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Photon antibunching in a free-electron laser
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A perturbative solution to the difference-differential equation describing the time evolution of a free-
electron faser based on the Bambini-Renieri Hamiltonian is obtained. This solution indicates that the pho-
ton number distribution is always sub-Poissonian as long as the perturbation approximation is valid. This
photon antibunching becomes more prominent as more photons are emitted; so it can enhance the
coherent properties of the free-electron-laser radiation in a way that is very welcome.

The free-electron laser (FEL) is attractive because it has
the potential to become the most efficient way to generate
coherent radiation which is also tunable over a wide fre-
quency range. This is made possible by eliminating the
"middle man, " i.e., the atoms, molecules, or crystals in the
traditional laser system. - Using quantum-mechanical
analysis, Madey first explained the gain mechanism in pro-
pagating relativistic electrons through a static magnetic field,
the wiggler, of an FEL system. When the first FEL amplif-
ier became operative, it indicated that most essential
features of FEL could be understood in terms of classical
mechanics. ' However, the problem of the photon statistics
of FEL and, consequently, the very question of whether or
not FEL is a laser in the sense that its photon number dis-
tribution is Poissonian can only be studied quantum
mechanically.

Quantum-mechanical analyses of the FEL often start
from the Bambini-Renieri Hamiltonian which describes the
system in a frame moving at a speed very close to that of
light so that (1) the wiggler field appears almost as a plane-
wave radiation (Weizsacker-William approximation), (2) the
frequency of the wiggler field coincides with that of the
laser, and (3) the electron dynamics is nonrelativistic.

Using the Bambini-Renieri Hamiltonian, Becker and Zu-
bairy have studied the photon statistics of an FEL in the
small-signal regime based on an evaluation of the time-
evolution operator to first order in the quantum-mechanical
recoil. On the other hand, Bambini and Stenholm and Dat-
toli and co-workers have solved various simplified versions
of. the so-called spherical Raman-Nath equation which is a
difference-differential equation for the probability ampli-
tudes of different photon numbers as functions of time.

We follow the approach of Dattoii and co-workers to ob-
tain a perturbative solution to the spherical Raman-Nath
equation based on small quantum recoils compared with the
initial momentum of the electron in the moving frame. Us-
ing this solution we can calculate the evolution of the pho-
ton statistics starting from vacuum. It is found that the
photon number distribution is always narrower than Pois-
sonian, as long as the perturbation approximation is valid.
This phenomenon can serve to compensate other factors
which tend to broaden the photon number distribution;
therefore, it can enhance the coherent properties of the FEL
radiation. Furthermore, this photon antibunching gets
stronger as the number of photons emitted increases. This
is very encouraging news, especially coming after the pes-
simistic conclusion of Ref. 5 that "the FEL is a laser in the
sense that it produces a coherent state only if it is not a
laser in the sense that it does not amplify. "

The Bambini-Rerieri Hamiltonian is given by Ref. 6 as

2

H = +hem(at. aL+awaw) +RA(at. awe '"'+awaLe""')
2m

A = e /2m Ciao Vw (2)

is the coupling constant with V~ being the wiggler volume.
The last term of Eq. (1) describes the elastic backscattering
of a wiggler "photon" into a laser photon and vice versa,
with the electron providing for the necessary momentum
change.

Starting from a quantum state, wherein the electron has
the initial momentum po, the wiggler field has n~ "pho-
tons" and the laser field has nL photons, written as

I&0& = Ke' '
Inw& lnL& (3)

where K is the normalization constant which does not need
to be specified. Because of the conservation of momentum
and total "photon" number, the wave function at a later
time t can be written as

Iy(t)) =exp[ —i (po/2mt+nwco+nt o))t] X C„(t) In)
n= —n L

where we have chosen the phase factor in a convenient way
and have adopted the simple notation

In) —= K exp[i(po/tt —2nk)z] Inw —n) Int. +n)
Substituting Eq. (4) into the Schrodinger equation with

the Hamiltonian given by Eq. (1), we obtain the following
difference-differential equation

i C„(t)= ( —2n 8+—n'e) C„(t)
dt

+ A[(nw —n) (nt. + n + 1)]'i'C„+)(t)

+ A [ (n w —n + 1) (nL + n) ]'i'C„g (t), (6)

where C„(t) is the probability amplitude that n photons
have been emitted at the time t and the two parameters

5=kpo/m, e—= 2@k /m

where p is the momentum of the electron, aL (aw) the
laser (wiggler) creation operator, and
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N = nw+ nt=.nw = (m~o/t) VwAw (8)

where A~ is the amplitude of the wiggler vector potential.
Then Eq. (6) reduces to

i C„(—t) = ( —2n 5+ n'e) C„(t)
dt

are related to the initial momentum and the quantum recoil,
respectively, of the electron.

To be more specific, we consider the case when the laser
field starts from vacuum; so the total number of photons is

with the initial condition

C„(0)=8„,o . (10)

The n~e term is the main obstacle in solving Eq. (9). So we
try a perturbative solution to the first order of e based on
the assumption that

Ne/8 ( 1

which simply means that the electron momentum remains
positive in the moving frame after the emission of N laser
photons. Let

+ A [ (N —n) (n + 1)]' 'C„(t)

+ A[(N —n +1)n]'/ C„~(t)
C„(t)= A„(t) + eB„(t) (12)

(9) Substitution of Eq. (12) into Eq. (9) yields two equations:
I

i A„(t)—= —2n 5A„(t) + A [(N —n) (n + 1)]' A„+ ~ (t) + A [(N —n + 1)n ]' A„ t(t)
dt

i B„(t)=—n A„(t) —2n5B„(t) +A[(N —n)(n +1)]' B„+t(t)+ A[(N —n +1)n]' B„q(t)

(13)

(14)

The solution to Eq. (13) is the following8 and

~ j./2

(t) ( /)nei//st W "(t) [(A/Q) sinQt]"
W(t) —= cosQt —i (5/Q ) sinQt

(15)
Using Eq. (15) we obtain a solution to Eq. (14) of the form

where

(82+ A2)1/2

B„(t)= A„(t) [F(t) + n G (t) + n'H (t) ]

(16) where

(18)

and

H(t) =——i [W(t) sinQt] ' J1 8"(t) sin~Qt dt

G(t) =—[2(N —1) W(t) cosQt —2N+ l)H(t) —iN[W(t) sinQt] '
Jl W(t) sinQt dt+i W(t) sinQt20

(19a)

(19b)

F(t) =——iN(N —1)(A/Q)'si QntH(t)+iN' J) W(t) cosQt dt

+iN'[sinQt+i (8/Q) cosQt] W '(t) „W(t) sinQt dt —iN(N —1)(A'/8Q') sin2Qt+i [N(N —1)A'/4Q' —N']t.

(19c)
All the integrals that appear in Eqs. (19) can be carried out explicitly.

The probabilIty that n photons have been emitted at time t can be written as

N
P„(t)=—C„'(t)C„(t) = [1—V(t) j~ "V"(t){1+a [F(t) +nG (t) + n'H(t) ]+c.c.} (20)

where we have defined
j

ry out the photon statistics calculations as follows:

V(t) =—(A/Q )' sin'Q t . (21) (n ) = NV+ e2NV (1 —V)

The normalization condition for the probability distribution
of Eq. (20) implies that

Re{F(t)+NVG(t)+ [N V +NV(l —V)]H(t)}=0, (22)

x Re(G (t) + (2NV+ 1 —2 V)H(t)}

(n~) =N V +NV(1 —V)

+ e2NV (1—V) Re ((2N V + 1 —2 V) G (t)

(23)

which can also be established by using the explicit expres-
sions given by Eqs. (19). Using Eqs. (20)—(22), we can car-

+ [4N V +NV(6 —10V)]H(t)}
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and

(n') —(n)' —&~)
(n)

+ A2/2802, and Re(H} = 1/25. Substitution of these values
in Eq. (25) gives

Q(t =n/20) = —(A/Q)'[1+eAt5(A —25 )/0 ] . (26)

= —V —e2V(1 —V) Re(G(t) —2%(1—2V)H(t)} . (25)

The parameter Q has been used by Mandel9 as a natural
measure of the departure of the variance of the photon
number n from that of a Poisson distribution, for which

Q =0. A negative value of Q implies photon antibunching.
As displayed in Eq. (25), we always have Q & 0 as long as
the perturbation approximation is valid.

Since V, as defined by Eq. (21), is proportional to sin Qt,
we see that the antibunching effects become more prom-
inent as time passes; it reaches its peak at the same time
when the laser output is at the maximum. It should be in-
teresting to examine the situation at t =7r/20. We have
V=A2/Q2, Re(F}= —AtA2/2802, Re(G} = —1VA2/25fl~

In conclusion, we have carried out a perturbative analysis
of the fundamental process in a free-electron laser, a
single-electron interacting with a single-mode radiation
which is in vacuum state initially, described in the Bambini-
Renieri frame. The photon statistics of this simple system
shows antibunching as long as the perturbation approach is
viable.
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