Eq. (1.9a). The proof that ul has

precisely NI. nodes is completed by demonstrating that
with QL~ representing the bound-state function of the

L

most highly excited state the zero-energy function ul (r)
must have a node between any two consecutive zeros of

Since QL~ is known to have Xi —1 nodes this
leads to the desired result that uL has NL nodes. The
demonstration is identical to the standard one, sketched in
Sec. I C, of the SL theory and need not be repeated here.

C. An alternative proof based
on the maxi-min property

The standard analysis of the nodal structure of the SL
eigenfunctions is based on the maxi-min property of the
eigenvalues. We now indicate how this proof may be
generalized to allow for infinite domains and inclusion of
inhornogeneous boundary conditions, thereby making it
applicable to the zero-energy scattering problem. The
functional, the maxi-min property of which we shall for-
mulate, is simply the functional Do[ui, ] defined by Eq.
(1.7), with trial functions uL, satisfying the condition
(1.6). The maxi-min property, for the case where Nl
bound states exist and all are of negative energy, is formu-
lated as follows. For each set [U j, m =I, . . . , N~, of
piecewise continuous functions U~ one obtains the
minimum value, to be denoted by d(ui, . . . , U~ ), of the
functional Do[uL, ]. The scattering length AL is the max-
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imum value, with respect to variations of the functions
v~, of these minima. This maximum is obtained for
ul. , ——uL, , the exact solution of HL, uL ——0, and for
v =gz, m =1, . . . , N~, where the QI are the exact
bound-state solutions. The proof that the scattering
length can be characterized by this maxi-min property is
presented in Appendix A. With this result established,
the proof that the nodes of the zero-energy wave function
divide the domain 0(r ( 00 into no more than 1VL + 1
subdomains is very similar to that given in Sec. IIB. We
show first that if ul is assumed to have more than Nl
nodes the maxi-min procedure applied to the subdomain
ra &r & oo, denoted as before by Go, where ro is the in-
nermost node of uL, provides the same value, AL, as for
the full domain. Furthermore, for any subdomain G;,
which contains Go and is contained in the full domain G,
the maxi-min calculation provides the same result, the ex-
act value of the scattering length; it is obtained for
uL, ——u, the exact zero-energy solution on this sub-(')

domain. An argument identical to that given in Sec. II B
allows one to derive a contradiction, showing that the uL
has no more than NI nodes. It should be noted that this
argument has multidimensional generalizations; we will
return to this point in a later publication. In the one-
dimensional problem to which we are confining our atten-
tion one can also show that the zero-energy wave function
has at least Nl nodes, the proof being of the standard SL
type discussed in Sec. IC. The present discussion serves
to emphasize that, as remarked earlier, Sl. theory has a
natural extension to the zero-energy scattering problem.

D. Special cases requiring modification
of the formalism

The discussion up to this point has been based on the
assumption that the scattering length, as defined by the
boundary condition (1.6), exists and is finite. This al-
lowed us to make use of the minimum principle (1.9a) (or,
alternatively, the maxi-min principle of Sec. IIC) as the
starting point of our analysis. We now consider two spe-
cial circumstances where this procedure requires modifi-
cation.

r = oo are not counted. } A proof based, for example, on
the maxi-min property would involve the introduction of
the functional

D [uL, ]= ( uL, I
HI.

I L, ), (2.3)

with trial function uL, -(2L —1)!!/r for r —co, subject
to the constraint that it be orthogonal to the set of nl
normalized piecewise continuous functions vi, . . . , v„,PgL

where nl is the number of negative-energy bound states
(nl, it is to be recalled, must be distinguished from Nz, a
number which includes not only negative-energy bound
states but normalizable zero-energy bound states). The
remainder of the proof follows the standard pattern of the
SL theory, as discussed in Ref. 7 and reviewed in Sec. II C
above.

2. Long-r ange potentials

I.et us now drop the assumption, made in the foregoing
discussion, that the potential is of short range and suppose
that the potential follows a power-law behavior r ', s & 3,
asymptotically. No modifications in the previous deriva-
tion are required if the inequality s &2L +3 is satisfied.
However, for s &2L+3 the asymptotic form (1.6) is in-
correct; there is a term (or terms) in the asymptotic expan-
sion of uL which dominates over the r terin. A
scattering length, in the usual sense, does not exist in this
case." [As an indication of this difficulty we note that
the integral (uL, , ~HL, ~

uL, , ) which appears in the func-
tional (1.7} fails to converge for s &2L+3 unless the
long-range effects of the potential tail are explicitly ac-
counted for in the trial function. ]

%'e now show how the nodal structure of uL may be
determined with the aid of a minimum principle for a
modified scattering length defined in terms of asymptotic
solutions which account for the effects of the long-range
tail of the potential. (This approach is similar in spirit to
that used in an earlier discussion of modified effective-
range theory. ") Thus, we separate the potential into two
parts

1. Bound state at zero energy

As discussed in Sec. II A, the scattering length is infin-
ite if the potential supports 'a bound state at zero energy.
To deal with this case we simply renormalize the wave
function, working not with uL (r) but with uL (r)

ul (r)/AI . Then, uL
—behaves asymptotically like r

for
~

Al.
~

~ ce. uL, is then normalizable for L & 0 and its
nodal structure can be determined by applying standard
SL theory. For L, =O, uo approaches a constant value
asymptotically. While it is not actually normalizable one
may introduce a convergence factor e ", apply bound-
state methods to the resultant normalizable function, and
then let a~O. (It was just this limiting procedure which
was used originally in the derivation of the minimum
principle for Ao. ) We conclude that for arbitrary L the
number of nodes in the zero-energy wave function ul is
equal to the number of bound states in the I.th partial
wave with energies lying below zero. (Nodes at r=O or

where V,h is of short range, falling off faster than any
power of 1/r, and Vi is a long-range component given by

(2.4a)

(2.4b)

with e= + 1 (attractive) or e= —1 (repulsive). The dis-
tance r is chosen to be large enough so that V~ cannot
support a bound state even for the attractive case. Zero-
energy solutions of the Schrodinger equation for the po-
tential VI, valid for r ~ r, can be constructed in terms of
Bessel functions, as is well known. ' Considering first the
attractive case (@=+1)we introduce the two linearly in-
dependent solutions
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V

X+L ——I"(v+1) (2L —1)!!ri J (x), (2.5)

1(v) s —2
1 r ' N„(x), (2.6)

(2L + 1)!!

where v = ( 2L + 1)/(s —2) and

2Rs —(s —2)/2
$ —2

The normalization has been chosen to give the same lead-
ing terms in the asymptotic expansions as given by PL
and pL —and therefore to give unit Wronksian —namely,

X+L -(2L —I )!!/r

P+L-r +'/(2L+1)!!,

(2.7)

(2.8)

for r —ao. The correction terms to p+L are significant
here. For example, for v not an integer the next term in
the asymptotic expansion of p+L behaves like r '+
which dominates over the r term for s & 2L, +3. For v
an integer the correction is a logarithmic one. The con-
clusion that the asymptotic form (1.6) is invalid for
s & 2L +3 follows from these considerations. In the
repulsive case (e= —1) we define

V

X L(r)=I"(v+ I) (2L —1)!!ri I (x), (2.9)

2 Pt
,

"~'Z„(x) .2L+1!! (2.10)

The leading terms in the asymptotic expansions of 7
and p L are as shown in Eqs. (2.7) and (2.8), respectively;
again, correction terms are significant for s & 2L +3.

We now introduce zero-energy solutions of the
Schrodinger equation for the full potential V(r) denoted
as u+L (for e= 1) and u L (for e= —1) which satisfy the
boundary conditions

u+L(0) =0,

u+L(t')- p+L(t')+&+LX+L(r)—, t - m .

(2.11a)

(2.11b)

The parameters 8+L play the role of modified scattering
lengths. In analogy with the minimum principle of Eq.
(1.9a), if NL bound states exist and all are of negative en-
ergy, the 8+L satisfy

++L &D+NL [u+Lt]

form shown in Eqs. (2.11) with 8+L replaced by 8+Lt.
The same arguments developed earlier for short-range po-
tentials now lead to the conclusion that the number of
nodes in the zero-energy wave function is equal to the
number of bound states of negative energy. This state-
ment requires no modification in the case where a bound
state exists at zero energy, although the derivation must
be modified slightly as discussed in Sec. II D 1.

HLwL (r, k) =(A' /2m)k wL(r, k) (2.13)

for a scattering energy so low that there exists a subinter-
val S such that R &r «(L+ —,')/k. In the range r &R,
wL (r, k) approaches a linear combination of free solutions,

wL(t, k)-k Icot[5L(k)]«jL(kr) kt&L(«)I

(2.14)

and in the subinterval R &r «(L+ —, )/k the energy
term E =A k /2m as well as the potential can be neglect-
ed in the Schrodinger equation. Therefore, for
r « (L + —,

' )/k, wL (r, k) is proportional to the zero-
energy solution and in the subinterval S the solution
wL(r, k) is approximately equal to the asymptotic form of
the zero-energy solution. Furthermore, there are no nodes
of wL(r, k) in this subinterval. The free solution krjL(kr)
is nodeless in the whole range r « (L + —,

' )/k. The
energy-dependent nodes of both solutions lie to the right
of this subinterval and interlace each other [Interla. cing
is a general property of two linearly independent solutions
of a given Schrodinger equation, that is, with the same
potential and the same energy E; in the present context,
we are in the region where V(r) is negligible, so that
wL(k, r) and krjL(kr) both satisfy the Schrodinger equa-
tion for a free particle. ] 5L(k) of course represents the
asymptotic phase difference between wL (r, k) and
krjL(kr). It will be convenient to introduce 5L(k), de-
fined by

E. Zero-energy phase shift
and Levinson's theorem

From the fact that the zero-energy wave function has
nL nodes (where nL, it will be recalled, is the number of
negative-energy bound states) we will show that the zero-
energy phase shift 5L(0) satisfies Levinson's theorem, Eq.
(1.3). Thus, let R be a fixed point well outside the range
of the potential (in this discussion, for simplicity, we as-
sume short-range potentials), and such that each of the
nodes of the zero-energy wave function lies to the left of
R. Consider now the solution wL(r, k) of the Schrodinger
equation

2'
++Lt+ ~u+Lt

I
~L I u+Lt ~ 5L(k) =nLn+5L(k) . (2.15)

I &u+Lt I~L I @L & I

From the nodal definition of 5L(k), we can conclude that
for k «(L+ —,

' )/R

—m-&5L(k) &m . (2.1.6)
(2.12)

where the NL trial bound-state functions satisfy Eqs.
(1.9b) and where u+L, satisfies boundary conditions of the

The sign of 5L(k) depends on the relative position of the
first energy-dependent nodes of wL(r, k) and krjL(kr). If
it is the node of wL(r, k) (in the range r &R) which is
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nearer to the origin then 5L(k) &0, otherwise 5L(k) &0.
The knowledge of this relative position, along with the
known threshold behavior of cot5L(k}, leads to the con-
clusion that 5L(k) vanishes for k~0 (details of the proof
are given in Appendix B) and therefore that 5L(0) is NLir.
(Note that nL NL——since we have assumed here that there
are no zero-energy bound states. )

Special attention must be given to the situation where a
zero-energy bound state exists. (This is indicated by the
fact that k +'cot5L vanishes at k=0 for AL infinite
and the next term in the energy expansion has to be inves-
tigated. ) One can determine 5L(0) in this case directly by
a limiting procedure, using the nodal definition of the
phase shift, in analogy with the preceding discussion.
This leads to Levinson's theorem, Eq. (1.3); see Appendix
B for details of the proof.

To summarize, we have combined the theorem deahng
with the number of nodes of the zero-energy wave func-
tion with both the nodal definition of the phase shift
5L(k) and our knowledge of the low-energy behavior
(modulo m) of the phase shift to arrive at Levinson's
theorem in the form stated in Eq. (1.3).
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where Dsi [5uL ] is defined by Eq. (1.4), with p (r) = 1 and
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From the boundary conditions satisfied by uL and uL„ it
follows that

the functional Dz [uL, ] given by Eq. (1.9a), with uL, , and

uL, continuous. To prove that the principle remains valid
for uL, continuous and uL, piecewise continuous we begin
by transforming D~ [uL, ] into a functional of the error
function 5uL =uL, —uL. The reasons for the transforma-
tion are, first, that 5uL is better behaved at infinity than is
uI, and second, that we can make use of properties of
DsL proved by Courant and Hilbert. More precisely, we
will show that

Dx, [uL~] =~L+DsL[5uL]

This work was supported in part by the National Sci-
ence Foundation under Grant No. PHY-8305-186 and the
Office of Naval Research under Contract No. N00014-
76-C-0317.

APPENDIX A: MINIMUM PRINCIPLE
FOR THE SCATTERING LENGTH,
AND THE MAXI-MIN PRINCIPLE

We will prove first that the variational upper bound on
AL developed in Ref. 8 remains valid if one extends the
class of trial functions from functions uL„which are con-
tinuous and have continuous first derivatives, to functions
uL, , such that uL, is continuous and ul, is piecewise con-
tinuous. The original class is quite sufficient for obtain-
ing numerical values for the upper bound. The formal
proof concerning the number of nodes of uL, however, re-
quires the wider class of trial functions. (In our proof,
discontinuities of first derivatives arise only at points
where uL, vanishes. In fact, the minimum principle holds
under less restrictive conditions; we will show that it is
valid for all continuous functions with piecewise continu-
ous derivatives. ) The meaning of the derivatives of
discontinuous functions is given in terms of the step func-
tion and its derivative —the 5 function. Note that the
class of functions one allows in the minimum principle is
identical with the class used by Courant and Hilbert in
their study of the Sl. functional given in Eq. (1.4); note
too that the Sl. functional involves first derivatives of the
trial function, while the functional which represents an
upper variational bound on Al involves second deriva-
tives. One can work with either form in a bound-state
problem, but in a scattering problem one must work with
the second derivatives of the trial function in order to el-
iminate a surface terxn at infinity.

The minimum principle for AL of Ref. 8 is provided by

(vari /2m)('4L ~L ) (uL I HL I
uL

= & u« I H, I uL~ &

—&5u, IaL I5u, &. (A2)

This proves that the usual identity is valid for the wider
class of functions. Integrating by parts once, and using
the fact that 5uL vanishes at the origin and either van-
ishes (L &0) or approaches a constant (L =0) at infinity,
we may rewrite the last term in Eq. (A2) as

(2m/ir')(»L
I
HL I »L & DSL[5uL] . (A3)

[We note that (A3) is then valid for 5uL continuous and

5uL —(~Lg —~L )(2L —1)"r

5uL is normalizable for L & 0, while 5ua is not normaliz-
able but can be made so by the introduction of a conver-
gence factor, as discussed above in connection with a
closely related point, and as justified in Ref. 8.

We are now in a position to prove Eq. (Al). We begin
by introducing

I—:(2m /fi )((uL
I
HI

I
uI, &

—(uL~
I
IIL

I uL, & ) .

Since HL uL ——0, we have, on the one hand,

1=(2m/e')&uL IH, lu«& .

On the other hand, we can cancel the potential and angu-
lar momentum terms in the second set of parentheses, and
we can then use Green's theorem to write I as a sum of
surface terms, at the origin and at 00,

I =SO+5

(One can easily check that there are no contributions from
the discontinuities of first derivatives. } SD vanishes,
S =AL —AL„and we therefore have
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& uLt I ~L I A. t &
= &»L I ~L

I @L t & (A4)

The use of Eqs. (A2)—(A4) in the definition of Eq. (1.9a)
of Dtt gives (Al).

Letting P' represent the sum term in Eq. (Al), we have

5uL piecewise continuous, as well as for 5uL and 5uL con-
tinuous. ] We also have

&uL I~L IA t&=&~LuL IIL t&

Furthermore, since HL is Hermitian even for the wider
class of functions, we have

&5uL I~L IA, r&=&A t I~L I»L&,
and

Do[uLt])/tL if &uLt I yL &=0 for ail m.
Now suppose, as required in the maxi-min construction,

that uL, is orthogonal not to the set tgL } but to the set
[ U~ },m = 1,2, . . . , NL, consisting of functions which are
normalizable and linearly independent but otherwise arbi-
trary. We observe that for any set tu } the minimum
value of D [uLt] cannot exceed AL. In fact, for the par-
ticular (formal) choice of trial function

NL

uLt=uL+ g Cttt'|t'Lttt ~

rn =1

with coefficients c selected to satisfy the orthogonality
conditions &uL, I

U & =0, m =1,2, . . . , NL, one finds

DNL[uLt] ~L DsL[5uL]+~ ~ (A5)
NJ

Do[uLt]=~L+ g c EL &~L ~

m=1
and the proof which we seek, that (i) Dz [uL, ]—AL )0,
reduces to the proof that (ii) Dsi [5uL ]+M )0. We wish
to prove that (i) is valid for the wider class of trial func-
tions, but all we know thus far, from the result of Ref. 8,
is that (i) is valid for uLt and uL, continuous. It is of
course then true that (ii) is ~alid for 5uL, and 5uL, con-
tinuous. For the bound-state case, for which DsL[uLt] is
bounded from below for uL, and uL, continuous, Courant
and Hilbert show that the lower bound remains vahd for
uL, continuous and uL, piecewise continuous. (They in-
voke the Weierstrass theorem which enables one to
approximate —in the mean —the piecewise continuous
function uL, by a continuous function p' and, at the same
time, to approximate uL, by p, an integral of p'. ) By a
very similar argument, one can show that the lower bound
of zero on Dsi [5uL]+W, and therefore the lower bound
of zero on Dtt [uL, ]—AL, is preserved when one allows

uL, to be piecewise continuous rather than continuous.
We obtain some insight into the above result by arguing

physically rather than formally. In an expression such as
&5u

I
V

I
5u &, it can make little difference, for 5u con-

tinuous, with piecewise continuous first derivatives, if we
replace 5u by a smoothed out version. With TL the kinet-
ic energy operator, it is by no means obvious that the
same is true for &5u

I
TL

I
5u &

=
& TL &, but if there is a

change in the value of & TL & we expect & TL & to be greater
for a continuous function 5u i for which 5u i is piecewise
continuous than for a continuous function 5u2 which ap-
proximates 5u~ and for which 5uz is continuous, since
& TL & tends to be smaller for smoother functions.

We turn now to the proof that the functional Do[uL, ]
of Eq. (1.7) represents a maxi-min principle for the deter-
mination of AL when %L negative-energy bound states
exist.

To begin our study of the functional Dp [uLt ] we note
that by Eq. (Al) we have

Do[uLt] ~L +DsL[5uL ] (A6)

Let us first verify that the minimum value of Do[uL, ] is
AL if the uL, are chosen to be orthogonal to each of the

Since & uL
I fL~ & =0 for all m, the assumption that

& uL, I
t)'tL~ & =0 for all m gives & 5uL

I pL~ & =0 for all m.
But the latter set of conditions are precisely those for
which DsL[5uL])0 since the W term in (A5) is then
equal to 0. That gives the desired result that

We may therefore conclude that the maximum (with
respect to variations in the functions v ) of the minimum
value of Do[uLt] is the true scattering length AL,' this is
the maxi-min property used in Sec. II C of the text.

APPENDIX 8: THE CONNECTION
BETWEEN THE NUMBER OF NODES

OF THE ZERO-ENERGY WAVE FUNCTION
AND THE ZERO-ENERGY PHASE SHIFT

In this appendix we assume throughout, for simplicity,
that the potential is of short range. We assume further,
temporarily, that AL is finite. (The case for which AL is
infinite will be discussed shortly. ) We begin by listing
some properties of the wave function in different
domains.

It will be useful to introduce a point E which satisfies
iwo conditions:

(i) it lies well beyond the range rz of the potential and
(ii) it lies well beyond the last node, if there are any

nodes, of the zero-energy wave function uL(r).

%'e seek to connect the zero-energy scattering parameter,
the scattering length AL, with the positive energy scatter-
ing parameter, the phase shift 5L (k). To do so, it is suffi-
cient to consider arbitrarily small values of k. [Since
5L(k) is by definition continuous in k, its absolute deter-
mination at any k, and in particular at very small k, gen-
erates an absolute definition at all k. ] With 8 fixed, we
consider values of k so small that the condition

kR &(L+ ~

is satisfied. Beyond r~ the Schrodinger wave function
wL(r, k) reduces to a linear combination of free solutions
and is given by Eq. (2.14). In the interval rz & r
«(L+ —, )/k, one can neglect the energy term in the
Schrodinger equation; this is equivalent to replacing jL
and nL(kr) in (2.14) by their small argument forms, and
k 'cot5L(k) by its threshold value, —1/AL. We have

1 r + ' (2L —1)!!
wL (r, k) =uL (r)=—

L, +—'
r~ &r « . (B1)
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In the interval R & r «(L + —,
' )/k, the first term

dominates —the zero-energy wave function would other-
wise have a node for r & R—and we have

~ [ war, ]=wL, OL wLA, —
(Zrn/R') —V(r)wLyL.

where the second step following on using the differential
equations satisfied by wL and PL. It follows that W'=0
for r & r~, and therefore that W[wL, PL ]=const for
r & rz. The constant is found to be unity by studying very
large r, where wL and PL are known. We therefore have

wL, (r, k}PL(r,k} wL, (r, k)PL, (r, k)—=1, r & r~ . (B3)

The value of 5L (k)mod~, all that is used in calculations
of physical quantities, follows, of course, from a coinpar-
ison of the phases of wL, (r, k) and $1 (r, k) at asymptotical-
ly large r. However, we are seeking to define and deter-
mine the absolute value of 51 (k). For sufficiently small k
and for AL, finite, our present concern, we can deduce ad-
ditional information about 5L (k) from its nodal defini-
tion. Thus, wL(r, k) has nI nodes in the interval 0 to R
and no nodes in the interval R to (L + —,

' )/k, while PL,

has no nodes in the entire interval 0 to (L + —,
' )/k; more-

over, the energy-dependent nodes of wL and of PL, not
only interlace, but each set of nodes has a spacing of m

asymptotically. It follows that 5L(k) must be something
like nL m; I.ore precisely, we deduce that

~
5J (k) nI. m

~
&n. —The two pieces of information, the

knowledge of 5L (k) modulo n. and the inequality just ob-
tained, allow only two possibilities for the correct value of
5L, (k). [If 5L (k)modnis identically zer'o, there are three

AL, (2L+1)!!' k

Choosing the free regular solution Pr (r, k) to be normal-
ized as

yI (r, k) =krj L(kr)/k~+',

we have

$1 (r,k)=r +'/(2L+1)!!, r «(L+ —,
' )/k

$1 (r, k) is clearly positive and nodeless for
r «(L + —,

' )/k. The nodes of wL (r, k) in the range
r «(L + —,

' )/k are very close to the nodes of wL (r,0) for
the small k under consideration and lie to the left of R;
wL(r, k) has no nodes in the interval R to (L+—, )/k.
Both wL (r, k) and $1 (r, k) are oscillatory beyond
(L+—,)/k, and their (energy-dependent) nodes interlace
in that region; the proof that they interlace is similar to
the proof given in Sec. I C that the nodes of g„+,(r) and
g„(r) interlace.

We can obtain further information about wL (r, k) by
studying the Wronksian

IV[wL, ,QI ]:wL (r,—k)pL (r, k)

wL (r, k)y-, (r,k),
where a prime denotes differentiation with respect to r
%'e then have

possibilities a priori ].In terms of 51 (k) =51.(k) n—Ln, we
have —m &5L, (k) (n, and the correct choice between the
two possibilities for 5L (k) reduces to the determination of
the sign of 5L (k). The sign is determined by the relative
positions of the first energy-dependent nodes of wI (r, k)
and $1.(r,k}. To find the relative position, we let RiL
denote the first node of Pi (r,k); R iL, will be well beyond
(L + —,)/k. We then have PL(R i,k) =0 and

PL, (R iL, ,k) & 0. We conclude from Eq. (83) that
wL(RiL, ,k) &0. Since the sign of wL (r, k) in the region
R «r «(L + —,)/k is determined by the sign of AL [see
Eq. (82)], we must distinguish between AL &0 and
AL, &0. If AL, &0, wL (r, k) is positive in its nodeless re-
gion, R & r «(L + —, )/k, but has become negative at the
location R iI. of the first node of PI.(r, k), that is, the first
energy-dependent node of wL lies to the left of the first
node of PL, so that 0&5L(k) &mIf A..L &0, then wL(r, k)
is negative in its nodeless region and resins negative out
to the value R iL of the first node of PL, that is, the first
node of wL lies to the right of the first node of PL, so that
—m. &51.(k) &0. In either case 5L, (k) is uniquely deter-
nuned. [It might be helpful to remark that with the boun-
dary conditions given the sign of uL (r) and of wL (r, k) for
r close to the origin need not be positive, so that the sign
of uL and of wL in the nodeless region is not determined
by the number nr of nodes of uL, .]

Since cot[5L(k)]=cot[5L(k)], we can write the usual
threshold law as

limkz +'cot[5L (k)]=-
a 0

It follows that cot5L, (0) is —00 for AI &0 and + 00 for
AL &0. Coinbined with the ranges for 51.(k) deduced just
above for AL &0 and for AL &0, we find that in either
case we have 5L, (0)=0, and therefore 51.(0)=nL n. [Since.
5L(0)=0 for AI &0 and for AL, &0, it follows by con-
tinuity that 5L (0)=0 for AL ——0.]

We turn now from AL finite to the rather special case
for which

~
Ar

~

= oo, there is then a bound state at zero
energy, and wL (r, k) in the subinterval R & r
«(L + —,

' )/k is given by the second term of the right-
hand side of Eq. (Bl) and is therefore positive. The result
obtained for AL finite, that wL (RL i, k) &0, remains valid
for

~
AL,

~

= m, so that wL changed sign between
(L+ —,

' )/k and RL i, that is, the first energy-dependent
node of wL, lies to the left of RiL, and we conclude that
0 & 5L, (k) & m'. To proceed further we note that for
1/AL, ——0 effective range theory gives

k +'cot[5L (k)]= ',rck—
for the sinall k under consideration, where rL is the effec-
tive range. Since cot5L (k) =cot[5L (k)], we see that
cot[5o(0)]=0, and therefore that 50(0)= ,' n.. From-
now on we can restrict our considerations to I & 1. We
will show that rL &0 for 1/AL, ——0. For L=1 or 2 this
result follows directly from explicit expressions for rL, '

for the extension to arbitrary L, it will prove to be more
convenient to derive alternative expressions for rL. To
this end we consider the limit as

~
AL

~

~ oo of uL (r), de-
fined as in Sec. IID by uI(r)=uI(r)/AL [Since uL(r).
contains AL, , uI. does not vanish as

~
AL,

~

—woo. ] We
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W=wL (a,k)/wL (a,k),
we find that

W =[u L, (a)/ul (a)] kb—(k),
where

b(k)=—f ul (r)wL, (r, k)dr/ur, (a)wL, (a, k) .

(B4)

Corrections to b(0) which are of order k give corrections
to W which are of order k", and can be ignored. We
therefore have

b(k)=b(0)= f dr u L(r)/u L(a) ~0.
'For R sufficiently large, uL (r)=(2L —1)!!r in the re-
gion which includes the point a (there is no r +' term for

~
AL

~

= ce) and therefore u L(a)/uL, (a)= L/a. W—e.
can now write

then multiply the Schrodinger equation for wL by uL and
the Schrodinger equation for uL by wL, subtract, and in-
tegrate from 0 to a, where

R & a &&(L+—, )/k .

Introducing the logarithmic derivative of wL,

(L—/a ) k—b (0)+0 ( k ) .

We can also calculate W by using Eq. (B4) and the form
of wL (r, k) appropriate to the region which includes the
point a, namely, the form given by Eq. (2.14). This form
can be simplified, since for the region in question one can
use the small argument expansions ofjz (kr) and nL(kr).
Equating the two expressions for W, one arrives at

1 A.
2 rL = — uL(r)dr

0

—[(2L —1)!!]/[(2L —1)a ~ '] .

Since we are concerned only with I.) 1, we see immedi-
ately from this formula that rL &0. (It is easy to check
that drl /da=0, so that, as must be the case if the result
is to be meaningful, rL is negative for any a in the
prescribed domain. ) It follows that cot[5L (0)]
=cot[5L(0)]=—ao. Since 51.(0) is to be understood as
the limit as k ~0 from above, we conclude that 5L (0)=m.

The proof as presented is valid for any short-range po-
tential, that is, for any V(r) which falls off faster than
any power of 1/r. The proof for long-range potentials is
more complicated but proceeds along similar lines and
will not be presented here.
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