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Integrated moments of the transition matrix elements for proton-electron Coulomb collisions in
strong (B > 10'? G) magnetic fields are calculated numerically. Calculations are carried out for vari-
ous energies and incident angles. Excitations of the electrons to the first excited Landau level are in-
cluded. Analytic results are also presented for comparison. These calculations should be applicable
to detailed models for the x-ray emission from accreting, magnetized neutron stars.

I. INTRODUCTION

In modeling the emergent x-ray spectrum from an ac-
creting neutron star, a detailed evaluation of the deposi-
tion of energy and momentum by the infalling material in
the stellar atmosphere is crucial. For the special case of
accretion onto a neutron star with no surface magnetic
field B, two distinct types of models for the deceleration
of infalling material have been considered. In the first
type of model, accreting material is slowed down col-
lisionally as it penetrates the neutron star’s atmosphere,
the dominant scattering process being Coulomb col-
lisions."? In the second type of model, collective (plasma)
effects slow accreting material more efficiently than any
collisional process."»*> If the deceleration due to collective
effects is extremely rapid, a standing shock may form just
above the stellar surface and the kinetic energy of the in-
cident stream is quickly randomized in the vicinity of the
collisionless shock.’

Recent observations of cyclotron features in the spectra
of pulsating x-ray sources*~% underscore the importance
of the more general (and interesting) case of accretion
onto a magnetic neutron star, Bs+0. Once again, both
collisional and collisionless deceleration models can be
considered. In this paper we will focus our attention on
collisional deceleration via Coulomb collisions of accreting
protons with atmospheric electrons.”!® Specifically, we
present numerical results for various integrated moments
of the transition rate for Coulomb collisions in a strong
magnetic field. These quantities allow, for example, the
calculation of friction coefficients in the Fokker-Planck
equation for the incident proton beam, and should be use-
ful in simulating the deceleration of accreting material.

The calculations presented in this paper have, we feel,
several advantages over previous work. First, the phase-
space restrictions on the momentum transfer and the pro-
ton recoil have been properly treated for arbitrary “pitch
angle” between the proton momentum and magnetic axis.
This results in values of the friction and diffusion coeffi-
cients which are reliable at arbitrary pitch angle, in con-
trast to previous work (cf. Ventura,!! Pavlov and
Yakovlev,'? and Langerlz). Second, no restriction to very
small momentum transfer is made (cf. Kirk and Gallo-
way'®). This improvement affects all of the quantities we
calculate, but is, in particular, crucial to a reliable evalua-
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tion of the excitation cross sections. Third, we do not
average our results over an assumed electron-velocity dis-
tribution, so that the moments calculated here should be
useful for a variety of applications, involving both
thermal and nonthermal electrons. The calculated mo-
ments can be implemented in a straightforward way in a
Monte Carlo calculation of the stopping length of accret-
ing protons. We shall report on the results of such a cal-
culation in a future paper.?*

In Sec. II we review the physical conditions in the at-
mosphere of an accreting magnetic neutron star, and list
the approximations used in our computations. Basic
equations for the calculated integrals are given in Sec. III,
where our numerical methods are also discussed. As the
work involved numerical phase-space integrals of dif-
ferential rates, we also present analytic estimates of the in-
tegrals in different limiting regimes for comparison with
the numerical results. Numerical results and conclusions
are given in Sec. IV.

II. PHYSICAL CONDITIONS
AND APPROXIMATIONS

Electrons in a spatially uniform magnetic field are
described quantum mechanically by Landau wave func-

tions. A given electronic state has total energy (nonrela-
tivistic)
P’ ;
E= +(n+ 3 Vi, | (1)

2m,

where w,.=eB/(m,c) is the electron gyrofrequency, p is
the electron momentum along the magnetic field axis, and
n, which characterizes the kinetic energy perpendicular to
the field, is a non-negative integer.!* In the atmosphere of
an accreting x-ray source, which may not be in strict ther-
modynamic equilibrium, we can therefore distinguish
three different energy scales for the electrons: kpT||, the
typical kinetic energy along the field, k3T, the typical
transverse kinetic energy, and #iw,~11.6B, keV, where
19,2513/(1012 G). Typically, kBT“~10 keV for x-ray
pulsars'® and, since the rate of collisional excitations in
the course of Coulomb collisions among atmospheric elec-
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trons and ions is slow'"!® in comparison with the radia-

tive deexcitation rate, we expect T <T). Thus, for
B, ~1 (which is characteristic, for éxample, of radiopul-
sars'’) we expect kpT) <fiw,, and perhaps kpT <<fio,.
For Her X-1, the best-studied x-ray pulsar, the observed
cyclotron features*~%%® imply #w,~40—50 keV (corre-
sponding to By, ~3.4—4.3) so that kzT, <0.2%w, in our
calculations. Thus to a good approximation essentially all
atmospheric electrons are in the ground state.

Accreting protons free-fall onto the stellar surface with
a speed vg=(2GM /R)'?=0.54c for a neutron star with
mass M~1Mg and radius R=~10 km. Since
mov%/2=GMm,/R ~75 keV, collisional excitation of
n=0 atmospheric electrons in “knock-on” collisions is
possible. However, in the cases of interest, collisional ex-
citations should be confined to low-lying Landau levels.
For example, when B, >3 (as is the case for Her X-1) ex-
citations to the n=1 state should dominate. In the fol-
lowing, we consider only collisions for which either the at-
mospheric electron remains in the ground state (0—O0
transitions), or is knocked into the first excited state
(0—1 transitions). Our numerical work can be extended
easily to include higher excitations.

In computing collision matrix elements we employ the
Born approximation, and adopt plane-wave states for the
accreting protons, but use exact Landau wave functions
for the electrons. Protons and electrons are treated nonre-
lativistically. Even though vg~0.54c¢ for the protons as
they impinge on the atmosphere, the kinematic effects of

the nonrelativistic approximation should not be impor-

tant, and time-dilation effects should only lead to errors
~+(vg/c)?~15%. The interaction potential is taken to
be a statically screened Coulomb potential

_ezexp(—xs | To—T5 1)
T

V(T —T;)= -
re_‘ril

(2)

for a proton at position T; and an electron at position T,.
The screening length ;! is an arbitrary parameter in our
calculations, but it is expected!!® that k;, ~«p, where the
Debye length in the absence of a magnetic field is

K51=(kBT“/47mee2)‘/2
= 2.4X 107 "[kp T, /(10 keV)]'/*
X [n, /(10?3 cm~ )17 2 cm (3)

for an atmospheric electron density n, and temperature
T). Two possible refinements to the choice «;=kp
should be noted. First, our use of plane-wave states for
the proton represents a classical approximation in which
we ignore the fact that the proton actually has Landau
levels like the electron. The minimum momentum
transfer needed to change the proton’s Landau level has
an associated length

Ky ' =(my,/m, ) /oo,

=3.1x10~5 % B3l em, @)

where v is the proton speed in the Gallilean frame in
which the electron initially has no velocity along the field.

If kg ! is smaller than the Debye length, the use of plane-
wave proton wave functions is inaccurate for low-
momentum transfer, x <«,. As will be apparent in Sec.
111 this inaccuracy only affects the Coulomb logarithm, so
we should be able to take «; =k, in this case, making only
a (small) logarithmic error. Second, because
(kgT) /m,)'"/*~0.14[kp T /(10 keV)]'/%c is somewhat
smaller than the typical proton speed vg=~0.54c, we
should in principle use a dynamically screened interaction
potential in computing matrix elements.!” Once again the
resulting error should appear only in the Coulomb loga-
rithm, and can be roughly taken into account by taking

Ky =[4mn.e?/(+m )12 .

III. CALCULATION OF MATRIX ELEMENTS
AND INTEGRATED MOMENTS

A. General Overview and Choice of Natural Units

The Fokker-Planck (FP) equation can be used to follow
changes in the proton distribution function caused by col-
lisions provided the momentum transfer per scatter is suf-
ficiently small. However, transport coefficients involving
integrals of the linear and quadratic moments of the
momentum transfer weighted by the differential collision
rate must be computed before the FP equation can be
solved.?’ Therefore, to determine these coefficients one
must have an expression for the differential collision rate
which, when multiplied by the appropriate moments of
momentum transfer, may be analytically or numerically
integrated over the kinematically allowed phase space for
all collisions. s

The differential collision rate was calculated using the
distorted-wave Born approximation,

dI‘(i—*f):—zﬁl | <f | Hin |1) |28(E;,—Epdf ,  (5)

where Hj, is the interaction Hamiltonian, i/ indicates the
initial state of both the electron and the interloping pro-
ton, f the final state, E, is the energy of state a, and df
denotes the final-state phase-space element. As was men-
tioned in Sec. II, protons are described by plane-wave
states, for which the wave functions are

$i(T1) =L~ %explik;T;) 6)

for momentum hﬁi and normalization volume V=L3.
The electron wave functions are taken to be'*

Y (T.)= 2wL) ™" ?expli[k,z. +(n —s)d. 1}

— 1 ,eB
X A 11,,5 ?pz—ﬁ: (7

in cylindrical coordinates (p,,®,,z. ), with
I,,s(z) =(—1 )S(S!/n”l/Zz(n ——s)/2e —z/ZLSn —(z) , (8)

where L2(z) is the generalized LaGuerre polynomial.?!
The total energy of this electronic state is given by Eq. (1)
with p =#k, and s is a degenerate quantum number.
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For the Landau wave functions, a natural unit of length
is [cf. Eq. (7)] -

A=(#/w,m,)"?
=2.56x10""°B;'? cm 9
and the natural unit of momentum is
pg=H/A=fiw,m,)'"?
=4.10x10"®B}{?gcms™! . (10)

In the following, all momenta will be expressed in units of
ps- A natural unit of velocity is

vp=pp/m,
=4.50x10°B14?> cms™! (11)
or equivalently,
vg=c(B/B,)'"? (12)
where
B.=m2c?/eti
=4.41x10" G . (13)

Physically, we may think of our unit of length as being
roughly the size of the smallest Landau orbit. Our unit of
velocity is then seen to be the typical speed of an electron
in such an orbit. Energy transfers will be expressed in
terms of the Landau-level spacing, #iw,=11.6B,, keV.
Thus, for an electron at rest and a proton moving straight
down along- the field at a speed v=wuvg, Coulomb excita-
tion to the nth electronic Landau level is possible only if
%2> 2n, in our units.

B. Matrix Elements

In our system of units the Coulomb interaction Hamil-
tonian for proton-electron scattering is

k. | T —T
Hi(Fo— )= —a,(B/B,)~ 12 SR K | Te—Ti )

I ?e—f} I
(14)

where a, =e?/#ic. The momentum q with components x
and y perpendicular to the magnetic axis and g along the
field is transferred from the incident proton to the atmos-
pheric target electron in each Coulomb collision. We
adopt L3=n."!, where n, is the (dimensionless) atmos-
pheric electron number density, so that the reaction rate
[Eq. (5)] is the differential rate per incident proton of
scattering events with momentum transfer . After sum-
ming on the final value of the degenerate electron quan-
tu11212 number s, and averaging over its initial value we
get

I2(5(x%+p?)
(x2+y*+gqf +x2)

dr,,(q)=[4a2n,(B/B,) 1]

X8(Ef—E;)dx dy dgq), (15)

for an electron initially in the nth and finally in the n'th
Landau state. Here I,,,/(z) is given by Eq. (8) with s=n".

To find the rate of scattering from one proton state to
another due to scatterings in an actual atmosphere, we
also have to average the differential rate over the distribu-
tion of electron quantum numbers » and k, in the initial
state. As was discussed in Sec. II, we assume that n=0
only for atmospheric electrons. Because of Gallilean in-
variance along the field only the relative velocity of the
electron and proton parallel to B enters the rate; neither z
component occurs independently. Thus, in our calcula-
tion of a differential rate of scattering from an initial state
with  momentum (m,/m./)ud with components
(my/m,)(u sin6,0,u cosB) to a final state of momentum
(m,/m,)d —q, we need calculate only the rate for an ini-
tially stationary electron k,; =0 for different values of u.
The rate with a thermal distribution of electron velocities
along the field—or any other distribution—may then be
derived by integrating over the appropriate range of rela-
tive velocities. Specifically, if we know the differential
rate of collisions dI'(d,q) with momentum transfer
starting with a proton of velocity U and a stationary elec-
tron, and we wish to find a rate dT,.,(ud,q) for similar
collisions with an initial distribution of electron momen-
tum f(k,;), we have

ATe(6,@)= [ dT (T ~k, 8, q)f (k; )k . (16)

C. Phase space

Next, we consider the structure of the phase space over
which the above integrals should be taken. The allowed
transitions are determined by conservation of energy for a
given momentum transfer §. If k,=0 initially, then in
our system of units

. m
Ef—E;=+ qﬁ_zﬁ-a+m—”<x2+y2)+2(n'—n) (17)
P

for an n to n' transition. The integrals we must do over
the three-dimensional space of momentum transfer than
may be immediately reduced to two-dimensional integrals
by integrating in one dimension over the energy-
conserving & function. We are thus left with two-
dimensional integrals which must be done numerically. A
little insight into the numerical technique and methods of
approximation may be gained if we make some simple ob-
servations regarding the shape of the surface E;—FE;=0
in the original three-dimensional space before we present
the two-dimensional forms of the integrals. First, the sur-
face is an oblate spheroid; its principal axis in the g
direction is (m,/m)!/? times shorter than the x- and y-
principal axes. Second, regardless of the particular transi-
tion, all spheroids are centered at the same point
[(my,/m,)u sinB,0,u cosf], and spheroids with a larger
An =n’'—n are nested within spheroids of smaller An. In
particular, the An =0 spheroid encloses all the others, and
it is always tangent to the origin. With this in mind, let
us consider how this spheroid changes with changing an-
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gle 0, at a given velocity u. When 6=0 (i.e., the incident
proton is moving along the field), the spheroid is tangent
to the x-y plane at the origin. As 6 increases to 7/2, the
spheroid grows rapidly in size, as its center moves out in
the x direction and simultaneously descends onto the x-y
plane. It lies wholly in the region x >0 when 6=1/2, be-
ing tangent to the y-q| plane. This shows why, near
0=m/2, y and g are a convenient pair of integration
variables, whereas for smaller angles x and y are the best
choices. If we use the energy-conserving 8 function to in-
tegrate over gq||, we are left with integrals over x and y.
Linear moments of the transition rate are proportional to

2,2
: ) aI,%,,r xXT+y7
I (u,0)= dxd
“ = Iy 4 y2+(g] Pk, P
(18)
and the quadratic moments are proportional to
2,2
aBIr?n' X +y°
Ins(u,0)= dx dy
o 1=§',_ f f (x24-y2+(qf) P +K2Vk,
(19)
where a,3 € {x,y,qﬁ }, and
qﬁ =u cosf+tk, (20)
with
k,= | u%cos®0+2ux sind—2(n’'—n)
172
—(x24y?) 21
mp

The rate of collisional excitations from n=0 to n'=1is
similarly proportional to

|25
2
IYyu,0)= dx dy
1=§,_ff [x2+y2+(gf) 2 +K} 1%k,
(22)

for a given proton velocxty The constant of proportional-
ity in all cases is 4a’n.(B/B,)~! times the (suitably
transformed) electron distribution function.

D. Numerical Evaluation of the Phase-Space Integrals

The integrals in Egs. (18), (19), and (22) have been
evaluated with n=0 but n'=0 or 1, and 0.1 <u <33 for
all angles (except in the case of some contributions from
the 0—1 transitions, which become very small by the
time u =0.5). The numerical integrations were done us-
ing the provisional value k?=10"%. We provide formulas
which have been checked by further numerical integra-
tions to extrapolate these results to different values of «Z.

Several problems brought about by the nature of the in-
tegrands must be addressed in numerically obtaining the

integrals. The first problem comes from the quantity k%,
in the denominators. The projected area of integration is
a disk in the x-y plane on the perimeter of which k, goes
to zero. The integrand then becomes singular, but of
course the integral is not. This problem was solved by
omitting a very narrow ring from the region of integration
at the edge of the disk. This ring makes a negligibly small
contribution to our integrals until 6 is nearly 7/2. At
such high angles, however, we obtain our integrals from a
program using y and g|; as integration variables.

The next problem is that integrands such as that of
I®(u,0) are nearly antisymmetric in x near the origin,
while large contributions to the integrals come from that
neighborhood. To avoid near cancellation of large terms,
we integrated the symmetrized integrand

[s(x:y)=Ff(xp)+f(—x,p) (23)

over that part of the disk' of integration with x >0 which
as a counterpart with x <0 (see Fig. 1). Note that all our
integrands (with the exception of those in ;™ and I;’g ,
as£y, which are identically zero) are even in y, so we in-
tegrated only over y <0, doubling the value at the end of
the numerical integration to obtain the correct result.

The last problem arising is peculiar to the An=0 in-
tegrals with k2 <<1, for which the two-dimensional in-
tegrals are logarithmically divergent. In this case, the in-
tegrand is sharply peaked near the origin, making the nu-
merical integration time consuming. We therefore found
functions which matched the integrands very closely at
the origin, and which could be integrated analytically over

_a small, semielliptical patch centered on the origin and ly-

ing well within the region of integration. These functions
were subtracted from the integrands within the patch, and
the patch was integrated separately from the rest of the
symmetrized region (see Fig. 1). The contribution from

excluded because of
exponential domping
in mm;rand

x <0 excluded because

of symmetrization y=4.5

"////

lower half excluded as
it gives a contribution
identical fo that of the
upper half

FIG. 1. A diagram of the region of integration as it was sub-
divided in our integration routine. In the symmetrized region,
the symmetrized function f(x,y)+f(—x,y) was integrated;
outside of this f(x) was the function integrated. In the elliptical
region, an analytically integrable function was subtracted from
the symmetrized integrand to accelerate the numerical integra-
tion.
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TABLE 1. Symmetries of the integrals.
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TABLE II. Logarithmically divergent contributions.

Integral Symmetry Integral AI
™ 1(6)=1(m—6) ® ~7_[3sin(36) —sin6]
nr I8)=I(r—0) 8:1:
1;1"" 1(8)= —I(7—8) I 8—’%[cos(39>—cose]
, u
) 4 1(6)=I(7—6) 0 —
T 10)=—I(r—0) L Ty L1+eos(20)]
I, HO)=I(w—0) % Z-sin(26)
u
Ly 1(0)=I(m—0) 00 —
Iq”q” e [1—cos(26)]
o
Iy -

the different subregions were then added together, and the
analytically determined contribution by the subtracted
function restored to obtain the value of the integral being
sought. In all cases, because of the exponential (damping)
factor in all of the integrands, we integrated only over
those portions of the disk for which |x| <4.5 and
|y | <4.5. (When g) and y were used as variables, the
lack of a strong exponential damping in ¢;; made it neces-
sary to adjust the limits of integration in g until a con-
sistent value of the integral being done could be found.)

In order to do the two-dimensional integrations, we
wrote the integrals as

ymax
I= fo [

- foymax F(y)dy

*Y xoy)dx |d
fa(y)fx,y x] ly

(24)

and used an adaptive scheme to do the one-dimensional
integrals.

A one-dimensional adaptive integration works by ap-
proximating the integral of a function over a given inter-
val in two ways; one approximation will involve evaluat-
ing the function at more points and will be finer than the
other. (In our case three- and five-point Simpson’s-rule
estimates were used.) If the two approximations do not
agree to within a given error tolerance €, the interval at-
tempted is halved, and we attempt the leftmost of the two
subintervals. When the two agree, we start over with
whatever is left of the original interval. We also keep the
absolute value of the difference between the two approxi-
mations as an estimate of the error made in accepting a
given interval, and sum the error estimates for all the ac-
cepted subintervals to obtain an estimate of the total error
for the complete integral.

A two-dimensional integration has two sources of error:
that which comes from knowing F(y) imperfectly, and ¢,

T T T T T T T T T
a =05
121 e =10 © % 7]
o =33 Q 2 L]
o =100 A
8- » =330 b1 .
&
o
O x
o 4 8 -
> ®
-]
4
Ofs ¢ .
o
w [ ]
A e
-4} ‘R a ; -
p.] o P
2 & ¢
-8 1 ] 1 1 1 ] ] 1 1
0 - q0° 20° 30° 40° 50° 60° 700 80° 90e
LC]

FIG. 2. Plot of linear moment I° multiplied by u2, where u is the dimensionless relative velocity of the electron and proton, as a
function of the angle 6 from the field, for five values of the relative velocity u (0.5, 1.10, 3.3, 10.0, 33.0).
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FIG. 3. Plot of the linear moment’ I‘?IOI multiplied by u2, as a function of 6 for five values of u.
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FIG. 4. Plot of the quadratic moment 12 multiplied by u, as a function of @ for five values of u.
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FIG. 5. Plot of the quadratic moment Igﬁq} | multiplied by u, as a function of 6 for five values of u.
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FIG. 6. Plot of the quadratic moment I, ’?‘?H multiplied by u, as a function of 0 for five values of u.
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the error which would result from numerically integrating
F(y) even if it were perfectly known (i.e., the contribu-
tions from integration in x and y, respectively). Choosing
the error tolerance € appropriately for the x and y integra-
tions is crucial. For instance, for 1% accuracy from a
given integration over some interval, we might choose € to
be 0.01 times the five-point estimate. The pitfall of this
choice is that one might spend a great deal of effort
evaluating very accurately a subinterval which contributes
very little to the entire integral. Instead, we include in € a
small term independent of the subinterval being evaluated,
taken to be a tiny fraction of our first estimate of the en-
tire integral. We integrate the error in F(y) with y, and
add to the account being kept of the numerical error re-
sulting solely from integration in y, thus forming an esti-
mate of the total error in the two-dimensional integration:

€oi= [ &)dy +e, . (25)

We check that our estimate of the final integral I is suffi-
ciently accurate by comparing it with €,,. If in doubt, we
make another estimate of the integral with a tighter error
tolerance, and compare this value with the first. Our esti-
mates of the integrals are nominally good to 1%, except
for example, at angles near 7 /2, where integrals such as

I ?ﬁ go to zero and the accuracy perforce diminishes.

IV. RESULTS AND CONCLUSIONS

Numerical results for I, I 2‘;,, 1%, and I 2}5, are present-
ed? in tables and in Figs. 2—13. The integrals have been
computed for 0<O<m/2, and for 1 <u <33 using the
fixed value k2=10"°. The 0—0 transitions also include
data for ¥ =0.5. Because of the angular symmetries of
the various integrals, the tabulated data can easily be ap-
plied to a full range of angles 0 <6 <. The symmetry of
each integral under the transformation 6—7—8 is given
in Table 1.

In order to extrapolate from k>=10"% to arbitrary
values we write

I(k})=I(k?=10"%)+ AI In(10%;) . (26)
T T T T T T T T T
3.0 N
2.5 e § 2 O° .
—— @ = 45°
i -—-0 =85°
20 |
1.0 :;'"u-...\ i
[
0.5 = |
° S 45 6 v & s 1o

c

FIG. 7. Plot of the excitation-rate integral I°! as a function
of u for three angles 6 (0°,45°,85°).
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FIG. 8. Plot of I°! for u =1.43 as a function of angle.

Analytic formulas for AI(u,0) are listed in Table II.
Changing «? only affects integrals for which An=0 and
there is a logarithmic divergence at small momentum
transfers. The formulas for AI were found for small an-
gles by expanding the integrands in x and then analytical-
ly evaluating the resultant logarithmically divergent in-
tegral. To find the «? contributions for angles near /2
we change integration variables to g; and y. We then
find expressions for these contributions which are identi-
cal to those given by the low-angle formulas in the limit
6—m/2. That the low-angle expressions should be ap-
proximately valid for all angles is not too surprising, since
the low-angle expansions show that as the angle increases
the integrand rapidly grows more sharply peaked in the
variable x. An expansion in x would therefore not be ex-
pected to fail until an angle quite near 7/2 is reached.
The estimates of the complete integrals (not just the low
momentum transfer contributions) given by these expan-
sions are accurate only for small angles, however. This is
because in the Coulomb logarithm there is implicitly a
high wave-number cutoff of order unity in addition to the
low momentum transfer cutoff ~x,. By this point (x ~ 1)
the expansion must fail, especially for high angles as the
bounds of integration draw within this region and become
influential.

To use the data provided in the tables to make models
of neutron star atmospheres, one needs to do several
things. First, to transform back to conventional units, one
must convert the tabulated, dimensionless integrals ac-
cording to the prescription outlined, in detail, in Appen-
dix A. Second, one needs to take these coefficients and
produce from them coefficients appropriate to the veloci-
ty distribution of atmospheric electrons in the model
under consideration, e.g., a thermal distribution. This is
because the quantities we tabulated are for collisions with
electrons which are initially at rest along the field: one
may view them as being essentially FP coefficients for a
cold atmosphere. The invariance of the collision physics
under Gallilean transformations along the field [viz. Eq.
(16)] allows us to do this very simply. To obtain the mo-
ment relevant to a particular distribution of atmospheric
electron velocities along the field, we write
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FIG. 9. Plot of the linear moment for the transition n =0 to 1, I' multiplied by the relative velocity u, as a function of the angle 6
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FIG. 11. Plot of the quadratic moment for 0—» 1 transitions I2!, multiplied by u, as a function of 6 for four values of u.
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Lew(w,0)= [~ fle, ) oa(u',0)dk;

where f is the electron distribution function and 1,4 is
the tabulated moment. The arguments ' and 6’ are

u’=(u2—2uk,-,zcos0+k,%k)1/2 ,

¢’ =tan~'[(u sinB) /(u cosO—k; ,)] .
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FIG. 14. Drag moment A4, is graphed in the magnetic
(B=10" G) and nonmagnetic cases, for a proton traveling at
0.5¢ with an angle 6 to the z axis, through a “cold” plasma (col-
liding electrons initially at rest) with screening length 2.6 10~
cm, scaled to n, =10?* cm~3.

In simulations of an atmosphere, the tables provided
will be inadequate if a significant fraction of atmospheric
electrons contribute values of u#’ smaller than those for
which the moments were tabulated. This would be the
case for a proton moving along the field with a velocity
less than or of the order of a typical electron velocity.
Such a case is not expected to be of importance in actual
simulations, though, as the infalling protons are expected
to veer to large pitch angles before decelerating much.

The form in which the data have been presented seems
to us the most generally useful, as it is applicable to non-
thermal distributions for the atmospheric electrons as well
as thermal distributions. In addition, in a Monte Carlo
calculation of the stopping length and related problems,
one may forego the integration above by merely picking
colliding electrons at random from their posited distribu-
tion.?*

A remark on the excitation rate integral (I°!) is in or-
der. When the proton pitch angle 6540, this integral is
nonzero for proton velocities quite a bit less then u =2,
the threshold for excitation at 6=0. This may be attri-
buted to the fact that only momentum along the field is
conserved in a collision. The resonance peak is therefore
confined to pitch angles near zero, and is also limited to a
very small range of velocities. Figure 7 provides an over-
view of the excitation rate as a function of proton velocity
and pitch angle.

For comparison with our results, the analogous mo-
ments for a cold plasma with no magnetic field have been
derived and are supplied in Appendix A. Figures 14—16
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FIG. 15. Drag moment A, is graphed in the magnetic
(B=10"* G) and nonmagnetic cases, for a proton traveling at
0.5¢ with an angle 6 to the z axis, through a cold plasma with
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compare linear moments in the magnetic and nonmagnet-
ic cases for a physically interesting velocity, ¥'=0.5c

~ V. In the magnetic case we have taken B=10>G. In

Fig. 17 we make a similar comparison between the traces
of the tensor of quadratic moments in the two cases.

We tested our numerical integrations in several ways.
First, we used our routine to evaluate analytically known
integrals  which in crucial respects (sharp peaking, ex-
ponential decay, etc.) resemble our integrals. We also used
low-angle approximations to check the accuracy of our
numerical results, generally finding agreement to <1%.
For 0—/2 our approximations (see Appendix B) are
rough, and one can only expect order of ma%{)utude agree-
ment with the full numerical results. For I, at high an-
gles, however, one finds agreement within 15% The ap-
proximations in this regime generally do not take proper
account of the exponential damping and were not expect-
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FIG. 16. Drag moment A || is graphed in the magnetic
(B=10"* G ) and nonmagnetic cases, for a proton traveling at
0.5¢ with an angle 0 to the z axis, through a cold plasma with
screening length 2.6 10~7 cm, scaled to n, =10?* cm—3

8

FIG. 17. Trace of the V,0 contributions to the Fokker-
Planck diffusion tensor B, is graphed in the magnetic (B = 10"?
G) and nonmagnetic cases, for a proton traveling at 0.5¢ with an
angle 6 to the z axis, through a cold plasma w1th screening
length 2.6 10~7 cm, scaled to n,=10% cm 3.

ed to be as successful as the low-angle ones; we cautiously
took the agreement of I as a further indication that the
integrals were being done correctly. Another check in-
volved the independent determination of integrals using
our “standard” routine, which integrates in x and y, and
our high-angle routine using g| and y. On a sporadic
basis, integrals were evaluated without the elaborate sub-
divison of the integration domain described above, leading
to good agreement with the numerical results obtained
more efficiently with our standard techniques. Overall,
we estimate our numerical accuracy to be better than a
few percent.

APPENDIX A: CONVERSION
TO CONVENTIONAL UNITS

To turn our numbers into quantities in conventional
units, note the following.

(i) The transition rate from the lowest to the first excit-
ed Landau level is given by

ﬁz 01
em 3 I

To_1=4a2(B/B,)~%n

(ii) The contributions by 0-—n' transitions with relative

(dimensionless) velocity u, pitch angle 0, to the Fokker-

Planck drag and diffusion coefficients as defined by
Lifshitz and Pitaevskii (Ref. 20, p. 90), are, respectively,

7 2 -,
Ag=4a,(B/B,) nem

I¥ (u,0),

Bg,=20%(B/B,) " *n # eIy (u,0) .

In the nonmagnetic case we find, for speed V,
=4aln, —ﬁilﬂx v,6) (B=0),
me

Bg, =2aln,#clg,(V,0) (B=0),
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where

v -2

L= |— sinf(In2—Iné —+) (B=0),
v~ |

L=m|—~ cos@(In2—Iné — %) (B=0),
v ~

IL,=m - [sin%0 +cos?6(In2 —InE —1)] (B=0),
v -1

I,=m - sinf cosf(ln2 —Inf) (B=0),
v -1

I,=m - [cos?0+sin?6(In2 —InE —1)] (B=0),

-1
Iy,=m|—| (In2—Inf—1) (B=0)

(&="%kp/m,V; kp is the Debye wave number).

APPENDIX B: ESTIMATES OF THE INTEGRALS
IN SOME LIMITING REGIMES

The subscript *+ in the following results indicates the
result for the + channel of the given integral. The total
values of the various integrated moments are always sums
of contributions from these two channels [see Egs.
(18)—(22)].

For 6 << 1, u >>1 we have approximately

(10)_ ~T(0.44+Inx,) ,
u

0y _ . 37 _m ™
(Ig) =~ 21120(0.44+1m<s) W,

(0.44 +1nk;) ,

(IQ)_z—%(o.Mans) ,

%, )

JUAY )
aya ) - =~ 0%(0.44+Ink, ) ,

(Iq"lj’x)_ziug(o.44+1nxs) ,

(I,?f)_z—%(O.M+1nK,) ,

i-—CAE'I(A)

I®), ~
( )+ m 4

9

’

w o—t
— 2 — -
A=2u? E,(4)= fA —dt

0\ _ 1 a4
(Iq”q“)+~21ru 1€ E(A)
For 6=0, u >>1 we have approximately

B B |-
70! z_ﬂ_ 142 (o872 D =y 2 2
I")_ o +3 e E12‘ 1|, B=u""+«k;
(o _

I _~ )

Il u

For 6 << 1, u >>1 we have approximately

U _~—TL(11BmB),
2u

(1,‘3;)_z5”;<1+31n3>,

01 —17'(088+IHB)
Ugyq, )= 243 ’

(I3 _=~(I2)_ .

For 0=m/2—¢, ¢ <<1 we have approximately (accurate
only to ~ 15%, since the exponential damping in the orig-
inal integrals was not properly accounted for in the ap-
proximations)

m
I,?Oz ——2;7(lnxs) ,
(Iqoﬁ)z—%?(lnxs—%lnu),

m
(Iy"y")z—;(lm).
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