
PHYSICAL REVIE& A VOLUME 31, NUMBER 2 FEBRUARY 198S

Variational calculations for excited states in He I: Improved estimation
of the ionization energy from accurate energies for the n S, n 'D, n D series
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Variational calculations with correlated basis sets have been carried out to obtain the nonrelativistic ener-
gies for the n 3S (n =2-6), n tD (n = 3-8), and n 3D (n =3-8) series in Het with estimated accuracies of
10 -10 cm . A comparison of the results with recently reevaluated experimental energy values, with
the aid of available relativistic and mass-polarization corrections, suggests a value of 198310.773{1)cm
for the ionization energy for He I on an energy scale fixed by the 2 P value of 171135.0000 cm

Recent precision wave-number measurements for Hei op-
tical transitions' 4 have improved the energy values of a
numb'er of Isnl states (n = 2—6) to accuracies of better than
10 cm '. To compare these results with theory to full
experimental accuracies, improvement of theoretical calcula-
tions is required except for a few low-lying states. Through
variational calculations using wave functions with hundreds
or more than a thousand expansion terms, or using wave
functions with logarithmic expansion terms, the nonrela-
tivistic energies for the states with n = 2 have been deter-
mined to within an accuracy of 10 cm ' or better. How-
ever, numerical convergence of the results iri these calcula-
tions was poorer for .higher excited states, and it has been
generally believed that variational calculations are unsuitable
for high-lying excited states. As we have shown recently, '
however, a careful choice of the basis functions greatly im-
proves the convergence, and enables one to carry out pre-
cision calculations up to high-lying excited states by using
reasonably compact wave functions. We have actually ex-
tended the previous calculations, to obtain the nonrelativis-
tic energies for the n 3S (n = 2—6), n 'D (n =3—8), and
n 3D (n = 3—8) states with estimated accuracies of
10 —10 cm '. In this Rapid Communication, we report
these results and make comparison with accurate experi-
ments.

The method of calculation was basically the same as that
described previously. ' The key to the acceleration of the
convergence is to use a trial wave function consisting of two
sets of correlated basis functions differing in the values of
nonlinear parameters. Specifically, we employed wave func-
tions consisting of symmetrized linear combinations of the

k ~1 ~2 i
' k ~ 1 2bases of the forms r't rfrkt2e ' 2 and r't r)rkt2e

multiplied (except for S states) by angular factors (we refer
to the former terms as "$ terms" and the latter terms as "(
terms"). Here, rt and r2 are the radial coordinates of the
two electrons, r12 the interelectronic separation, and i, j, and
k- non-negative integers. The values of the nonlinear
parameters g and ri were fixed, respectively, at
( —2E —Z2)'i and Z, with E being the energy of the state
in question and Z the nuclear charge, and the value of (
was optimized for every wave function. " (The optimum
value of g is much larger than g, and thus ( terms mainly
describe the electron correlation effect in the range of small
and middle values of electron radial coordinates. ) In the
case of D states, g terms were given sd angular symmetry,
while ( terms were given both sd and pp angular symmetry
in order that they form a complete set. In the present cal-

culations, we included in the expansion those g terms with

and those ( terms with

i+j+k+li —j Isko v, (2)

where n is the principal quantum number, hkp the Kroneck-
er 5, and v a given integer. The maximum value of v em-
ployed was 14 for 5 states and 12 for D states.

Convergence of the results as v was increased is shown in
Table I for selected states. The extrapolated energy values
given in the table were calculated using the formula

(Et Eo) (E2 Et)
2E1 —Ep —E2

(3)

where Ep, El, and E2 are the energy eigenvalues obtained,
respectively, for v = 10, 12, and 14 (S states) or v = 8, 10,
and 12 (D states). It is seen that the convergence for high-
lying states is comparable to or even better than that for
low-lying states. Table I also lists the results of Pekeris
(23S state) and Sims, Parmer, and Reese'2 (3'D state),
which we think are the only cases where an accuracy com-
parable to or better than that of our results was attained.
Agreement between these results and ours is satisfactory.
Comparison of the number of expansion terms employed
indicates the rapidity of the convergence of the present
method.

The extrapolation formula (3) employed here is of course
not an exact one, and it is possible that the improvement of
the accuracy gained by extrapolation is not very significant.
However, a number of cases, ' ' '' ' where extrapolated
values can be tested by more accurate calculations, indicate
that the difference between the extrapolated value and the
directly calculated value can at least be used as a good esti-
mate of the uncertainty of the results (we hereafter refer to
this difference as e). In the present calculation, the number
of g terms for a given state was fixed. For the states listed
in Table I, the effect of including additional g terms was ex-
amined by adding those g terms with (i ~ n + 1, j = 2,
k =0), (i n~+Ij=0, k =2), and (i =n+2, j =0,
k = 0). The resulting extrapolated values differed from
those given in Table I by 0.0e, —0.9e, 0.2e, 0.2e, and 0.9e,
respectively, for the 2 S, 6 S, 3 'D, 3 D, and 8 D states
( the minus sign indicates that the new extrapolated value is
smaller than, i.e., below, the old). '5 Calculations employing
additional g terms with pp angular symmetry were also tried,
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TABLE I. Values of nonrelativistic energies in Hei for wave functions of different expansion lengths. N&

denotes the number of g terms, W~ the number of ( terms, and )opt the optimum value of g. The results of
Pekeris (Ref. 6) and Sims et al. (Ref. 12) are given by comparison. All values in a.u.

State &opt Energy

2 S 16
16
16

Extrapolated
Perkeris

70(v = 10)
112(v = 12)
168(v = 14)

(715 terms)
(1078 terms)

1.7
1.7
1.7

—2.175 229 377 59
—2.175 229 378 15
—2.175 229 378 23
—2.175 229 378 24
—2.175 229 378 22
—2.175 229 378 237

63S 32
32
32

Extrapolated

70
112
168

1.6
1.3
1.3

—2.015 377 452 47
—2.015 377 452 87
—2.015 377 452 95
—2.015 377 452 97

3 1D 12
12
12

Extrapolated
Sims

86(v = 8)
162(v = 10)
273(v = 12)

(247 terms)
(347 terms)
("exact")

0.9
1.0
1.1

—2.055 620 701
—2.055 620 726
—2.055 620 732
—2.055 620 734
—2.055 620 718
—2.055 620 732
—2.055 620 74

8 D 32
32
32

Extrapolated

86
162
273

0.9
1.1
1.2

—2.007 816 508 5
—2.007 816 511 7
—2.007 816 512 4
—2.007 816 512 6

3 3D 12
12
12

Extrapolated

70(v = 8)
137(v = 10)
236(v = 12)

0.9
1.0
1.1

—2.055 636 275
—2.055 636 302
—2,055 636 308
—2.055 636 310

8 D 32
32
32

Extrapolated

70
137
236

0.9
1.1
1.2

—2.007 817 9304
—2.007 817 933 9
—2.007 817 934 6
—2.007 817 934 8

but the effect was negligible. From these observations we
believe that a few times e gives a safe estimate of the accu-
racy we have attained.

Our final results are summarized in the first column of
Table II, the obtained extrapolated energies being converted
to term values (ionization energies) by using a value of
109722.27309 cm ' for the "He Rydberg constant. Except
for the n ''D states with n = 3—6, the value of e (defined
above) for each state is less than one in the last digit quot-
ed, and we believe that the results are accurate to + 1 in the
last digit. For the n' D states with n =3-6, we give the
values of e (units in the last decimal place) in the
parentheses as a rough estimate of the uncertainty, since we
do not wish to quote the results to one less significant fig-
ure.

Next we compare our results with accurate experimental
energy values recently reevaluated by Martin. Following
Martin, we evaluate the (ground-state) ionization energy
(Et) by combining the theoretical and experimental results,
and examine the consistency of Ei's resulting from different
states. The values of EI given in the last column of Table II
are calculated as a sum TNR+ A~ M + AL +E,„p„where TNR

is the nonrelativistic term value, A~ M the sum of relativistic
and mass-polarization corrections to TNa (for "D states this
includes singlet-triplet mixing contribution), hL the (mostly

assumed values of) Lamb shift correction, and E,„~, the ex-
perimental energy values. The values of 4g M for S states
are taken from variational calculations by Accad, Pekeris,
and Schiff; these are estimated to be correct to within + 2
in the last digit quoted. Those for ' D states are from Cok
and Lundeen;. ' these are partly based on hydrogenic ap-
proximations and partly on perturbation theory, their uncer-
tainties being not specified (for the mass-polarization
corrections for the 3 'D and 3 D states, we employ our pre-
liminary values of 0.007 51 cm ' and —0.000 77 cm
resulting from our previous 132- and 112-term wave func-
tions, respectively).

Lamb-shift corrections for most of the states treated here
have not been calculated. For the n S states with n =3-6,
we assume the values of AL so that they meet two require-
ments: (1) ht. of each state is derived from n ~ scaling of
other AL, , (2) Et becomes as nearly constant as possible,
i.e., the dispersion of EI becomes minimal. As seen from
Table II, this choice of AL gives fairly consistent values of
EI, and suggests that the exact value of Ei is near
198 310.773 cm '. ' The assumed 3 S Lamb shift of
—0.0288 cm ' seems not unreasonable, in rough agreement
with —0.040 cm ' obtained by n scaling of Ermolaev's
calculation for the 2 S shift. '

For ' D states, we assume 4L =0. The resulting Eg's are
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TABLE II. Theoretical and experimental energies for Het. TNR denotes the nonrelativistic term value
(ionization energy), h&~ the sum of the relativistic and mass-polarization corrections to TN&, EL the
Lamb-shift correction, E,„„,the experimental energy value, and Er the sum TNR+Az I+hL+E,„„„giving
the ionization energy from the ground state. Entries associated with D states are the center-of-gravity
values. All values in cm

State TNR
b

Eexpt

23S
33S
43S
53S
63S
3 D
4'D
5'D
6'D
7 D
8'D

3 3Dcg

43D,
53D,
6 3D,g
7 D,g
S 3Dcg

38 453.13139
15 073.4412

8 012.3775
4 963.588 16
3 374.498 19

12 205.6667 (4}
6 864.1918(3)
4 392.3661(1)
3 049.8903 (1)
2 240.5351
1 715.2911

12 209.0849(5)
6 866.1671(3)
4 393.5054 (2)
3 050.5899(1)
2 240.9910
1 715.6032

1 6981c
0.4698'
0 1913c
0 0958c
0.055'
0.0389f
0.0236f

0.0140'
0.0089'
0.0059'
0.0041'
0.0323'
0.0188'
0.0»2'
0.0071'
0.0048'
0.0034'

—0 135
(—0.0288}e
(—0.0122)'
(—0.0062)'
(—0.0036)'

(0)&
(0)
(0)s
(0}

(0)
(0)
(0)
(0)~

159856.0776 (5)
183 236.8906 (10)
190298.2165(5)
193347.0947 (5)
194936.2234 (10)
186 105.069 84 (9)
191446.559(2)
19391&.3931(5)
195 260.8744 (9)

186 101.659 69(3)
191444.588 64 (50)
193917.256 82 (50)
195 260.17661(90)

198310.772
198310.7728
198310.7731
198310.7725
198310.7730
198310.7754
198310.7744
198310.7732
198310.7736

198310.7769
198310.7745
198310.7734
198310.7736

'Present work; for a discussion of estimated errors, see text.
b Martin, Ref. 5.
'Accad et a1., Ref. 8.
Ermolaev, Ref. 1S.

'Assumed value, see text.
Cok and Lundeen, Ref. 16; the effect of singlet-triplet repulsion, calculated from their fine-structure matrix

elements, is also included. Mass-polarization contributions for the 3 D and 3 D states are taken from our
preliminary results (see text).
N'Assumed value.

around 198310.7735 cm ' for n = 5, 6, but are somewhat
larger for n = 3, 4. Since the errors in hg ~ and AL are ex-
pected to decrease with increasing n, the values of Er for
higher excited states should be more reliable. It is likely
that the departure of the values of Er for n = 3, 4 from the
values for n =5, 6 is caused by the inaccuracy in 4g,~
and/or 4L.

For n ' D states with n ~ 7, precise singlet-triplet inter-
vals based on microwave-optical resonance measurements
are available. ' Table III compares our results with these
data, together with the perturbation calculations of Chang
and Poe.2 Agreement between our results with the
microwave-optical resonance data is quite satisfactory. Im-
provement of the accuracy over the results of Chang and
Poe is also quite significant.

The above comparison supports the reliability of the
values of TNR+ hg ~ for high-lying 1snd states. We can
also use these term values to estimate Er by fitting an ap-
propriate series formula to E,„„(for n = 3-6) and to
TNa+Ag, ~ (for n =7, 8). Following Martin, ' we employed
an extended Ritz formula:

the ionization energy, and a, 6, c, and 50 series constants
[Eq. (4) is applied to n =3—6, and Fq. (S) to n =7, 8].
Least-squares adjustment of a, b, c, and EI (50 was fixed at
0) in an unweighted global fit for the n 'D and n3D series
gave a value of 19&310.7735(2) cm ' for EI, where the
number in the parenthesis is the standard deviation. In this
fit the root-mean-square deviation of Eezpt and TNg, + 4g,~
from the fitted values was 0.00017 cm

All of the above results indicate that the present TNR are
consistent with E pt provided the exact Er is near
198310.773 cm ', and we feel it safe to adopt this value
with an uncertainty of 0.001 cm ' for the ionization energy
for helium in th'e energy scale adopted for E,„„, (which is
fixed by the 2'P value of 171135.0000 cm '). This result
should be more accurate than the recent estimate of Er
given by Martin [198310.774S(40) cm '].5

In conclusion, we have carried out precision variational

TABLE III. Values of n D —n D,g intervals in He (in MHz).

E = EI —RH, /(n')',
T -RH, /(n")',
n —n"=a+b(n —50) '+c(n —go) (6)

Present work'

13635
9336

Experimentb

13 633.3 (2)
9332.67 (8)

Other theory'

13 574
9274

where E is the energy value of a state relative to the ground
state, T the term value, RH, the He Rydberg constant, Er

'Differences of the values of TNR+5& M in Table II.
bFarley et aL, Ref. 19.
'Chang and Poe, Ref. 20.
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calculations for the n S, n 'D, and n D series in HeI up to
high-lying excited states. From comparison of the results
with accurate experiments, with the aid of relativistic and
mass-polarization correction energies (b,s ~) available in the
literature, an improved value of the ionization energy (Ef)
is suggested. To establish the present estimate of EI more

firmly, imporved values of 4~ M for 1snd states are required.
Evaluation of AR I by use of the present wave functions is
in progress and an extension of calculations to the n 'S,
n 'I', and n P series is intended.

Numerical computations in the present work were carried
out at the Computation Center of Nagoya University.

E. Giacobino and F. Biraben, J. Phys. B 15, L385 (1982).
P. Juncar, H. G. Berry, R. Damaschini, and H. T. Duong, J. Phys.

B 16, 381 (1983).
L. Hlousek, S ~ A. Lee, and W. M. Fairbank, Jr., Phys. Rev. Lett.

50, 328 (1983).
4C. J. Sansonetti and W. C. Martin, Phys. Rev. A 29, 159 (1984).
5W. C. Martin, Phys. Rev. A 29, 1883 (1984).
6C. L. Pekeris, Phys. Rev. 126, 1470 (1962).
B. Schiff, H. Lifson, C. L. Pekeris, and P. Rabinowitz, Phys. Rev.

140, A1104 {1965).
8Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 4, 516 (1971).
9K. Frankowski, Phys. Rev. 160, 1 (1967).

A. Kono and S. Hattori, Phys. Rev. A 29, 2981 (1984).
Values of ( —2E —Z ) accurate to sixth decimal place were
used to fix g. ( was optimized to two significant figures. Further
optimization would give no significant improvement.

2J. S. Sims, D. R. Parmer, and J. M. Reese, J. Phys. B 15, 327
(1982).

C. L. Pekeris, Phys. Rev. 127, 509 (1962).
D. E. Freund, B. D. Huxtable, and J. D. Morgan III, Phys. Rev. A
29, 980 (1984).

' The 8 D state was not tested because the number of expansion
terms exceeds the limit set by our program.

' D. R. Cok and S. R. Lundeen, Phys. Rev. A 19, 1830 (1979).
' Although E,», 's for the 4 S and 5 S states are quoted with an

uncertainty of 0.0005 cm ', the difference between them is es-
tirnated to be accurate to 0.0001 cm (see Ref. 3). Therefore,
the 0.0006-cm discrepancy of EI's obtained for these states is
meaningful and indicates that the present estimate of AL is not
completely satisfactory.
A. M. Ermolaev, Phys. Rev. Lett, 34, 380 {1975).
J. W. Farley, K. B. MacAdam, and W. H. Wing, Phys. Rev. A 20,
1754 (1979).

T. N. Chang and R. T. Poe, Phys. Rev. A 14, 11 (1976).


